Differential Rescue Effects of Choline Chloride and Soy Isolate on Neuronal Metabolic Dysfunction in Immature Central Nervous System Neurons: Relevance to Fetal Alcohol Spectrum Disorder

Author(s): Suzanne M. de la Monte*, Erin Elgas, Ming Tong, Busra Delikkaya, Yiwen Yang

Background: Central Nervous System (CNS) abnormalities with insulin resistance and mediated by developmental exposures to ethanol can be avoided or remediated by consumption of dietary soy, which has insulin-sensitizing as well as antioxidant effects. However, choline supplementation has been shown to diminish Fetal Alcohol Spectrum Disorder (FASD) pathologies, and dietary soy contains abundant choline. This study was designed to determine if the therapeutic effects of soy were mediated by or independent of choline. Methods: Human PNET2 cells exposed to 0 mM or 100 mM ethanol for 48 hours were seeded into 96-well or 12-well plates and treated with vehicle, choline chloride (75 µM), or 1 µM Daidzein+1 µM Genistein (D+G) for 24 h. The cells were then analyzed for viability (Hoechst 33342), mitochondrial function (MTT), and GAPDH, Tau, Acetyl Cholinesterase (AChE), Choline Acetyl Transferase (ChAT), and Aspartyl-Asparaginyl-β-Hydroxylase (ASPH) immunoreactivity. Results: Choline and D+G significantly increased MTT activity (mitochondrial function) corrected for cell number relative to vehicle in control and ethanol-exposed cultures. Both choline and D+G prevented the ethanol-induced inhibition of GAPDH and ChAT and increased cellular accumulations of Tau. However, D+G significantly increased ASPH expression relative to vehicle and Choline. Conclusion: Choline and D+G differentially modulated the expression of neuronal proteins, mitochondrial function, and ASPH. Importantly, the prominently increased expression of ASPH by D+G corresponds with the insulin-sensitizer actions of soy isoflavones since ASPH is an insulin-responsive molecule. The findings further suggest that dietary soy may be more effective than choline for reducing ethanol-impaired neuronal migration linked to ASPH inhibition in FASD.