Toxicology Case Reports Journals

 Toxicology is a scientific discipline, overlapping with biology, chemistry, pharmacology, and medicine, that involves the study of the adverse effects of chemical substances on living organisms and the practice of diagnosing and treating exposures to toxins and toxicants. The relationship between dose and its effects on the exposed organism is of high significance in toxicology. Factors that influence chemical toxicity include the dosage, duration of exposure (whether it is acute or chronic), route of exposure, species, age, sex, and environment. Toxicologists are experts on poisons and poisoning. There is a movement for evidence-based toxicology as part of the larger movement towards evidence-based practices. The goal of toxicity assessment is to identify adverse effects of a substance. Adverse effects depend on two main factors:  routes of exposure (oral, inhalation, or dermal) and ii) dose (duration and concentration of exposure). To explore dose, substances are tested in both acute and chronic models. Generally, different sets of experiments are conducted to determine whether a substance causes cancer and to examine other forms of toxicity. Factors that influence chemical toxicity: Dosage Both large single exposures (acute) and continuous small exposures (chronic) are studied. Route of exposure Ingestion, inhalation or skin absorption Individual characteristics Evidence-based toxicology The discipline of evidence-based toxicology strives to transparently, consistently, and objectively assess available scientific evidence in order to answer questions in toxicology, the study of the adverse effects of chemical, physical, or biological agents on living organisms and the environment, including the prevention and amelioration of such effects. Evidence-based toxicology has the potential to address concerns in the toxicological community about the limitations of current approaches to assessing the state of the science. These include concerns related to transparency in decision making, synthesis of different types of evidence, and the assessment of bias and credibility. Evidence-based toxicology has its roots in the larger movement towards evidence-based practices. Testing methods Toxicity experiments may be conducted in vivo (using the whole animal) or in vitro (testing on isolated cells or tissues), or in silico (in a computer simulation Non-human animals The classic experimental tool of toxicology is testing on non-human animals. Example of model organisms are Galleria mellonella,  which can replace small mammals, and Zebrafish, which allow for the study of toxicology in a lower order vertebrate in vivo. As of 2014, such animal testing provides information that is not available by other means about how substances function in a living organism. The use of non-human animals for toxicology testing is opposed by some organisations for reasons of animal welfare, and it has been restricted or banned under some circumstances in certain regions, such as the testing of cosmetics in the European Union.

High Impact List of Articles

Relevant Topics in Clinical