VACCINE INFORMATICS

 Global public health has dramatically increased due to the successful and effective implementation of immunization programs that utilize major infectious disease vaccines. Among the most famous vaccines are Jenner's smallpox vaccine, Pasteur's rabies and anthrax vaccines, and the Bacillus Calmette-Guérin (or Bacille Calmette-Guérin, BCG) vaccine for tuberculosis. The positive effect of vaccination on public health is highlighted by the success of the global smallpox eradication campaign, and the scope of vaccine development for the prevention and treatment of various diseases in both humans and animals continues to grow on a daily basis. Vaccine informatics is an emerging field that develops and applies computational, statistical, and bioinformatics methods to study vaccine and vaccination-related issues in different stages of research, development, clinical trial, postlicensure clinical uses, and surveillance. The field began centuries ago with widespread vaccination monitoring to determine vaccine safety and clinical applicability. Yet it was not until the growth of the immunoinformatics field in the 1980s that vaccine informatics emerged as an important area of study, when many methods were developed and implemented to predict T-cell and B-cell immune epitopes. These T-cell and B-cell immune epitopes were identified as potential vaccine targets and were recognized as crucial to understanding basic protective immunity. In the 1990s, bioinformatics became an emerging science after more and more DNA, RNA, and protein sequences were identified and studied. In the postgenomics and information era, the application of bioinformatics tools within the vaccinology field has fostered dramatic progression for both literature and data on vaccine informatics, creating the potential to revolutionize every aspect of the pre- and postlicensure vaccine enterprise.  

High Impact List of Articles

Relevant Topics in Medical