Refractive Surgery Journals
Refractive eye
surgery is non-essential eye
surgery used to improve the refractive state of the eye and decrease or eliminate dependency on glasses or contact lenses. This can include various methods of surgical remodeling of the cornea (keratomileusis), lens implantation or lens replacement. The most common methods today use excimer
lasers to reshape the curvature of the cornea. Successful refractive eye
surgery can reduce or cure common vision disorders such as myopia, hyperopia,
presbyopia and astigmatism.
The first theoretical work on the potential of refractive
surgery was published in 1885 by Hjalmar August Schiøtz, an ophthalmologist from Norway.[1] In 1930, the Japanese ophthalmologist Tsutomu Sato made the first attempts at performing this kind of surgery, hoping to correct the vision of military pilots. His approach was to make radial cuts in the cornea, correcting effects by up to 6 diopters. The procedure unfortunately produced a high rate of corneal degeneration, however, and was soon rejected by the medical community.
The first proficient refractive
surgery technique was developed in the Barraquer ophthalmologic clinic (Bogotá, Colombia), in 1963, by Jose Barraquer. His technique, called keratomileusis, meaning corneal reshaping (from Greek κÎρας (kéras: horn) and σμίλευσις (smileusis: carving)), enabled the correction, not only of myopia, but also of hyperopia. It involves removing a corneal layer, freezing it so that it could be manually sculpted into the required shape, and finally reimplanting the reshaped layer into the eye. Although this early form of refractive
surgery (keratomileusis with freezing) was improved in 1986 by Dr. Swinger (keratomileusis without freezing)[citation needed], it remained a relatively imprecise technique.
In 1974 a refractive procedure called Radial Keratotomy (RK) was developed in the USSR by Svyatoslav Fyodorov and later introduced to the United States. RK involves making a number of cuts in the cornea to change its shape and correct refractive errors. The incisions are made with a diamond knife. Following the introduction of RK, doctors routinely corrected nearsightedness, farsightedness, and astigmatism using various applications of incisions on the cornea.
Meanwhile, experiments in 1970 using a xenon dimer and in 1975 using noble gas halides resulted in the invention of a type of laser called an excimer laser. While excimer
lasers were initially used for industrial purposes, in 1980, Rangaswamy Srinivasan, a scientist of IBM who was using an excimer laser to make microscopic circuits in microchips for informatics equipment, discovered that the excimer could also be used to cut organic
tissues with high accuracy without significant thermal damage. The discovery of an effective biological cutting laser, along with the development of computers to control it, enabled the development of new refractive
surgery techniques.
In 1983, Stephen Trokel, a scientist at Columbia University, in collaboration with Theo Seiler and Srinivasan, performed the first Photorefractive Keratectomy (PRK), or keratomileusis in situ (without separation of corneal layer) in Germany.[2] The first patent for this approach, which later became known as LASIK surgery, was granted by the US Patent Office to Gholam Ali. Peyman, MD on June 20, 1989.[3] It involves cutting a flap in the cornea and pulling it back to expose the corneal bed, then using an excimer laser to ablate the exposed surface to the desired shape, and then replacing the flap. The name LASIK was coined in 1991 by University of Crete and the Vardinoyannion Eye.
High Impact List of Articles
Relevant Topics in Clinical