Modern Chemistry Scopus Indexed Journal

Solid-state batteries were already envisioned in the 19th century by pioneer chemist Michael Faraday. However, their development never become a reality until quite recently. Now, important industries from a variety of sectors such as Bosch, Dyson, Toyota, and Intel are investing billions of dollars in this technology. John Goodenough, co-inventor of the now omnipresent lithium-ion batteries, recently unveiled a battery that uses glass as the electrolyte—proving that solid-state batteries are closer to market than ever. Compared to lithium-ion batteries that power our smartphones, tablets, and laptops, solid-state batteries are lighter, allow higher energy storage, and perform well at high temperatures. Moreover, unlike the electrolytes used in lithium-ion technology, solid-state electrolytes are not flammable, which could potentially avoid spontaneous fires and explosions, like the flames that darkened the launch of Samsung Galaxy Note 7 a few years back. However, the new technology is still very expensive. As for many other applications, polymers may be the best and most economical solution. French transportation company Bolloré is already fabricating and commercializing polymer-based solid-state batteries, which they use mostly for network connected sensors. According to polymer expert Tanja Junkers, “charge transporting polymers [are] truly fascinating—we have just yet seen the very beginning of what will be possible in [the] future.” There is still a lot of research to be done, especially because solid-state battery components are so closely bound together that it is quite complicated to understand how each of them behaves.    

High Impact List of Articles

Relevant Topics in Clinical