Cancer Genetics Review Article

The epigenetic regulation of DNA-templated processes has been intensely studied over the last 15 years. DNA methylation, histone modification, nucleosome remodeling, and RNA-mediated targeting regulate many biological processes that are fundamental to the genesis of cancer. Here, we present the basic principles behind these epigenetic pathways and highlight the evidence suggesting that their misregulation can culminate in cancer. This information, along with the promising clinical and preclinical results seen with epigenetic drugs against chromatin regulators, signifies that it is time to embrace the central role of epigenetics in cancer.Epigenetic changes provide a way for cells to control and regulate gene activity without changing the genes permanently. Instead, epigenetic control relies on small, reversible, changes to the DNA and proteins that make up chromosomes. To understand epigenetics, it is necessary to understand the nature of DNA. DNA is composed of four types of chemical building blocks (nucleotides). DNA is packed in this way for several reasons. One is that DNA molecules are very, very long – if it were all uncoiled, the DNA in a single cell would be about 6 feet (2 meters) long!3It would be almost impossible to fit in a cell without some good organization. Another reason is to strictly control gene activity so that genes are active only when needed.    

High Impact List of Articles

Relevant Topics in Clinical