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Abstract
Purpose: To demonstrate that retinal microvasculature per se is a reliable biomarker for 
Diabetic Retinopathy (DR) and, by extension, cardiovascular diseases.

Methods: Deep Learning Convolutional Neural Networks (CNN) applied to color fundus 
images for semantic segmentation of the blood vessels and severity classification on both 
vascular and full images. Vessel reconstruction through harmonic descriptors is also used as a 
smoothing and de-noising tool. The mathematical background of the theory is also outlined.

Results: For diabetic patients, at least 93.8% of DR No-Refer vs. Refer classification can be 
related to vasculature defects. As for the Non-Sight Threatening vs. Sight eatening case, the 
ratio is as high as 96.7%.

Conclusion: In the case of DR, most of the disease biomarkers are related topologically to the 
vasculature.

Translational relevance: Experiments conducted on eye blood vasculature reconstruction 
as a biomarker shows a strong correlation between vasculature shape and later stages of DR.
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Introduction

Diseases that primarily affect blood vessels, 
including diabetes and cardiovascular disease, 
are four of the top seven causes of death in 
the United States and have an increasing 
prevalence worldwide [1]. An enhanced ability 
to diagnose these diseases and their stage 
and determine an individual’s propensity to 
develop or have progressive complications from 
these diseases would be of enormous benefit. 
Recent technological advances have allowed 
the development of clinical data acquisition 
and analysis to begin to fulfill this goal. Retinal 
vasculature provides a unique ability to examine 

blood vessels and can now be imaged non-
invasively with efficient and effective devices in 
large populations. The benefits of telemedicine 
using these images to diagnose and determine 
the severity of diabetic retinopathy have 
been demonstrated to be as accurate as live 
examinations, if not more [2,3]. The ability to 
incorporate this capability into a health system to 
improve patient outcomes has been shown in the 
English NHS Diabetic Eye Screening Program 
that has reported an 82.8% rate of diabetic 
retinopathy evaluation, over time resulting in 
diabetic retinopathy no longer being the leading 
cause of blindness and visual disability among 
working class adults in the UK [4].
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Artificial Intelligence and Deep Learning provide 
new technology to facilitate the ability to improve 
the sensitivity and specificity of the analysis of 
retinal images. We can use a deep convolutional 
neural network based model to detect referable 
DR [5]. It has been shown that Deep Learning 
assistance can improve the accuracy of reader 
grading of retinal images for DR severity [6]. 
Additionally, to further improve access, quality, 
and cost effectiveness, artificial intelligence has 
been FDA cleared for autonomous diagnosis of 
more than mild diabetic retinopathy and diabetic 
macular edema using a single camera in patients 
without diabetic retinopathy. The pivotal FDA 
trial demonstrated a sensitivity of 87.2% and 
specificity of 90.7% [7].

Fundus photography, with the assessment 
of retinal vascular measurements, is useful 
in the evaluation of other vital diseases in 
addition to diabetes, including cardiovascular, 
cerebrovascular, and Alzheimer’s diseases. Retinal 
vascular caliber has been shown to correlate 
with diabetes complications: retinopathy, 
nephropathy, neuropathy, and cardiovascular risk 
[8,9]. The impact of including retinal parameters 
and biomarkers with traditional cardiovascular 
risk measures in a diabetic population showed 
a statistically significant improvement based 
on net re-classification improvement [8]. This 
improved ability to assess cardiovascular risk 
has been demonstrated in an older population 
in [10]. Given the similar embryological origins 
and structural characteristics of retinal and 
cerebrovascular vessels, it is not surprising to 
find associations between retinal signs and brain 
microvascular disease [11]. There is also evidence 
of an increased abnormality of several retinal 
vascular parameters in patients with Alzheimer’s 
disease compared to matched controls [12].

In medical images, identifying candidate regions 
is of the highest importance since it provides 
intuitive illustrations for doctors and patients of 
how the diagnosis is inferred. Recently, advances 
in Deep Learning have dramatically improved 
the performance of disease detection. Most 
of these Deep Learning systems treat CNN 
as a kind of black box, lacking comprehensive 
explanation. Traditional ways of visual “feature 
finding” are given through heat map generation 
or sliding windows. In this report, we show that 
for retinal diseases, most of the visual features 
allowing AI recognition like vessel curvature, 
angles, etc. are topologically concentrated along 
the retinal vasculature.

Furthermore, mechanistic studies have 
established a causal role for lipids (principally 
low-density lipoproteins cholesterol, LDL-C) 
and hypercholesterolemia in the atherogenesis of 
atherosclerotic cardiovascular disease (ASCVD) 
[13]. Also, dyslipidemia (aberrant regulation of 
lipid metabolism) and hyperlipidemia (high level 
of blood plasma lipids) have been described as 
a prerequisite risk factor for the development 
and progression of clinically detectable 
atherosclerosis [14]. Moreover, Hayashi 
and colleagues summarized from laboratory 
experimental research findings that high glucose 
concentrations suppress the levels of caveolin-1 
expression, reducing the number of caveolae 
(vesicular invaginations of the plasma membrane 
that mediate the intracellular transport of lipids 
such as cholesterol), thereby increasing the 
risk for the development and progression of 
atherosclerosis [15]. In sum, the significance and 
novelty of the current study, lies in the fact that, 
for the first time, an attempt is made towards 
providing laboratory experimental evidence, 
connecting a combination of dysregulations 
in lipid and glucose metabolisms due to sub-
chronic exposure to drinking water Cd as 
casual molecular events in the development of 
atherosclerosis.

 � Prior work

Biomarkers are traditionally associated with 
lesions on the retina caused by the disease, such 
as Microaneurisms, Hemorrhages, Exudates, 
Macular Edema, and neovascularization [16]. 
Moreover, they are also related to typical risk 
factors for DR (HbA1c, blood pressure, total 
cholesterol, etc.). The absence or presence, type, 
and severity of retinal vessel lesions diagnosed by 
retinal photography are biomarkers of DR status 
and are commonly used in screening clinics 
and research [17]. Many methods from Image 
Processing and Deep Learning domains have 
been designed and implemented to automatically 
or semi-automatically detect the markers. Retinal 
markers like the retinal arteriolar and venular 
caliber and their arterio-venous ratio (AVR) are 
of great importance. It has been found useful for 
early diagnosis of diseases such as hypertension, 
diabetes, stroke, other cardiovascular diseases in 
adults, and retinopathy of premature [18]. One 
calculates it as the ratio of average arteriolar 
diameter and average venous diameter of the 
vessels within one and two disk diameter circular 
rings from the optic disk center [19]. So only a 
small but essential part of the vasculature is used.
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Retinal vessel geometry comprises another group 
of retinal vessel-based biomarkers. It includes 
measures of vessel branching angles, branching 
complexity, tortuosity, length-to-diameter ratio, 
and fractals [20]. They have been used, among 
other things, to identify patterns summarizing 
the retinal vascular network inthe elderly and to 
relate them to cardiovascular history (see TABLE 
1 for a full list of geometric biomarkers).

The extraction of retinal microvasculature with 
the help of Deep Learning, which dates back to 
2015 [21], has shown outstanding results and 
outperformed drastically the methods based on 
traditional image processing [22]. This allows 
the segmentation of vessels to the extent of 
being able to characterize the whole vasculature 
as a biomarker encompassing, therefore, other 
biomarkers such as tortuosity, curvature, angles, 
etc.

TABLE 1: Confusion matrix of clinician interpretation 
(clinician-1 row-wise and clinician-2 column-wise) in terms 
of DR severity at eye level.

 Normal Mild Moderate Severe
Prolif-
erative

Normal 1436 55 6 0 0

Mild 14 448 260 2 0

Moderate 8 12 1652 252 56

Severe 0 2 19 1286 179

Proliferative 4 1 7 30 1259

 � Dataset

The dataset consisted of color digital fundus 
photography obtained in a non-Eye-Care 
Professional’s environment operated by staff with 
minimal training. The IRIS oftware solution is 
designed to be camera agnostic. For this study, 
a total of 6,988 graded 45° × 40° CenterVue 
DRS camera (CenterVue SpA, Freemont, CA) 
were utilized. All images are monoscopic, and 
single images centered on the fovea. These 6,988 
graded images represent a random sample from 
over 430,000 orders within the IRIS database.

The categorization of the images was performed 
using the Diabetic Retinopathy Severity Scale 
(DRSS) based on the International Classification 
of Diabetic Retinopathy (ICDR) criteria. 
Ground truth for each image was determined 
by the agreement of two experienced grading 
board-certified ophthalmologists. If there 
was disagreement mong the two, a third 
ophthalmologist acted as an adjudicator. All 
images were evaluated in the standard color 
image as well as an IRIS proprietary image 
enhancement. We see from the confusion 
matrix presented in TABLE 1 that the main 

disagreements lay along the Mild/Moderate 
boundary.

Agreements between the clinicians were assessed 
by Cohen’s k coefficient, whose equation is 

1
p qK

q
−

=
−

, where p is the observed probability 
of agreement, and q is the probability of chance 
agreement. The golden rule being the more 
significant the k, the better is the agreement. The 
k value of the confusion matrix is 0.838, which 
shows a pretty good agreement.

Methodology

Due to the time-consuming and repetitious 
aspects of manual blood vessel segmentation, 
automatic segmentation of retinal vessels is 
necessary for making a computer diagnostic 
system for ophthalmic disorders. Automatic 
segmentation of the blood vessels in retinal 
images is important in detecting several eye 
diseases because, in some cases, they affect the 
vessel network itself.

 � Image processing segmentation

Several topological features of retinal vessels 
(e.g. diameter, length, branching angle, 
tortuosity, curvature) have diagnostic value [23].
They can be used in the follow-up of disease 
progression, treatment, and evaluation of 
various cardiovascular and eye-related diseases 
(e.g. diabetes, hypertension, arteriosclerosis, 
and neovascularization) [24]. The basic image 
segmentation is obtained by applying the 
following filters to the source image:

• Gray-scale conversion of the color fundus 
image.

• Standardization

• Contrast-limited adaptive histogram 
equalization (CLAHE)

• Gamma adjustment

However, due to the high variance in image 
quality and camera type, image processing 
segmentation software tends to deliver well to 
poor accurate vascular segmentation. In FIGURE 
1, the middle row displays blood vessel networks 
segmented through image processing. As one 
can see, some images have almost no segmented 
vasculature. For around one-third of the dataset, 
images have partial or no segmentation due to 
image quality, intensity variation, lens artifacts, 
etc. This is the reason why we need a more 
accurate segmentation tool.
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 � Semantic segmentation

In recent years, Deep Learning has achieved 
great success in visual perception, and the 
semantic segmentation of images is one of the 
most successful cases. The overall architecture 
of the model we used is shown in FIGURE 2. 
Our model adopts a full convolutional neural 
network, which is commonly used in most 
semantic segmentation tasks. It can be briefly 
divided into two parts-encoder and decoder. 
The encoder is a convolutional neural network 
that extracts features from the input image, such 
as the retinal vasculature image. The decoder 
wills up-sample the extracted features to the 
resulting image that we desired, such as the vessel 
segmentation in our case (FIGURES 3a and 3b).

The neural network architecture is derived 
from the U-Net architecture [25]. The major 
advantage of this architecture is its ability to 
consider a wider context when predicting a pixel. 

This is facilitated by using the large number of 
channels used in the up-sampling operation.

We apply cross-entropy for the loss function, 
and the stochastic gradient descent (SGD) is 
employed for back-propagation optimization. 
After each convolutional layer, the activation 
function is the Rectifier Linear Unit (ReLU). 
A dropout rate of 0.2 is used between two 
consecutive convolutional layers. Among the 
dataset, 150 images with correct image processed 
segmentation were chosen for training purposes. 
The training was performed over 50 epochs, with 
a mini-batch size of 16 patches. Performance 
obtained was measured by a 97.9% AUC on the 
150 training images.

The experiments were run on a high-end 
GPU, the Tesla V100-PCIE, containing 2496 
CUDA cores. After training, all 6,988 images 
in the dataset were processed to generate the 

FIGURE 1: Image processing (second row) and semantic segmentation (third row) of the same color fundus 
images (first row).

FIGURE 2: Deep learning model architecture used for semantic segmentation. Note: ( ) Conv 3×3,  ( ) 
ReLU, ( ) copy and crop, ( ) max pool, ( ) up-couv 2×2, ( )couv 1×1
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vasculature images (see bottom row of FIGURE 
1). Segmentation time took 1 hour and 49 
minutes.

Vessel reconstruction and harmonic descriptors: 
The microvasculature segmentation one obtains 
from Deep Learning has better coverage 
than image processing can yield, but it is far 
from being perfect. Noise reduction has to be 
provided; blobs and falsepositive pixels have 
to be removed from the processed images. 
Furthermore, some vessel smoothing has to be 
applied to the generated segments. We based our 
smoothing method on Fourier Descriptors [26]. 
We give a mathematical description of the theory 
in Appendix A.

Image processing steps: (1) Binarize vasculature 
image obtained by semantic segmentation. (2) 
Extract skeleton from binary image by thinning. 
(3) Build an abstract graph from the skeleton. 
(4) Remove noise from graph and apply 
vessel tracking over the entire vasculature. (5) 
Reconstruct each extended vessel in the graph by 
harmonic descriptors smoothing.

Harmonic descriptor smoothing: Harmonic 
descriptors have multiple advantages. For 
instance, knowing the harmonic descriptors of 
a given vessel, it is straightforward to compute 
its first and second derivatives, yielding the 
local curvature. A by-product, i.e. averaging the 
curvature over the entire vasculature, gives an 
estimation of the tortuosity of the vessel network. 
Likewise, the angle made by two incident vessels 
can be readily computed. 

 � Experiments

As retinal blood vessels are the only deep vessels 
that can be observed in the human body, 
they could directly reflect the state of some 
cardiovascular diseases. They could also reflect 
the severity of DR [27]. We ran four experiments 
to test this assumption.

Severity classification of vasculature images: To 
obtain a baseline measure, we run experiments 
against the corresponding reconstructed 
vasculature images without the out-of vessels 
lesions (Scenario I). A technique called fine-
tuning is used to make a pre-trained model 
adapt to a new dataset. We first train a model on 
a large dataset with millions of images. Then on 
the second step, we adjust the weights using the 
domain-specific dataset.

Fine-tuning often benefits medical domains 
with relatively small datasets. At the same time, 
fine-tuning carries the accuracy advantage of 
deep learning. In our case, we used the pre-
trained ResNet101 model [28]. The training 
was performed over 50 epochs, with a mini-
batch size of 8 images. Learning rate per mini-
batch was=[0.01] × 5+[0.001] × 5+[0.0001] × 
5+[0.00001] with a × 2 regularization weight of 
0.0005. On a Tesla V100-PCIE, training time 
amounted to 56 minutes.

Scenario I-A. First dataset was Normal+Mild 
vs. Moderate+Severe+Proliferative (No-Refer vs. 
Refer) containing segmented retinal vasculature 
images only. Training dataset consists of 5,988 

(A) (B)

FIGURE 3: Harmonic descriptors and vessel reconstruction. (a) Reconstructed vessel from harmonic 
description. Bottom window contains the reconstructed vessel and its derivative. Local curvature is 
shown in third window from top. (b) Harmonic reconstruction of the vasculature of a fundus image. 
RGB colors are respectively assigned the scale invariant values of | (a0, b0) |, | (a2, b2) |, and | (a1, b1) |. 
Implementation relies heavily upon FFTW.

NOTE: (         ) Harmonic Coeffcients; (         ) Amplitude Spectrum; (         ) Local Curvature; (         ) Hormonic 
Curve; (         ) Hormonic Derivative; ( X ) Optima
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vasculature images, validation dataset of 1,000 
vasculature images. Classification results are to 
be found in TABLE 2.

• Scenario I-B. Second dataset was 
Normal+Mild vs. Severe+Proliferative (Non-
Sight Threatening vs. Sight Threatening) 
containing segmented retinal vasculature 
images only. Training dataset consists of 
4,008 vasculature images, validation dataset 
of 1,000 vasculature images. Classification 
results are to be found in TABLE 2.

Severity classification of full retinal images: 
To check if lesions can discriminate more than 
vasculature alone, we re-run same experiments 
on the full images containing all potential 
lesions (Scenario II). We used the same training/

validation datasets as in the above experiments.

Scenario II-A. Third dataset was Normal+Mild 
vs. Moderate+Severe+Proliferative (No-Refer 
vs. Refer) containing full retinal images only. 
Training dataset consists of 4,008 full images, 
validation dataset of 1,000 full images. 
Classification results are to be found in TABLE 
3.

• Scenario II-B. Fourth dataset was 
Normal+Mild vs. Severe+Proliferative (Non-
Sight Threatening vs. Sight Threatening) 
containing full retinal images only. Training 
dataset consists of 5,988 full images, 
validation dataset of 1,000 full images. 
Classification results are to be found in 
TABLE 2.

TABLE 2: Classification results of (I-A), (I-B), (II-A), (II-B).

Classification 
results Scenario Accuracy sensitivity specificity PPV NPV

I-A Observable vs. 
Referable 93.80% 96.00% 91.60% 92.00% 95.80%

I-B
Non-sight 

threating vs. 
Sight threating 

96.70% 97.20% 96.20% 96.20% 97.20%

II-A Observable vs. 
Referable 98.10% 98.80% 97.40% 97.40% 98.80%

II-B
Non-sight 

threating vs. 
Sight threating 

98.80% 99.00% 98.60% 98.60% 99.00%

TABLE 3: Summary of accuracy measures and mean tortuosity for both scenarios.

 A B

Vascular images 93.80% 96.70%

Full images (Baseline) 98.10% 98.80%

Mean vasculature tortuosity

Observable-2.86 Non-Sight Threatening-2.86

Referable-3.14 Sight Threatening-3.26
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Results and Discussion

For scenario A, we can say that 93.8%95.6%
98.1%

 =  
 

 of 
the success rate can be explained by the blood 
vessel defects present in the microvasculature. In 
case of cenario B, 96.7%97.9%

98.8%
 =  
 

 of the success rate 
can be attributed to the vasculature itself.

As everyone knows the low-level layers of a 
convolutional neural network match simple 
salient features such as lines (vertical, horizontal, 
and diagonal), corners, and contours [29]. Other 
intermediate level layers might, for instance, 
match curved lines and circles. Actually, in 
CNNs, each layer of nodes is trained on a 
distinct set of features based on the previous 
layer’s outcome. The deeper down into the neural 
network, the simpler the features the nodes can 
recognize, obviously because they aggregate and 
recombine features from the previous layer. As a 
matter of fact, related retinal vessel diseases tend 
to modify the morphological and topological 
structure of the vasculature by creating new 
vessels (neovascularization), increasing vessel 
curvature, widening branching angles, etc.

We make the hypothesis that the deep learning 
recognized geometric features are essential to 
help CNNs provide such good accuracy results. 
As shown by Cheung et al. [30], the retinal 
vascular tortuosity from retinal images may 
provide further information regarding effects 
of cardiovascular risk factors [31,32]. From our 
experiments, the success rate for cardiovascular 
risk detection can be attributed to the success 
rate of vasculature itself due to the fact that 
tortuosity as overlay on the vasculature image 
brings a differential layer of information, with its 
delta being larger in B than in A (TABLE 3).

Conclusion

There is a strong interest in the early detection 
of individuals with diabetes and hypertension. It 
is known that individuals with impaired glucose 
metabolism or diabetes have higher mortality 
from cardiovascular disease. In a similar fashion, 
individuals with high to standard blood pressure 
or pre-hypertension are more likely to develop 
cardiovascular events. The new tortuosity 
definition we explain in this paper can provide a 
high level of abstraction similar to what CNNs 
are offering and as such can help us better 
identify cardiovascular risks in patients.
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