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MRI of atherosclerosis: from mouse 
to man

  REVIEW

Atherosclerosis is a progressive arterial disease 
characterized by intimal thickening from the 
accumulation of lipids [1], smooth muscle cells, 
lipid-filled macrophages, monocytes, lympho-
cytes, erythrocytes, platelets [2–4] and extracellular 
matrix proteins (collagen, elastin, proteoglycans) 
[5,6]. It is considered the major contributor to the 
development of cardiovascular disease, the leading 
cause of death in the USA [7] and worldwide [8]. 

Histological studies using excised human 
vessels and atherosclerotic animal models have 
provided valuable information regarding the 
pathophysiology of atherosclerosis and thrombo-
sis. Human vessels collected at autopsy were used 
by the American Heart Association Committee 
on Vascular Lesions to stratify the severity of 
atherosclerotic plaques based on compositional 
and morphological criteria [9–11]. This classifica-
tion system was later modified by Virmani et al. 
[12]. It has also been shown that acute cardiovas-
cular events and sudden death related to athero-
sclerosis are due to disruption of vulnerable or 
high-risk plaques and subsequent thrombosis, 
which may quickly cause luminal occlusion. 
Conversely, stable plaques can remain clinically 
asymptomatic. Currently, three distinct histo-
logical features: plaque rupture, plaque erosion 
and calcified nodules, have been associated with 
luminal thrombosis. Ruptured human plaques, 
also termed thin-cap atheromas, usually have:

�� A thin (<65  µm in the coronary arteries) 
[13–15], inflamed [16,17] fibrous cap infiltrated by 
macrophages;

�� A large lipid core (>40% of the total lesion 
area);

�� Increased neovessels [18];

�� Medial and adventitial disorganization [19];

�� Intraplaque hemorrhage [20];

�� Positive/outward vessel wall remodeling [21].

Unlike plaque rupture, in eroded plaques the 
thrombus forms over an intima lacking endothe-
lial cells and a fibrous cap rich in smooth muscle 
cells, proteoglycans and type 3 collagen fibers [22]. 
Finally, atherothrombi may also occur as a result 
of calcified nodules that bulge into the lumen 
through a disrupted fibrous cap [12].

Despite the incremental understanding of the 
pathophysiology of atherosclerosis, histological 
studies are limited by their retrospective nature. 
Several studies have shown the feasibility of 
both invasive (angiography, angioscopy, intra-
vascular ultrasound [IVUS], optimal coherence 
tomography, thermography, Raman spectros-
copy, near-infrared spectroscopy) and noninva-
sive (B‑mode ultrasound tomography, CT, PET, 
MRI) imaging modalities for in vivo vessel wall 
imaging and characterization of atherosclero-
sis. Of these techniques, angiography and IVUS 
have been widely used in clinical practice pri-
marily to estimate the degree of luminal ste-
nosis and stratify patients in different interven-
tion groups. However, angiographic studies of 
coronary arteries, performed before and after 
nonfatal myocardial infarction, showed that at 

Atherosclerosis and its thrombotic complications still remain the major cause of morbidity and mortality in 
western societies. Atherogenesis in humans generally occurs over decades, and lesion evolution and growth 
may vary according to heredity, gender, lifestyle and environmental conditions. However, the development 
of animal models of experimental atherosclerosis and the emergence of several imaging modalities have 
provided indispensable knowledge to our understanding of the fundamental mechanisms of disease 
progression and allowed the in vivo detection of atherosclerosis in animals and humans. MRI has evolved 
as one of the leading noninvasive imaging modalities to visualize the vessel wall with high spatial resolution 
and without ionizing radiation. This article summarizes the currently available animal models of experimentally 
induced atherosclerosis and the application of MRI in preclinical and clinical imaging studies. 

Keywords: animal model n atherosclerosis n contrast agent n molecular imaging 
n MRI n thrombosis

Alkystis Phinikaridou* 
& René M Botnar
Division of Imaging Science  
& Biomedical Engineering, King’s 
College London, The Rayne Institute, 
4th Floor, Lambeth Wing, St Thomas’ 
Hospital, London SE1 7EH, UK 
*Author for correspondence: 
Tel.: +44 207 188 8386 
Fax: +44 207 188 5442 
alkystis.1.phinikaridou@kcl.ac.uk

41ISSN 1755-519110.2217/IIM.11.75 © 2012 Future Medicine Ltd Imaging Med. (2012) 4(1), 41–58



Table 1. Animal models used in the study of atherosclerosis.

Species Characteristics and use Ref.

Mammalian nonprimate

Mice
C57BL/6, C3H, BALB/c

The C57BL/6 is the most susceptible strain, the BALB/c has intermediate susceptibility and 
C3H has the least susceptibility
C57BL/6 mice develop small lesions in the aortic root characterized by lipid-laden 
macrophages when fed a hyperlipidemic diet for prolonged periods. With further feeding 
they also develop lesions with cellular debris and collagen

[163,164]

ApoB transgenic mice Develop foam cell-rich lesions when fed a diet enriched in saturated fat and cholesterol [165]

ApoE-/- Spontaneous lesions form even when the animals are fed a standard chow diet low in fat 
and free of cholesterol. Lesions rich in foamy macrophages form in the proximal aorta by 
3 months of age and more complex lesions develop by 8–9 months

[166–168]

Lesion formation can be significantly accelerated with high-cholesterol HFD. Advanced 
lesions with fibrous cap, small necrotic cores and lipid deposits form by 3 months of HFD. 
Lesions are found in the aortic root, the aortic arch, the brachiocephalic artery, the base of 
the left carotid and the left subclavian arteries and the renal area

[169,170]

Carotid atherosclerosis was induced by using HFD and perivascular constrictive collars. This 
model was used to study the effects of shear stress on plaque progression and morphology

[171,172]

ApoE*3-Leiden (E3L) 
transgenic mice

Develop lesions when the animals are fed a high-fat, high-cholesterol diet. Lesions contained 
smooth muscle cells, macrophages and T lymphocytes

[173]

LDLR-/- Develop foamy lesions when fed an atherogenic diet containing cholesterol, saturated fat 
and cholate

[174]

LDLR-/-/ApoBEC-/- A model of human familial hypercholesterolemia [175]

LDLR-/-/ApoB+/+ Exhibit accelerated atherosclerosis on a chow diet. Develop large, complex, lipid-laden 
atherosclerotic lesions

[176]

LDLR-/-/ApoCIII A model of familial combined hyperlipidemia. Lesions form when the animals are fed an 
atherogenic diet

[177]

ApoE-/-/LDLR-/- Develop foamy lesions when fed an atherogenic diet containing cholesterol, saturated fat 
and cholate

[178]

ApoE-/-/C1039G-/+ Hypercholesterolemia with a mutation in the fibrillin‑1 gene leading to impaired 
elastogenesis promotes features of plaque instability

[179]

ApoE-/-/MMP1-/- Develop lesions when fed a high-cholesterol HFD. Surprisingly, the lesions are less advanced [180]

ApoE-/-/eNOS-/- Develop accelerated atherosclerosis, aortic aneurysm formation and ischemic heart disease 
after 16 weeks of high-cholesterol HFD

[181]

ApoE-/-/iNOS-/- Develop reduced atherosclerosis and have lower plasma lipid peroxides [182]

ApoE-/-/Ncp1-/- Develop lesions increased in size and extensive medial degradation. The lesions showed 
signs of spontaneous plaque disruption with overlay thrombus

[183]

Rats Not a preferred model for studying atherosclerosis. Very resistant to the development of 
atherosclerosis even when fed with high-cholesterol diets that induce lesions in other 
species. Induction of atherosclerosis was achieved with a combination of extremely high 
lipid content coupled to auxiliary procedures such as bile acid supplementation, vascular 
injury, thyroid destruction and perinephritis

[184,185]

Rabbits Susceptible, especially the NZW rabbits, to diet-induced atherosclerosis and the type of 
lesions depend on the duration and composition of the atherogenic diet. Atherosclerotic 
plaques range from early to advanced/complicated lesions depending on the 
induction method

[1,186]

Rabbits developed foam cell-rich (fatty steaks) plaques when short-term HFDs (6–10 weeks) 
were the only stimulus used to induce atherosclerosis. However, intermittent cycles of 
high-cholesterol feeding with periods of normal diet (2 months of high-cholesterol diet, 
followed by 2–3 months of normal diet, followed by another cycle of high-cholesterol diet 
for 2 months and normal diet for 2 months) induced plaques at more advanced stages that 
resembled human atheroma. Moreover, with the combination of arterial wall injury and 
hyperlipidemia, advanced lesions form in shorter periods

[187–191]

WHHL rabbits serve as models of homozygous familial hypercholesterolemia. They develop a 
variety of lesions under normal chow and have been used to study lipoprotein metabolism 
owing to the elevation of LDLs

[192–195]

HFD: High-fat diet; IDL: Intermediate-density lipoprotein; LDL: Low-density lipoprotein; MMP: Matrix metalloproteinase; NZW: New Zealand white;  
VLDL: Very low-density lipoprotein; WHHL: Watanabe heritable hyperlipidemic.
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the site of thrombosis, the pre-existing lesion 
frequently resulted in less than 50% stenosis 
[23,24] and frequently did not cause angina or a 
positive treadmill test. Only 20% of acute com-
plete occlusions occur in lesions with a stenosis 
greater than 75% [25]. 

Therefore, there is a need for the development 
of a noninvasive imaging modality that would 
allow not only the estimation of luminal steno-
sis but also a compositional characterization of 
atherosclerotic plaque. This review article will 
focus on the different animal models currently 
available for studying atherosclerosis and the 
applications of noncontrast-enhanced, contrast-
enhanced and molecular MRI for preclinical 
and clinical use.

Animal models of atherosclerosis: 
advantages & disadvantages
The complexity and slow progression of athero-
sclerosis in humans and the unpredictable nature 
of plaque disruption have necessitated the devel-
opment of animal models for understanding 
the molecular and cellular pathways involved 
in disease progression and the clinical manifest
ations, as well as the development of diagnostic 
procedures and therapeutic interventions. Unlike 

in humans, animal models allow the develop-
ment of the disease in a reasonable time span 
and under precise settings where environmental, 
genetic and dietary variables can be controlled. 
Furthermore, animals allow the evaluation of risk 
factors independently or in combinations, in the 
presence or absence of other intercurrent diseases. 
Many requirements need to be satisfied in order 
to make an animal model suitable for the study of 
atherosclerosis. Some of the factors include: strain 
availability, susceptibility to disease, ease in han-
dling, breeding and maintenance cost, reproduc-
ibility of results, anatomical, morphological and 
biochemical similarities to the human disease. 

Anitschkow and Chalatow were among the 
first researchers to induce experimental athero-
sclerosis in animals by feeding rabbits an enriched 
cholesterol diet [1,26]. Since then, several other 
experimental conditions have been used to 
induce lesions in different animal species includ-
ing dietary, physical, chemical, immunological 
and transgenic approaches applied individually or 
in combinations, simultaneously or sequentially. 
A summary of the different animal models avail-
able for studying atherosclerosis together with 
their basic characteristics and uses is illustrated 
in Table 1.

Table 1. Animal models used in the study of atherosclerosis (cont.).

Species Characteristics and use Ref.

Mammalian nonprimate

Rabbits (cont.) St Thomas’ strain of familial combined hyperlipidemia develops atherosclerotic lesions on a 
standard chow diet and are characterized by elevated lower-density lipoproteins (VLDL, IDL, 
LDL)

[196]

Jackson Laboratory AX/JU strains are hyper-responsive to dietary cholesterol [197]

Jackson Laboratory IIIVO/ JU strain is hyporesponsive to dietary cholesterol [198,199]

Transgenes of different human apolipoproteins have been expressed in NZW and WHHL 
rabbits for the study of lipoprotein metabolism

[199]

Transgenic rabbit model of MMP‑12 in atherosclerosis was used to study the effects of MMP 
in plaque formation and progression

[200]

Swine Susceptible to dietary induced atherosclerosis. Lesions occur in both the aorta and branch 
vessels. The size of heart and vessels is sufficient for studies of cardiovascular function, 
ischemic heart disease and for developing new diagnostic and surgical procedures

[201–204]

Yucatan miniature swine breed is also susceptible to high-fat, high-cholesterol, diet-induced 
atherosclerosis with and without the presence of diabetes

[204–206]

Diabetes in conjunction with hyperlipidemia was used in Yorkshire swine to accelerate 
atherosclerosis

[207]

Genetic mutations affecting the structure of plasma lipoproteins or the LDL receptor have 
been used to induce hypercholesterolemia and atherosclerosis in the coronary arteries

[208–210]

A familial hypercholesterolemic downsized pig with human-like coronary atherosclerosis has 
been proposed as a model for preclinical studies

[211]

Dogs Cholesterol feeding and thyroid inactivation for a year (using thiouracil) are needed to 
induce advanced lesions

[212]

Addition of butter in cholesterol–thiouracil diet accelerates disease progression and foamy 
lesions form by 8 weeks

[213]

HFD: High-fat diet; IDL: Intermediate-density lipoprotein; LDL: Low-density lipoprotein; MMP: Matrix metalloproteinase; NZW: New Zealand white;  
VLDL: Very low-density lipoprotein; WHHL: Watanabe heritable hyperlipidemic.
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Table 2. In vivo MRI of atherosclerosis in animal models.

Animal model Vessel Target Contrast agent Ref.

Mice

ApoE-/- Abdominal aorta and iliac arteries None Non-CE [36]

ApoE-/- Aorta None Non-CE [37]

ApoE-/- Thoracic aorta None Non-CE [38]

ApoE-/- Aortic root None Non-CE [39]

ApoE-/- Plaque regression in the thoracic 
aorta

None Non-CE [40]

ApoE-/- Injury-induced neointima 
formation in the carotid artery

None Non-CE [41]

ApoE-/- Abdominal aorta None P717, gadolinium-based blood 
pool agent

[214]

ApoE-/- Aortic arch None P792 (Vistarem™), gadolinium-based 
blood pool agent

[215]

ApoE-/- Aortic arch and aortic root VCAM‑1 Multimodal nanoparticles [84,85]

ApoE-/- Abdominal aorta Macrophage scavenger 
receptor

Gadolinium-loaded immunomicelles 
and bimodal PEG-micelles

[106,107]

ApoE-/- Abdominal aorta Oxidation-specific epitopes Gadolinium-loaded micelles [114]

ApoE-/- Aortic root ex vivo VCAM‑1 and P‑selectin MPIO [86]

ApoE-/- Abdominal aorta MMP P947 gadolinium based [150]

ApoE-/- Aortic arch Lipoproteins LDL-based nanoparticles 
(GdDO3A‑OA‑LDL)

[112]

ApoE-/- Abdominal aorta Lipoproteins HDL-based nanoparticles [110,111]

ApoE-/- Brachiocephalic Elastin Small molecular weight gadolinium-
based peptide

[148]

ApoE-/- Aortic arch and abdominal aorta Annexin‑5 Gadolinium-loaded micelles [152]

ApoE-/- Brachiocephalic None SPIO [98]

ApoE-/-/eNOS-/- Abdominal aorta Cannabinoid receptor and 
NGAL

Gadolinium-loaded micelles [108,109]

LDLR-/- Brachiocephalic None Non-CE [216]

LDLR-/-/LOX‑1-/- Aortic root and arch LOX‑1 Gadolinium labeled LOX‑1 antibody [113]

C57/B6J Carotid thrombi a2‑antiplasmin Bimodal a2‑antiplasmin [147]

Rabbits

NZW Abdominal aorta and thrombosis None Non-CE [42–50]

WHHL Abdominal aorta None Non-CE [51]

NZW Coronary arteries None Non-CE [52]

NZW and WHHL Abdominal aorta None Gadofluorine‑M (blood pool agent) [217–221]

WHHL Abdominal aorta None Gadopentetate dimeglumine [121]

NZW Abdominal aorta None Gadopentetate dimeglumine [120,122]

NZW Abdominal aorta thrombi 
associated with plaque disruption

Fibrin EP-2104R [134]

NZW Carotid artery thrombi (external 
injury and stasis)

Fibrin EP-2104R [222]

NZW Abdominal aorta MMP P947 is gadolinium-based [223]

NZW Abdominal aorta Blood albumin Gadofosveset [126]

NZW Abdominal aorta Blood albumin B-22956/1 [224]

NZW Abdominal aorta MPO Bis-5HT-DTPA(Gd) [151]

NZW Abdominal aorta Angiogenesis anb3
-integrin-targeted nanoparticles [123,124]

NZW Thoracic aorta None USPIO [88]

CE: Contrast enhanced; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; LDLR: Low-density lipoprotein receptor; MION: Monocrystalline iron oxide 
nanoparticle; MMP: Matrix metalloproteinase; MPIO: Microparticles of iron oxide; MPO: Myeloperoxidase; NZW: New Zealand white; PEG: Polyethylene glycol; 
SPIO: Superparamagnetic iron oxide particles; SPION: Superparamagnetic iron oxide nanoparticle; USPIO: Ultrasmall superparamagnetic iron oxide particles; 
WHHL: Watanabe heritable hyperlipidemic.
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MRI of atherosclerosis in animal 
models & humans
Over the last decades extensive research has been 
dedicated to developing MR methods for in vivo 
imaging of atherosclerosis in animal models 
and humans. The major applications of MRI 
in characterizing animal and human atheroscle-
rosis are described below and are summarized 
in Tables 2 & 3.

�� Assessment of plaque burden  
& composition
MRI has been applied to characterize plaque com-
position on the basis of biophysical and biochemi-
cal factors (T

1
 and T

2
 relaxation times), proton 

density, physical state, molecular motion, fibrous 
protein content (magnetization transfer) and 
diffusion coefficients (diffusion-weighted imag-
ing) both in vivo and ex vivo [27–34]. In addition, 
in vivo techniques such as the black-blood pulse 
sequence and the use of phased-array receiver 
coils have improved the delineation of the arte-
rial lumen from the vascular wall, which is criti-
cal for lesion visualization [35]. Validation stud-
ies were first performed in experimental models 
including mice [36–41], cholesterol-fed rabbits 
[42–52] and pigs [53]. In humans, validation of the 
in vivo MRI findings was performed mainly by 
using ex vivo carotid endarterectomy specimens. 
Several studies showed that the combination of 
multiple MR contrast weightings (proton density, 

T
1
‑weighted, T

2
‑weighted and time of flight) can 

be used to identify plaque components [54–59] 
based on their relative signal intensities and relax-
ation times. Multicontrast in vivo MRI has been 
used to evaluate plaque size [60] and components 
including the lipid core, fibrous cap, calcification 
[54,55,61–64], intraplaque hemorrhage [65,66] as well 
as features associated with symptomatic human 
carotid plaques [67]. Furthermore, diffusion-
weighted imaging is another technique used to 
generate contrast between plaque components 
based on the characteristic diffusion coefficients 
of water in each tissue [68,69]. Lastly, magnetiza-
tion transfer between restricted and free-water 
protons was also used to discriminate the collag-
enous fibrous cap and the media from the lipid 
core and adventitia [70].

Several contrast agents have been used to 
improve the conspicuity of atherosclerotic plaques. 
Contrast-enhanced MRI using gadolinium 
diethylenetriamine penta-acetic acid (Gd‑DTPA) 
has been used to increase the sensitivity of MRI 
and further improve the identification of plaque 
components. Gd‑DTPA has been used for the 
discrimination between the fibrous cap and the 
lipid core [71–73] and the visualization of coronary 
atherosclerosis [74–76].

MRI and MR angiography of coronary arteries 
still remains challenging owing to cardiac motion, 
the small caliber and the tortuous structure of 
the vessels. However, advanced pulse sequence 

Table 2. In vivo MRI of atherosclerosis in animal models (cont.).

Animal model Vessel Target Contrast agent Ref.

Rabbits (cont.)

NZW and WHHL Abdominal aorta None USPIO [89–92]

NZW Iliofemoral artery None USPIO [93]

WHHL and NZW Thoracic aorta
Abdominal aorta

None MION-47 [94,95]

WHHL Abdominal aorta None SPIONs [96]

Chinchilla 
bastard 

Stagnation thrombi in the 
external jugular veins

None USPIO [97]

Swine

Yorkshire albino Coronary None Non-CE [53]

Yucatan Aorta and Iliac None Motexafin gadolinium [225]

Danish Landrace Coronary Blood albumin Gadofosveset [83]

Landrace Coronary Elastin BMS-753951 [149]

Domestic Jugular veins clots Fibrin RGD-USPIO [137]

Domestic Coronary and pulmonary 
thrombosis

Fibrin EP-2104R [138–142]

Guinea Carotid artery thrombosis 
(external injury and stasis)

Fibrin EP-2104R [143]

CE: Contrast enhanced; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; LDLR: Low-density lipoprotein receptor; MION: Monocrystalline iron oxide 
nanoparticle; MMP: Matrix metalloproteinase; MPIO: Microparticles of iron oxide; MPO: Myeloperoxidase; NZW: New Zealand white; PEG: Polyethylene glycol; 
SPIO: Superparamagnetic iron oxide particles; SPION: Superparamagnetic iron oxide nanoparticle; USPIO: Ultrasmall superparamagnetic iron oxide particles; 
WHHL: Watanabe heritable hyperlipidemic.
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design with navigator gating, with and without 
breath-holds, has allowed the visualization of 

the coronary lumen and vessel wall [77–86]. For 
example, coronary MRI of asymptomatic Type 1 
diabetics revealed greater coronary plaque bur-
den in subjects with nephropathy compared with 
those with normoalbuminuria (Figure 1) [82].

�� Assessment of endothelial activation 
& permeability
Increase in endothelial permeability and 
upregulation of adhesion molecules (VCAM‑1, 
ICAM‑1, P‑selectin) on the endothelial sur-
face occurs in the early stages of atherosclero-
sis. Increased endothelial leakage allows blood 
molecules such as low-density lipoprotein (LDL) 
particles to passively diffuse into the vessel wall 
whereas expression of adhesion molecules is 
responsible for the receptor-mediated recruit-
ment of leukocytes. Recently, gadofosveset, a 
gadolinium-based agent that reversibly binds to 
blood albumin has been shown to be associated 
with damaged endothelial cells in a swine model 
of coronary injury (Figure 2) [83]. Furthermore, 
multimodal nanoparticles (VIPN‑28) [84,85] and 
microparticles of iron oxide [86] targeting the 
VCAM‑1 receptor and/or P‑selectin have been 
used to image activated endothelium in mouse 
atherosclerotic plaques. Interestingly, a recent 
study showed that plaque permeation by con-
trast agents was strongly dependent on particle 
size [87].

�� Assessment of plaque macrophages 
& lipoproteins
Macrophages are key players in the initia-
tion, progression and complication of ath-
erosclerosis. Superparamagnetic iron oxide 
particles of different sizes stabilized with 

Table 3. MRI of atherosclerosis in humans.

Vessel Target Contrast agent Ref.

Carotid None Non-CE [60–65,67,73,226–239]

Carotid None Gadopentetate dimeglumine [71,115,116,118,240–244]

Carotid None Gadofosveset [125]

Carotid None USPIO [99–105]

Carotid None Non-CE, direct thrombus imaging [131,245]

Carotid/aorta Fibrin EP-2104R, thrombus imaging [144]

Aorta None Non-CE [246–249]

Aorta None Gadopentetate dimeglumine [72]

Coronary

MRI None Non-CE [35,156,250–254]

MRI None Gadopentetate dimeglumine [74–76]

MRI None Non-CE, direct thrombus imaging [255]

MRA None Non-CE [77–81]

MRA None MS-325/AngioMARK (intravascular agent) [256]

CE: Contrast enhanced; MRA: Magnetic resonance angiography; USPIO: Ultrasmall superparamagnetic iron oxide particles.

A

C D

B

Thickened walls

RCA lumen

RCA 

RCA lumen

RCA 

Figure 1. MRI and MR angiography of coronary arteries in patients with 
Type 1 diabetes. 3D reformatted coronary MRI of the proximal RCA in two 
subjects without coronary luminal stenosis: a 58‑year-old man with long-standing 
Type 1 diabetes and normoalbuminuria (A) and a 44‑year-old man with long-
standing Type 1 diabetes and diabetic nephropathy. (C) The corresponding 3D 
black-blood vessel wall scans show no cardiovascular MRI evidence of 
atherosclerotic plaque; (B) average and maximum vessel wall thickness (1.1 and 
1.3 mm, respectively) and an increased atherosclerotic plaque burden; (D) average 
and maximum vessel wall thickness (2.3 and 3.0 mm, respectively). The anterior 
and posterior RCA walls are indicated by arrows [82].
RCA: Right coronary artery.
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different surface-coating materials (e.g., dex-
tran or citrate) have been used to estimate the 
macrophage content of atherosclerotic plaques 
by becoming nonspecifically endocytosed by 
macrophages in hyperlipidemic rabbits [88–97], 
mice [98] and human carotid plaques [99–105]. 
Macrophages have also been imaged by using 
gadolinium-loaded micelles targeting the mac-
rophage scavenger receptor in mouse plaques 
[106,107]. Atherosclerotic plaque macrophages 
also express the peripheral cannabinoid receptor 
(CB2‑R) and promote fibrous cap degradation 
by secretion of NGAL. CB2‑R- and NGAL-
targeted gadolinium-loaded micelles were shown 
to enhance murine atherosclerotic plaques with 
a vulnerable phenotype [108,109]. Gadolinium-
loaded recombinant high-density lipoprotein-
like nanoparticles [110,111] and LDL-based 
nanoparticles (GdDO3A‑OA‑LDL) [112] have 
also been developed to image atherosclerosis 
in mice. Furthermore, LOX‑1 and oxidized 
plaque LDL particles have been imaged using 
antibodies that bind to LOX‑1 receptor [113] and 
oxidation specific epitopes [114], respectively.

�� Assessment of plaque 
neovascularization
Aoki et al. were the first to observe a band of 
enhancement corresponding to the outer ves-
sel wall, after injection of Gd‑DTPA, which 
was attributed to angiogenesis of the wall itself 
[115]. Enhancement of the outer rim was mini-
mal in early phases of the disease and gradually 
increased. Subsequently, several other stud-
ies have demonstrated a correlation between 
Gd‑DTPA uptake and plaque neovascularization, 

inf lammation, endothelial permeability and 
fibrosis both in human [74,76,116–119] and animal 
models [117,120–122]. Gadolinium-based nanopar-
ticles that target a

v
b

3
 integrins have also been 

A B C D

LAD

Figure 2. Contrast-enhanced MRI using gadofosveset in a swine model of coronary artery 
injury. Coronary bright-blood cardiovascular MR angiography (A). T

1
‑weighted inversion recovery at 

5 min (B), 15 min (C) and 25 min (D) following intravenous administration of gadofosveset. The area 
of the balloon injured LAD2 segment expands over time indicating time-dependent extravasation of 
contrast, whereas the intact LAD1 segment (arrow) and CX (dotted arrow) remain constant [83].
CX: Circumflex artery; LAD: Left anterior descending coronary artery.

5 mm 5 mm

Microthrombus

Figure 3. In vivo molecular imaging of 
thrombosis associated with plaque 
disruption in the rabbit aorta using a fibrin-
binding MRI contrast agent. (A) Reformatted 
view24 of a coronal 3D dataset shows subrenal 
aorta 20 h after EP‑1873 administration. Three 
well-delineated mural thrombi (arrows) can be 
observed, with good contrast between 
thrombus (numbered), arterial blood (dotted 
arrow) and vessel wall (dashed arrow). The 
in-plane view of the aorta allows simultaneous 
display of all thrombi, showing head, tail, length 
and relative location. (B–D) Corresponding 
cross-sectional views show good agreement 
with histopathology (E–G) [134].
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engineered to selectively image plaque angio-
genesis and as vehicles for antiangiogenic drug 
delivery in rabbit aortas [123,124]. Recently, the 
uptake of gadofosveset was shown to correlate 
with neovessel density in human carotid [125] and 
rabbit aortic plaques [126].

�� Assessment of plaque intraplaque 
hemorrhage & thrombus
Intraplaque hemorrhage and thrombosis are 
major components of plaque vulnerability. 
Most MRI studies have focused on the detec-
tion of hematoma [127,128], venous thrombosis 
[129,130], intraplaque hemorrhage [131] and arte-
rial thrombi [132,133] based on the temporal 
changes of T

1
 and T

2
 relaxation of different 

oxygenation states of hemoglobin in erythro-
cytes. Subsequently, the conspicuity of thrombi 
has been signif icantly increased by using 
fibrin- (Figure 3; rabbit model) [134–144], platelet- 
[97,145,146] and a2-antiplasmin-targeting contrast 
agents [147].

�� Assessment of plaque 
extracellular matrix
The fine-tuned balance in the production and 
degradation of extracellular matrix proteins 
(collagen, elastin, proteoglycans) is essential for 
plaque development and stability. Recently, with 
the development of a small molecular weight, gad-
olinium-based, elastin-targeting contrast agent, 
MRI of the vessel wall at all stages of atheroscle-
rosis has become feasible in mouse atheroscle-
rotic plaques (Figure 4) [148] and in a swine model 
of coronary injury [149].

�� Assessment of plaque enzymatic 
activity & apoptosis
Activated matrix metalloproteinases degrade 
the extracellular matrix and weaken the fibrous 
cap leading to plaque vulnerability. In vivo and 
ex vivo MRI for the characterization for matrix 
metalloproteinase-rich plaques was achieved 
with the use of a gadolinium-based matrix metal-
loproteinase-sensitive MRI contrast (P947) [150]. 
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Figure 4. In vivo assessment of plaque burden by morphometric measurements. (A) Cross-sectional views of brachiocephalic 
arteries by MRI of control and ApoE-/- mice 4, 8 and 12 weeks after the onset of HFD (n = 8 per group). High-resolution DE images 
overlaid on time-of-flight images with corresponding sections from histology (H&E and EvG stain). (B) Comparison of average PAMV, 
calculated from morphometric measurement on high-resolution DE images after the injection of elastin-specific MR contrast agent (n = 8 
per group). (C & D) Scatter plots showing significant (p < 0.05) correlation between morphometric PAMV measurements (C) and lumen 
cross-sectional area measurements (D) on high-resolution DE‑MRI images and on corresponding EvG-stained histological sections 
(n = 15). Scale bars: white, 250 µm; black, 100 µm. Values are expressed as means ± standard deviation [148].
DE: Delayed enhancement; EvG: Elastic van Gieson; H&E: Hematoxylin and eosin; HFD: High-fat diet; PAMV: Portal anterior 
mesenteric vein.
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Myeloperoxidase is another important enzyme 
secreted by activated macrophages at multiple 
stages of plaque development. Recently, in vivo 
MRI of myeloperoxidase has been achieved 
with the development of the gadolinium-based 
myeloperoxidase sensor bis‑5HT‑DTPA(Gd) in 
rabbit atherosclerotic plaques [151]. Lastly, cel-
lular apoptosis is also a key feature of plaque 
progression and stability. Imaging of apop-
tosis has been shown in atherosclerotic mice 
using gadolinium-loaded micelles targeting 
annexin‑5 [152].

�� Assessment of vascular remodeling
Positive remodeling has been recognized as a 
possible mechanism to alleviate luminal nar-
rowing based on autopsy studies [153–155]. In 
previous in vivo MRI studies of patients with 

subclinical coronary atherosclerosis [156,157] and 
of Watanabe hypercholesterolemic rabbits [121], 
positive remodeling was observed as an increase 
in the vessel wall area, determined by the outer 
vessel wall contour, with concurrent preserva-
tion of the lumen area. More recently, MRI 
characterization of vessel wall remodeling and 
its association with plaque vulnerability, using 
standardized cut off values, has been shown in 
atherosclerotic rabbits (Figure 5) [122].

Conclusion & future perspective
Noncontrast-enhanced, contrast-enhanced and 
molecular MRI of various biological processes 
in atherosclerosis have been successfully dem-
onstrated in small and large animal models 
as well as human subjects. The use of animal 
models allows the development of new imaging 

Figure 5. Examples of negative and positive remodeling in stable and vulnerable plaques. (A) Types of vessel wall remodeling. 
The area circumscribed by the adventitial contour (blue line) indicates the vessel area. The remodeling ratio = VA lesion site/VA reference. 
The reference site is the site with the least amount of plaque. Positive remodeling and negative remodeling are defined from the 
remodeling ratio as shown. (B–G) Examples of negative and positive remodeling in a stable (B & C) and a vulnerable (F & G) plaque 
compared with a reference site (D & E). (B, D & F) Flow-compensated images acquired with gadolinium showed negative remodeling at 
the site of a stable plaque (B) and positive remodeling at the site of a vulnerable plaque (H). (C, E & G) Flow-encoded images show the 
unobstructed luminal area. (H) Frequency of negative, intermediate and positive remodeling in stable and vulnerable plaques. Negative 
remodeling was significantly greater in stable plaques whereas positive remodeling was significantly greater in vulnerable plaques. 
Intermediate remodeling was similar between the two groups [122].
LA: Luminal area; RR: Remodeling ratio; VA: Vessel area.
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protocols, contrast agents and therapeutic inter-
ventions in a controlled fashion. Furthermore, 
it provides specimens for ex  vivo validation 
studies. The noninvasive nature of MRI, the 
high spatial resolution and the lack of ionizing 
radiation make MRI an advantageous imag-
ing modality for both preclinical and clinical 
studies. The development of higher field scan-
ners and dedicated coils that allow for higher 
signal:noise ratio, the incorporation of multiple 
elements in the coils that allow higher accelera-
tion factors, and the ongoing development of 
pulse sequences can significantly improve the 
diagnostic performance of MRI and allow trans-
lation of the knowledge derived from preclinical 
studies to imaging of the human disease. The 
ultimate goal of in vivo MRI of atherosclerosis 
is to reliably and prospectively identify plaques 
at higher risk for disruption that could improve 
medical decision making and patient outcome.

Currently, the use of most new contrast 
agents has been limited to preclinical models 
for investigating imaging protocols and elu-
cidating the underlying biological processes 
involved in disease progression in a longitudinal 
noninvasive manner. Despite the exciting and 

promising results derived from the preclinical 
studies very few of these agents progressed to 
the clinical setting [158,159]. Important limita-
tions that impede the translation to the clinical 
arena include scalability, cost, safety, favorable 
pharmacokinetics and regulatory guidelines 
[160]. Recently, two major prospective clinical 
studies that examined coronary atherosclerotic 
vessels in humans revealed that independent 
predictors including a large plaque burden, a 
small lumen area and a thin cap fibroatheroma 
(PROSPECT study) [161] and remodeling index 
(VIVA study) [162] were associated with future 
major adverse cardiac events as classified by 
radiofrequency IVUS. As shown in this review, 
similar measurements have been derived with 
native noncontrast and molecular MRI both in a 
preclinical and clinical setting. Although IVUS 
has superior spatial resolution compared with 
MRI it is invasive and therefore not suitable as 
a screening method. To this end, we envision 
the future use of noncontrast and molecular 
MRI as a noninvasive test for risk assessment 
and monitoring of interventions in subjects with 
suspected atherosclerosis by morphologic and 
biological plaque characterization.

Executive summary

Background
�� Atherosclerosis and its thrombotic complications are considered the major contributor to the development of acute cardiovascular 

symptoms.
�� Histological studies have added indispensable knowledge to our understanding of the pathophysiology of atherosclerosis but they are 

limited by their retrospective nature.
�� Several invasive and noninvasive imaging modalities have shown the feasibility of in vivo vessel wall imaging for the characterization of 

atherosclerosis.

Animal models of atherosclerosis
�� The complexity and slow progression of atherosclerosis in humans and the unpredictable nature of thrombotic events have necessitated 

the development of several animal models.
�� Although no perfect animal model exists, each animal model can be used to address specific biological questions.
�� The use of animal models has broadened our understanding of the molecular and cellular pathways involved in disease progression and 

its clinical complications, the development of new imaging modalities, contrast agents and therapeutic interventions in a controlled 
fashion.

MRI of atherosclerosis in animal models & humans
�� MRI has evolved as one of the leading noninvasive imaging modalities to visualize the vessel wall with high spatial resolution and 

without ionizing radiation, making it suitable for both preclinical and clinical studies.
�� Noncontrast-enhanced, contrast-enhanced and molecular MRI of various biological processes in atherosclerosis has been successfully 

demonstrated in small and large animal models as well as human subjects.
�� Currently, MRI can be used to assess plaque burden and composition, endothelial activation and permeability, plaque enzymatic activity 

and apoptosis, macrophages and lipoproteins, neovascularization, intraplaque hemorrhage and thrombus, extracellular matrix and 
vascular remodeling.

Conclusion & future perspective
�� The noninvasive nature of MRI, the high spatial resolution and the lack of ionizing radiation make MRI an advantageous modality for 

imaging atherosclerosis.
�� The ongoing optimization of both MRI hardware and software can significantly improve the diagnostic performance of MRI and allow us 

to translate the knowledge derived from preclinical studies to imaging of the human disease. 
�� The ultimate goal of in vivo MRI of atherosclerosis is to reliably and prospectively identify plaques at higher risk of disruption that could 

improve medical decision making and patient outcome.
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