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Abstract

Slow uncertain reperfusion in Acute Ischemic Stroke (AIS) by intravenous thrombolysis has prompted search for alternative therapies. 
Pressure/flow disturbances from rapid compressions (20 – 24 Hz) of a clotted flow tube remote from thrombosis site have shown to 
assist reflow. Carotid Vibro-Compression (VC), a potentially risky maneuver, may therefore enhance AIS reperfusion but verification is 
needed that vibro-compressions would transmit flow disturbances to the cerebral arteries. From a pool of 15 volunteers (mean age 48) 
carotid compressions (5 to 8 Hz, < = ~1 cm) (n =11) and vibration (30 Hz ~ 1 mm) (n = 10) were independently and together implemented 
with ipsilateral and contralateral Doppler flow monitoring of an intra-cranial artery. Doppler pulses from compressions were immediately 
demonstrated in all vessels (26 / 26) under all conditions. Pulses from vibration were observable in a majority of vessels (22 / 25), but 
signals were often challenging to obtain. Mean intra-cranial flow velocities trended to increase during compressions (46.1 ± 6 .4 cm/s vs. 
44.0 ± 4.9 cm/s), but the difference was not statistically significant (p = 0.06). Carotid VC reliably transmits flow pulses to the cerebral 
vasculature, however vibration requires biofeedback to ensure device positioning. Carotid VC appears feasible for animal testing, but 
safety remains a major question.
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Introduction

Carotid vibro-compressive maneuvers are selectively utilized during Trans Cranial Doppler (TCD) examinations [Aaslid R.1986, Guan J 
et al.2013, Jawad Naqvi et al. 2013 ], however embolic plaque rupture leading to stroke in a neurologically symptomatic patient has since 
flagged caution with this technique [Khaffaf N et al. 1994]. Moreover Carotid Sinus Massage (CSM) and routine ultrasonic carotid imaging 
has been known in very rare incidences to induce stroke – with the latter occurring again in the neurologically symptomatic [Beal MF et al. 
1981, Bastulli JA et al.1985, Friedman SG. 1990 ]. Carotid manipulations are therefore recommended only when absolutely necessary and 
following inspection of the carotid to be free of plaque [Aaslid R. 1986] - including high grade stenosis or ulcerating atheromata [Lupetin 
AR et al. 1995]. However, what if a patient is having a hot stroke already? What if the agitative hemodynamics of serially applied carotid 
deformations could expedite clearance of an acutely occluded cerebral vessel - perhaps within minutes or even seconds? This paper aims 
to introduce this subject, show feasibility towards animal testing, and offer a preliminary discussion on the potential risk / benefit regarding 
this controversial technique. 

Intravenous (IV) recombinant tissue plasminogen activator (rt-PA) remains the only treatment approved for Acute Ischemic Stroke (AIS) 
in the 3 to 4 ½ hr window [N Engl J Med. 1995, Hacke W et al. 2008]. However half of rt-PA-treated patients remain severely disabled or 
die within 3 months with the major reason listed as a severe initial ischemic insult with slow and incomplete recanalization. Normalized 
cerebral flow has been quoted as only occurring 20 – 50% of the time within 2 hrs of thrombolysis [Pagola J et al. 2007], therefore 
alternative therapies to accelerate reperfusion are required. 

Transcranial ultrasound has been studied to accelerate AIS thrombolysis however this technique has not yet translated in phase 3 clinical 
trials [Saqqur M et al. 2014]. Ultrasound has difficulties including a historic requirement for a skilled imaging approach to establish therapy 
(non-ideal for emergencies) [Alexandrov et al. 2004, Eggers J et al. 2003] and an increased risk of intra-cerebral bleeding when applied 
at higher power levels and /or lower frequencies [Eggers J et al. 2003, Daffertshofer M et al. 2005], which appear required to ensure 
therapeutic transcranial penetration [Pfaffenberger S et al. 2005]. We have been studying an alternative premise that infrasonic to low sonic 
Vibro-Compressions (VC) may be useful to enhance reperfusion, due to VC’s known clot disruptive [Hoffmann A et al. 2012, Yohannes FG 
et al. 2008, Wobser E et al. 1978, Folts J. 1991, Hoffmann A et al. 2012 ], and superior deep bodily penetration capabilities [Koiwa Y et 
al. 1997, Thomas J et al. 1995 ]. Moreover, VCs provide unique internal, transmission characteristics through tissue [Koiwa Y et al. 1986, 
Hashiguchi R et al. 1988, Smith D et al. 1984 ] and along arteries [Farber JJ et al. 1963] which suggests a less imperative need for exact 
therapeutic targeting. Proposed VC action includes transmission of oscillations from an external body surface to a thrombosed artery to 
cause mechanical agitation of clot and blood proximate the clot, while also potentially inducing a localized vasodilation response to the 
culprit vasculature. Turbulence induced at the blood clot interface is predictive (as shown in-vitro [Hoffmann A et al. 2012]) and inferable 
(in accordance with hydrodynamic mixing studies [Hancil V et al. 1978, Neild A et al. 2010, Oberti S et al. 2009 ] to encourage systemic 
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mixing of thrombolytics down an otherwise zero flow cerebral artery. Acoustic AIS therapy is generally problematic however as the cerebral 
arteries are mechanically shielded within the cranium. Recent work at Simon Fraser University (SFU, B.C. Canada) however has unveiled 
that rapid VC (20 to 24 Hz) of a thrombosed flow tube even up to 60 cm remote from an occlusive thrombosis site greatly enhances reflow, 
with the reperfusive action attributed to a battery of pressure fluctuations propagating along the tube to agitate the clot [Marzencki M et 
al. 2012]. We have thereby resurrected a hypothesis that carotid VC may be useful in accelerating AIS reperfusion [Hoffmann A. 2010]. 
However, while carotid compressions are known to transmit flow pulses intra-cranially [Aaslid R.1986], before considering animal trials 
confirmation is required whether low sonic vibration would also propagate. Moreover information on the reliability of pulses propagating 
from the carotid (and particularly when delivered contra-laterally from the intra-cranial vessel) is scarce and in need of review. To this 
end we recruited 15 healthy volunteers for administration of ipsilateral and contralateral carotid deformations via fingertip (5 – 8 Hz, 1 cm 
displacement) and with a vibrator (30 Hz, ~1 mm) while studying Doppler flow effects in at least one cerebral artery. Flow transmissions 
to the ipsilateral temporal artery, carotid siphon and internal carotid artery were also assessed. 

Materials and Methods

The study was conceived in industry (Ahof Biophysical Systems Inc, Burnaby, B.C., Canada).  The test subjects (the Authors and sampling 
of healthy volunteers) gave informed consent to the study which had been approved by Institutional Review [ABS Inc.: Ethics Review 
Board and Safety Committee] in accordance with the ethical standards on human experimentation per the Helsinki Declaration of 1975, 
as revised in 2008. 

Choice of carotid “compression” and “vibration” parameters:

A carotid compression frequency of 5 to 8 Hz (1 cm displacement) was chosen as it could be easily administered by finger-tip or manual 
oscillation of a vibratory instrument. To administer low sonic vibration we chose the Hitachi Wand (Hitachi Ltd., Tokyo, Japan), a device 
advertised for gentle massage including the neck and facial regions which in use with a power controller enabled sinusoidal emissions of 
30 Hz (~1 mm displacement). Thirty Hz was selected as a compromise between what SFU employed in their experiment [Marzencki M et 
al. 2012] and to frequency outputs utilized by thrombolysis catheters [Arko F et al. 2007] and to those having demonstrated clot clearing 
effects in our lab [Hoffmann A et al. 2012]. Additionally low sonic frequency vibration is known to produce convection currents [Margulis 
M et al. 1982, Griesinger HR et al. 1989] and transverse wave propagation along the length of arteries [Farber JJ et al. 1963], hence 
is mechanistically predictive to provide an agitative, propagative effect. A ~ 1-mm amplitude was deemed acceptable as given a typical 
carotid lumen diameter of 6 to 7 mm [Krejza J et al. 2006], the deformation would be predictive to compress the lumen by up to about 10 
to 15% which was comparable to that utilized in the SFU study. For dual VC therapy (with 30 Hz vibration applied simultaneously with 5 to 
8 Hz compressions), hand delivered oscillation of the Wand was simply utilized during vibrator activation. 

Choice of application site:

We chose the distal Common Carotid Artery (dCCA) just under the chin within the carotid triangle were the internal and external carotid 
is expected to bifurcate (proximate the carotid bulb), to bring the generation site of hemodynamic pulses as close as possible to the intra-
cranial vasculature. 

Choice of Doppler probes:

Because of equipment availability we chose a cardiac phased array echo-transducer (S4 – Philips, and M5S GE) to perform intracranial 
arterial color and pulse wave Doppler interrogations. For Doppler evaluation of the extra-cranial arteries we used linear probes (L9-3 
Philips, and 9L –GE).

Protocol

Fifteen healthy volunteers were recruited for assessment of flow transmissions induced by carotid VC as measured by pulse wave Doppler 
to at least one intra-cranial artery including the; proximal Middle Cerebral Artery (pMCA), distal Middle Cerebral Artery (dMCA) and/or 
Posterior Cerebral Artery (PCA). The ipsilateral Superficial Temporal Artery (STA) and time permitting the Internal Carotid Artery (ICA) 
and / or the Carotid Siphon (CS) were also interrogated. Due to ability to locate images, varying levels of consent, and time restraints the 
protocol was sometimes broken up with only selected parts performed with volunteers optionally returning at later dates for further testing. 
The test group included 8 males and 7 females (collective mean age 48 years), three subjects having a family history of coronary artery 
disease, and one with a personal history of mild hypertension. All test subjects were non-smokers and otherwise free of neurovascular 
disease or cardiovascular risk factors. 

Doppler assessment of intra-cranial cerebral arteries

Firstly location of an intra-cranial artery was attempted via a phased array transducer placed upon the temple. Once a Doppler waveform 
was obtained the volunteers were instructed to palpate their ipsilateral carotid with their index and middle finger and then rapidly thrust 
their fingers in and out (up to about 1 cm) about 5 to 8 times a second to serially compress / decompress the vessel1. Resulting flow 
disturbances were then recorded. A contralateral carotid was also compressed as a later addendum to the protocol.

Willing volunteers were then given our vibrator to practice carotid applications. The volunteers were shown to utilize a moderate, 
comfortable engagement force (i.e. about 10 to 20 Newtons – not expected to completely compress the vessel), with the Wand’s contact 
node nestled within the carotid triangle, where-after an intra-cranial artery was Doppler recorded with carotid vibration. If no vibratory 
response was seen initially the volunteers were instructed to engage the Wand’s contact node more forcefully and / or shift the device’s 
position until vibratory pulses became evident. Then after a few seconds of recording the volunteers were instructed (sometimes with help 
from the researcher) to also rapidly oscillate the massager’s handle (which in turn oscillated the contact node against the carotid) between 
5 to 8 times a second during continued vibration. Data was collected as best as possible in view of occasional loss of imaging signal and 
within the confines of re-finding the cerebral artery (which was at times difficult to re-locate). A contralateral carotid was also vibrated as 
a later addendum to the protocol.

Following completion of the study five subjects were additionally assessed for left and right sided intra-cranial mean blood flow velocity 

1We asked the volunteer’s to perform their own neck compressions as this tended to ease their anxiety towards the procedure.  
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immediately before versus initiation of ipsilateral carotid compressions (by comparison of heart rate indexed velocity time integrals during 
a cardiac cycle - end QRS complex to end QRS complex). For blood flow extrapolation we assumed that intra-cranial vessel diameter 
would remain constant. To assess whether there was a statistical difference between the groups we used the Wilcoxon Signed Rank 
Test (for comparison of two treatment populations) whereby a P value of < 0.05 was considered significant. Variability in the groups was 
reported by their standard deviation.

Doppler assessment of extra-cranial vessels 

Secondly the procedure was essentially repeated but with a linear probe to obtain Doppler tracings of an ipsilateral STA. Time and 
volunteer permitting an ipsilateral ICA and CS were also interrogated. The STA was emphasized as being a superficial vessel the fidelity 
of the flow recordings would be optimized, and being of comparable distance from the carotid as the carotid is to the intracranial vessels 
may foresee ably be used as a biofeedback tool to ensure optimized carotid vibro-compression delivery.

An image of the vibro-compressive techniques are shown in (Figure 1). 

 

Figure 1.

Image (A) shows fingertip placement for carotid compressions. Image (B) shows application of the Hitachi Wand for applying 
vibration. Manual oscillation of the Wand’s handle enabled “dual” VC therapy.

A movie showing carotid VC technique is available - see link at https://youtu.be/jlGqZjA8LXc

Results

Doppler assessment of intra-cranial arteries

Of the 15 test subjects 12 agreed to intra-cranial arterial ultrasonic interrogation, of which ultrasonic detection of at least one intra-cranial 
artery was possible in 11 total subjects. 

Doppler flow waveforms concomitant with carotid compressions were assessed in 11/11 of these individuals (resulting in an assessment 
of 21 ipsilateral and 5 contra-lateral intracranial arteries).

Doppler flow waveforms concomitant with carotid vibration were assessed in 10/11 of these individuals (resulting in an assessment of 20 
ipsilateral and 5 contralateral intracranial vessels). 

Carotid Compressions

Marked flow fluctuations were immediately and reliably obtainable in all interrogated intra-cranial vessels (26 / 26) given compressions 
of an ipsilateral or contralateral carotid (i.e. 5 – 8 Hz), regardless of how the compressions were applied (see Figure 2 A Vs. B, and 3A).
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Figure 2.

Image (A) A pMCA Doppler trace.  Image (B) Same pMCA Doppler trace with ipsilateral 5 Hz carotid compressions.  Image (C) 
A pMCA Doppler trace with ipsilateral 30 Hz carotid vibration.  Image (D)A pMCA Doppler trace with 30 Hz vibration followed by 
simultaneous 5 Hz Compressions - the “dual” response - applied from an ipsilateral carotid artery.. 

Contralateral applications subjectively yielded slightly dampened, fainter flow pulses relative to their ipsilateral counterparts.

Carotid Vibration

Vibratory flow fluctuations were obtainable in all but two2 (18 of 20) interrogated intra-cranial vessels given applications of 30 Hz upon an 
ipsilateral carotid artery (Figure 2 C and D). However in the majority of cases (13 / 18) an observed vibratory response was not immediate 
and a degree of minor device adjustment (again in either its engagement force or positioning – often closer to the trachea) was required to 
obtain a vibratory signal. Following vibratory recording further demonstration of a dual flow response along with compressions was always 
obtainable (Figure 2 D - right half of image). Vibratory response in general at times however appeared somewhat transient, manifesting on 
and off and to varying degrees. We attributed this to vibrator placement - however varying quality of image or fidelity of the imaging probe 
also may have played a role.  Carotid vibration was also shown to transmit contra laterally in 4 of 53 test subjects (as exemplified in Figure 
3 B), however transmissions appeared in most cases substantially fainter, and took more time to obtain.

Figure 3.

Image (A) A left pMCA Doppler trace with 6 Hz contralateral right carotid artery compressions. Image (B) A right dMCA trace with 
30 Hz contralateral left carotid vibration.

2In the first subject only a brief vibration attempt was made along with a PCA Doppler trace where-after the image was lost and 
could not be regained.   In the second subject a clear MCA vibratory response could not be observed despite two minutes of vibrator 
repositioning.
3In one test subject a vibratory response could not be observed in a contralateral pMCA segment despite two minutes of vibrator 
repositioning.  
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Further imaging examples showing the Doppler flow response of ipsilateral carotid VC to the dMCA and PCA are shown in (Figure 4).

Figure 4.

Image (A) A dMCA Doppler trace with 6 Hz ipsilateral carotid compressions.  Image (B) A dMCA Doppler trace with 30 Hz 
ipsilateral carotid vibration. Image (C) A PCA Doppler trace with 5 Hz ipsilateral carotid compressions. Image (D) A  PCA 
Doppler trace with 30 Hz ipsilateral carotid vibration.

Intra Cranial Mean Blood Flow Velocity 

In all five assessments the onset of carotid compressions were marked by an immediate change in the intra-cranial arterial doppler 
waveform with the appearance of a battery of upstrokes in the flow pattern apparent throughout the cardiac cycle. Flow velocities during 
both systolic and diastolic compression cycles at times exceeded non-compressed systolic peak velocities, and generally demonstrated 
marked, increased pulse pressures including at times transient loss of diastolic flow. Mean arterial flow velocities tended to increase during 
initiation of compressions (46.1 ± 6.4 cm/sec) vs. their immediately prior non-compressed states (44.0 ± 4.9 cm/sec), but this trend did not 
reach statistical significance (p = 0.06). Figure 5 for a sample of pre versus initiation of ipsilateral carotid compressions in a Doppler MCA 
waveform. Table below for a summary of intra-cranial mean blood flow velocity in five subjects. 

Figure 5.

An MCA Doppler trace showing initiation of carotid compressions.  Mean flow velocity was 33.9 cm/sec just prior (first cardiac 
cycle) and 37.0 cm/sec during compressions (third cardiac cycle) in this sample.

Subject   Vessel   No Compressions (cm/sec) Compressions (cm/sec) 
1 L MCA  42.8 45

R MCA 44.5 50.5
2 L MCA 46.4 47.2

R MCA 44.9 50.7
3 L MCA 48 52.9

R MCA 46.9 53.4
4 LMCA 45.3 41.9
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R MCA 49.6 47.3
5 L MCA 33.9 37

R MCA 37.3 35.2
Average +/- SD 44.0 ± 4.9 46.1 ± 6 .4

Table 1. 

Mean Intra-cranial Doppler Flow Velocities with and without Carotid Compressions. 

Doppler assessment of the extra-cranial arteries (STA, ICA and CS) 

Of the 15 test subjects 14 agreed to ipsilateral extra-cranial vessel Doppler interrogation, of which ultrasonic detection of at least one 
extra-cranial artery was possible in all 14 subjects.

Doppler flow waveforms concomitant with carotid compressions were assessed in 14 / 14 of these individuals for a total evaluation of flow 
disturbances to the STA (14), CI (5), and CS (4) - for a total of 23 ipsilateral extra-cranial arteries interrogated. 

Doppler flow waveforms concomitant with carotid vibration were assessed in 12 / 14 of these individuals for a total evaluation of flow 
disturbances to the STA (12), CI (5) and CS (4) – for a total of 21 ipsilateral extra-cranial arteries interrogated.. 

Carotid Compressions

Marked flow fluctuations were reliably and immediately observed in all extra-cranial vessels (23 / 23) given serial compression of an 
ipsilateral carotid artery (~ 5 – 8 Hz, < = 1 cm), regardless of the compressive technique (see Figure 6).

 
Figure 6.

Image (A) ICA Doppler trace followed by ~ 8 Hz ipsilateral carotid compressions.  Image (B) CS Doppler trace followed by ~ 7 
Hz ipsilateral carotid compressions. Image (C) Right STA Doppler trace followed by ~5 Hz ipsilateral carotid compressions.

Carotid Vibrations

Vibratory flow fluctuations were observed in all interrogated vessels (21 / 21) given application of 30 Hz upon an ipsilateral carotid (Figure 
7). However, in 10 applications at least a few seconds of minor adjustment of the vibrator’s contact node in either positioning, or via a 
slightly increased (and rarely decreased) engagement force, was first required to obtain a vibratory signal. After successful vibratory 
recordings all cases additionally demonstrated a dual Doppler flow response of vibration along with carotid compressions (Figure 7 D).

The above vibro-compressive techniques were described in all cases as reasonably comfortable and absolutely without pain. However 
a mild “gag” or “choking” sensation was occasionally mentioned in four volunteers when the Wand’s contact node was engaged too 
forcefully or close to the trachea. Furthermore the Author (AH) noticed at times a mild, asymptomatic transient reduction of heart rate 
during employment of the Wand upon his carotid artery.
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Figure 7.

Image (A) ICA Doppler trace with 30 Hz ipsilateral carotid vibration.  Image (B) CS Doppler trace with 30 Hz ipsilateral carotid 
vibration.Image (C) STA Doppler trace with 30 Hz ipsilateral carotid vibration. Image (D) STA Doppler trace with 30 Hz vibration 
along with 5 Hz ipsilateral carotid compressions.

Discussion

Just as a plunger is often a first measure in unblocking a toilet we hypothesize that the repetitive compression and suction aspects of 
hemodynamic fluctuations transmitted from a vibro-compressed carotid may promote clearance of an acutely obstructed intra-cranial 
cerebral artery. This study confirms that non-invasive serial carotid compressions (i.e. 5 to 8 Hz, < = 1 cm) with a high reliability, and carotid 
vibrations (i.e. 30 Hz, 1mm) with at least a transient reliability, transmit flow pulses to the intra-cranial arteries in live test subjects. This 
demonstrates feasibility for the technique in pursuit of AIS studies, however the prospective safety of the technique (which is otherwise 
deemed a risky maneuver in neurologically symptomatic individuals) must first be addressed.

Safety Considerations

For ethical /safety reasons our study was limited to the healthy middle aged (max age 64), hence we could not assess the prospective 
safety of carotid VC in a population comparable to AIS patients.

A risk assessment in applying carotid VC for AIS is at this point entirely speculative. Nevertheless a preliminary safety discussion is 
possible based on experience in carotid vibro-compressive maneuvers during neurovascular therapy, TCD testing, Carotid Sinus Massage 
(CSM), and head / neck trauma. We also consider prior work with External Counter Pulsation (ECP) for AIS – which similar to carotid 
VC has its therapeutic action by transmission of pressure/flow pulses to the cerebral vasculature. We have divided our safety discussion 
based on; embolic risk, hemodynamic risk, risk of intracerebral bleeding, and risk of carotid dissection. 

Risk of Embolus.

We applied VC proximate the carotid sinus to bring the site of pulse generation as close as possible to the intra-cranial vasculature. 
However isolated incidents of cerebral embolism from ulcerated plaques has been noted following carotid compression [Khaffaf N et al. 
1994], especially over the carotid sinus [Beal MF et al. 1981, Bastulli JA et al. 1985]. 

Carotid sinus compression in the elderly with a high incidence of atherosclerosis was assessed in 502 patients whereby the complication 
rate with lasting sequale was reported at less than 0.5% [Lacerda G et al. 2009]. Also the risks of CCA compressions during indicated 
TCD (primarily in elderly, neurologically symptomatic individuals) was assessed in 3383 patients whereby less than a 0.4% risk of “brief, 
transient cerebral symptoms” (only during the CCA compressions), and just one probable Transient Ischemic Attack (TIA) [Jatuzis D et 
al. 2000] was documented. Furthermore repeated, daily carotid compressions have found prescription for treatment of Cavernous Sinus 
Dural Arteriovenous Fistulae (CS-DAF) in a variety of patients, including the elderly [Kai Y et al. 2007, Higashida RT et al. 1986].  

While these reports suggest carotid compressions may be relatively safe, we stress that our proposed technique comprises a more 
vigorous and prolonged procedure, and in expressly neurologically symptomatic patients. For these reasons a requirement in treatment of 
stroke (such if carotid VC were investigated clinically), would most certainly involve prior imaging of a carotid planned for manipulation to 
rule out potential embolic risk, including significant carotid stenosis, ruptured or mobile plaque, dissection, and particularly clot4 . 

In perspective however it is worth noting that between 14 to 30% of AIS presentations are reportedly cardio-embolic [Arboixa A et al. 
2010 ], and cerebral arterial in-situ thrombosis (rather than carotid embolus) is reported to account for a majority of AIS presentations in 

4Animal studies [Folts J, 1991] have shown that external tapping of an acutely clotted carotid artery causes near immediate clearance of 
clot.  Carotid thrombosis following AIS is an infrequent but potentially ominous finding, having a prevalence of ~1 – 6% [Vellimana AK et 
al. 2013].   
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select subgroups (e.g. Asians, Hispanics and Africans) [Arenillas JF. 2011, Bum JK et al. 2014]. This predicts a large cross section of the 
population who may have a disease free carotid potentially available for VC therapy. 

We should also stress that while it would seem advantageous to have pulse generation as close as possible to the obstructed vasculature, 
we have also shown that flow pulses transmit contra-laterally whereby a contralateral carotid (to the obstructed cerebral vessel) would be 
more likely free of unstable disease and thereby a possible treatment option. It is also worth mention that it is not at all clear whether VC 
of even an ipsilateral culprit “acutely neurologically active” carotid may still yield a fruitful risk / benefit outcome in an otherwise severely 
disabling stroke.  

Risk of Hemodynamic Decompensation

A further safety concern in Carotid VC is that pressure applied to the carotid sinus could induce a vagal response including dangerous 
bradycardia (including heart block, sinus pauses, sinus arrest etc.), especially in the elderly who are the most common stroke victims. 
To this end cardiac monitoring and an IV would be required (for administration of fluids, vagalytics etc.), and optionally external pacing 
pads applied (with a defibrillator on stand by5), should this technique ever be tested clinically in acute stroke victims. Of note if offensive 
bradycardia were to occur the vibro-compression point could be attempted more gently, or slightly lower nearer the base of the neck to 
the proximal CCA in avoidance of the sinus.

Risk of Intra-Cerebral Hemorrhage (ICH)

Perhaps a premier concern for carotid VC therapy may be whether the battery of transmitting pressure pulses could increase the risk of 
Intra-Cranial Hemorrhage (ICH). Cerebral bleeding has been a significant concern in administration of transcranial ultrasound assisted 
AIS thrombolysis in the TRUMBI trial (where the trial had to be discontinued because of increased ICH) [Daffertshofer M et al. 2005], and 
shows documented risk even without mechanically assisted measures in IV thrombolysis for ST Elevation Myocardial Infarction [Gurwitz 
A et al. 1998].  

To address this issue we discuss ECP as a treatment strategy for AIS - a procedure somewhat similar to carotid VC (in the prorogation of 
hemodynamic pulses) but applied at a lower compression frequency and more peripherally to the arms or legs of patients. ECP for AIS has 
been reviewed by Han et al [Han J et al. 2008], who cite 22 Chinese papers since 1980 all of whom report a generally favorable clinical 
outcome with no reported serious adverse advents. Han [Leung T et al. 2008] since performed a randomized crossover assessment-
blinded proof of concept trial in use of ECP for recovery of 50 AIS patients (weeks 1 to 7, and 7 to 14 following stroke), whereby favorable 
clinical benefits and again no increased risks for ICH or any serious adverse events were documented. Galuma et al [Alexandrov A W et al. 
2004] has most recently provided ECP study results on a randomized patient blinded trial in MCA strokes arriving ineligible for reperfusion 
within 48 hours of symptom onset (13 treatment, 10 sham) whereby a single ECP treatment session was performed. The Galuma study 
showed a lack of clinical improvement in the ECP group, but again from a safety perspective no increased risks for ICH, subsequent 
ischemic strokes, or death was reported. Other’s have recently reported that prolonged , multiple daily ECP sessions over the first weeks 
of stroke tend to yield enhanced recovery benefits, and again with no reported increases of risks [Lin W et al. 2013, Li X et al. 2014]. 

The Author’s caution however that while it appears that ECP has generally been deemed “safe” following AIS, none of the ECP trials have 
been run early in the hyper-acute stage of AIS (i.e. in association with IV thrombolysis), and the hemodynamic fluctuations transmitted by 
ECP are generally of lower amplitude and frequency in comparison with what would be expected in carotid VC.  To this end, risk of ICH 
secondary to carotid VC, especially if run in conjunction with IV thrombolysis, remains a major question. 

Risk of Carotid Dissection 

Internal Carotid and Vertebral Arterial Dissection (ICAD and VAD respectively) with subsequent stroke are known risk factors for patients 
experiencing traumatic injury to the head or neck [Haneline MT et al. 2003, Cassidy JD et al. 2008, Wynd S et al. 2013]. Moreover, there 
is at least a temporal correlation between ICAD and chiropractic neck manipulations, although a clear causative link has and continues 
to be strongly argued against or at least questioned [Biffl WL et al. 1998, Norris JW et al. 2000, DeSouza RM et al. 2011]. Identified risk 
factors for Cervical Arterial Dissection (CAD) have been reported as abrupt hyper neck; flexion, extension, and particularly rotation – or 
more generally “sudden head movement” - all of which imply a history of sudden and forceful stretching, twisting or tortion of the dissected 
vessel [Haneline MT et al. 2003, Cassidy JD et al. 2008, Wynd S et al. 2013]. 

While VC therapy near the carotid triangle would certainly stimulate the CCA and ICA, the arteries would not be expected to be abruptly 
torqued or stretched comparably to the typical head/neck trauma or chiropractic scenario. Moreover as mentioned earlier the reported 
safety of CSM in the elderly with known carotid disease [Lacerda G et al. 2009], and CCA compressions as a diagnostic tool for indicated 
TCD [Jatuzis D et al. 2000], suggests some level of re-assurance that controlled inward compressions of even a plaque ridden carotid may 
be relatively safe. Never-the-less the Author’s have mandated that an imaging inspection of any artery of the neck should be performed 
prior to commencement of VC therapy to rule out plaque, stenosis and evolving dissection (with or without clot). Certainly if future animal 
work were to be considered histological analysis of the carotid vessels should be performed following oscillation therapy to inspect for new 
dissection, however there is no strong evidence to suggest this would be an expected concern in healthy vessels. 

Proposed Procedure Length and Therapeutic Window. 

It is difficult to recommend the duration of a VC carotid therapy session in treatment of AIS. SFU showed a 75%, 90% and 100% 
recanalization rate in their flow tube within 5, 10 and 20 minutes of VC respectively [Marzencki M et al. 2012], hence perhaps in-vivo 
sessions of up to 20 minutes, or until obvious evidence of reperfusion would comprise reasonable end points. With regards to therapeutic 
window we propose carotid VC to commence as early as possible preferably at time of IV thrombolysis, as this would likely carry the 
greatest benefit particularly as vibration is known to potentiate thrombolysis in-vitro [Hoffmann A et al. 2012] and in catheter use for 
treatment of deep vein thrombosis  [Arko F et al. 2007]6. However brain tissue is arguably salvageable within the first 24 hrs following 
AIS [Baron Jb et al. 2000], hence the benefit of any mechanical intervention which could potentially clear embolic debris within 24 hrs of 
symptom onset would be of interest for study.  

5Extremely rare incidences of ventricular fibrillation during carotid sinus massage have been documented [Deepak S M et al. 2005].
6Also see u-tube link on action of the TrellisTM Catheter system at  https://www.youtube.com/watch?v=qgkOgWV2Frk  

https://www.youtube.com/watch?v=qgkOgWV2Frk
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Feasibility of Carotid VC for Clinical Study

In study of VC therapy there is a presumed need for determining a neurologically stable carotid in conjunction with a diagnosis of ischemic 
(vs. haemorrhagic) stroke. Recent trends for employing mobile CT units in ambulances for acute stroke calls [Silke W et al. 2012] 
could foresee ably provide these services. Disease free carotids could also of course be determined by routine ultrasound inspection in 
ambulance or in hospital.  

Limitations of our study

One particular drawback to our study was that flow pulse transmission was only shown in a younger test group most of whom would 
have relatively compliant arterial walls. We did not see that as a major problem however, as pulse wave propagation in older, stiffer, 
atherosclerosed vessels is only known to differ by increased velocity, higher pressures and an increased pulse pressure (by the “Windkissel 
effect”)[ Belz GG. 1995] - phenomena not expected to impact our results. Also low sonic vibration transmission efficiency has been shown 
as superior along non-compliant vs. compliant tissue [Smith D et al. 1984], and lower frequency hemodynamic transmission from carotid 
vibro-compressive maneuvers including in the elderly have of course been well documented [Aaslid R.1986]. Nevertheless, further study 
of flow pulse propagation in an older test population would be valuable to confirm the effect and for ongoing safety assessment. 

Another drawback was that we only studied a distal carotid VC point substantially over the carotid sinus, whereby in hindsight (in light of 
safety concerns) the proximal CCA, although slightly further from the target vasculature, may have been a better choice. We have found 
VC of the proximal CCA can also transmit flow pulses intra-cranially7, although statistical validation of this technique is required.  

We also did not study flow transmissions from the superficial V3 segment of the vertebral artery to the basilar artery, which (as the 
immediate proximal vessel to the basilar artery) would comprise a preferred treatment strategy for acute basilar arterial occlusions. The 
V3 segment is easy to palpate (even in obese patients), and should be included in future studies. 

Finally while we showed a positive trend for increased mean intra-cranial flow velocity upon onset of carotid compressions, our sample 
size was small and the comparison of velocity time integral measurements carry inherent uncertainty based on variance in position of the 
pulse wave sample gate and quality of signal. Moreover the net increases in flow velocity observed in the compression group were modest 
(and were not uniform in all subjects), and straightforward extrapolation of velocity increases to actual blood flow increases (particularly in 
AIS cases), cannot be assured by our methods. In view of these considerations it is probably most prudent to state that carotid VC does 
not at least appear to substantially diminish cerebral arterial blood flow in a majority of healthy subjects.  

We also did not study mean intra-cranial flow velocities with vibration as it was clear from our work that (and unlike with carotid 
compressions) any changes to the arterial Doppler waveforms were at most very slight and likely un-measurable given the limited fidelity 
and fore-mentioned confounding factors with respect to our measuring technique. Moreover any changes in velocity with vibration could 
be arguably attributed to a possible acute vasodilatory response within the stimulated intra-cranial artery (not unexpected with high 
frequency oscillation stimulus - by for example a hypothesized stimulation of nitric oxide release within the vessel [Maloney-Hinds C et 
al. 2009, Pei Z et al. 2004, Aelen P et al. 2010]) which, with a possible change in intra-cranial arterial lumen diameter, would confuse the 
correlative meaning between Doppler velocity and cerebral blood flow.

Future Work

Animal Thrombolysis Study

As a next step we recommend pre-clinical testing of carotid VC via a rabbit AIS model with speed and quality reperfusion gauged by 
serial cerebral angiography. Following selective MCA thrombotic occlusion an ipsilateral stenosis free carotid would receive VC therapy 
versus control. Preferably one research arm should include systemic IV thrombolysis to evaluate possible potentiation of the fibrinolytic 
effect. Confirmation of effective VC delivery (in generating hemodynamic pulses) should be performed by invasive pressure monitoring in 
conjunction with non-invasive Doppler and / or tonometry evaluation of a relevant downstream cerebral vessel. VC administration could be 
performed via the Hitachi Wand (or other comparable vibration instrument) with the engagement force against the carotid adjusted to that 
required to provide optimized propagating hemodynamic fluctuations. Alternatively a vibrator could also be fastened to the backside of an 
operator’s hand (instruments such as this are known in the field of chiropractic and hairdressing) to thereby vibrate the operator’s fingers, 
which in turn could reliably palpate and compress the carotid artery. We recommend treatment durations of 20 minutes or until TIMI 3 flow 
is achieved, with heart rate and systemic blood pressure monitored to assess for hemodynamic including vagal effects. Future work may 
consider manipulations of the proximal CCA in avoidance of the coronary sinus. Post procedure histological examination (e.g. 24 hours 
after stroke) should be performed to assess infarct size, secondary embolus, ICH and presence of carotid arterial dissection between the 
study groups. An exemplary rabbit model satisfactory to the above requirements has been established by Jahan et al [Jahan R et al. 2008].  

Study of optimized VC parameters

Parameters for VC therapy include: administration site, mode of delivery, impact frequency, percussive wave-shape, displacement 
amplitude, vibratory pattern, engagement force of a vibratory instrument, resultant hemodynamic effect of pulses within the cerebral 
vasculature, and time spent undergoing the procedure. 	

It has been proposed by SFU that randomizing the timing and / or wave-shape of VC may be helpful in adding a more disruptive turbulence 
into the vasculature system [Menon C et al. 2008]. Indeed the assessment of timing VC to the beat of music (such as common to vibro-
acoustic therapy systems) may also be of interest. Of note Antic et al [Antic S et al. 2008] have shown an increase in MCA flow in sub-acute 
AIS victims while listening to MOSART sonatas.  

Moreover vibration could potentially induce a vasodilatory response [Lindblad LE et al. 1986, Ljung B et al. 1975, Hudlicka O et al. 1978], 
and a possible endogenous increase in blood fibrinolytic activity [Takashima H et al. 1987]. Both of these factors could be studied in animal 
stroke models. Finally it would be interesting to assess the value of carotid VC administered selectively during the diastole of the cardiac 
cycle, which may provide (like ECP) an enhancement in cerebral blood flow in AIS therapy. 

7The Author’s have observed successful VC flow/pulse propagation from the proximal CCA to the intra-cranial cerebral vasculature 
informally (in study between themselves).
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We should note that there has been no established methods to empirically quantify the delivered hemodynamic pulses (whether by 
compression or vibration) – which may be needed to standardize a safe and effective “dosage” for future therapy. In our study we simply 
evaluated whether we were able to witness a compressive or vibratory undulation in the interrogated downstream arterial waveforms. This 
issue is not unique in the pursuit of a non-invasive mechanical methods for enhancing cerebrovascular reperfusion or thrombolysis, as 
the “dosages” delivered by transcranial ultrasound for example are defined entirely by their output frequency and power – and not by their 
resultant invasive effects (which would vary from patient to patient). 

As Doppler monitoring of downstream cranial vessels may be a future way of ensuring delivery of carotid VC therapy, one option to define 
dosage may be to develop a grading scale whereby for carotid compressions a Doppler effect of; a) decompression waves resulting in 
flow reversal – would be considered “high intensity” (see Figure 6, B and C ), b) compression waves greater or equal to intrinsic systolic 
waves – “moderate intensity” (see Figure 5), and c) compression waves of lesser size than systolic wave – “mild intensity” (see Figure 3 A); 
could be implemented. A practical grading scheme for vibration delivery however may be more difficult as the effects, when noted, seem 
quite similar between samples. For now a simple “yes” or “no” between observed vibratory Doppler velocity undulations, and perhaps a 
further differentiation of “strong” – vibratory effect (where vibration waves sharply extend from baseline to edge of waveform - see Figure 
4 B) vs. “faint” – vibratory effect, (where vibration waves present as mere “feathers” visible upon the top edge of the waveform -see Figure 
2 C) is all we could go by. Eventually, a head to head comparison between compression and vibration regarding safety and efficacy (or 
both in combination), and methods for statistically comparing them will be needed.  

In the future, we would also suggest use of a commercially available TCD head-frame which enables simultaneous Doppler recording of 
the intra-cranial arteries from both sides.

Conclusions

In 11 healthy middle aged subjects carotid compressions (5 Hz to 8 Hz, < = 1 cm) reliably transmitted flow pulses to 21 / 21 ipsilateral 
and 5 /5 contralateral intra-cranial arteries interrogated. In 10 subjects carotid vibration (30 Hz ~ 1 mm) transmitted flow pulses to 18/ 
20 ipsilateral and 4 / 5 contralateral intra-cranial arteries interrogated, however biofeedback was commonly required to ensure device 
positioning. Mean intra-cranial flow velocities did not statistically differ between compressed vs. non-compressed states. Carotid VC 
appears feasible for animal testing as a potential reperfusive treatment in AIS, but safety aspects including risks of; ICH, secondary 
embolus, carotid dissection, and hemodynamic decompensation from carotid sinus pressure, should be vigilantly addressed in future 
work. Assessment of the more proximal CCA may be considered as an alternative administration site in avoidance of the coronary sinus. 
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