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Introduction
An electroencephalogram, or EEG recording is a 
way of measuring brain activity in clinical settings 
to assist with diagnosis or monitoring of patients. 
The recording is captured using electrodes placed on 
the patient's scalp in a particular arrangement called 
the international 10 system-20 system then, voltage 
differences between pairs of electrodes are measured 
over time to produce an EEG plot.  An EEG 
recording typically consists of 20 or more channels, 
where each channel is one of the electrode-pair 
voltage differences over time.

Seizure-related disorders are the primary reason for 
EEG monitoring. However, some seizures cause a 
patient to move involuntarily, and this movement 
creates high-frequency oscillations in the EEG 
known as muscle artifacts. These muscle artifacts 
can obscure information that may be important 
for treatment. For example, they make it difficult 
for physicians to determine the lateralization and 
localization of the onset zone of a partial seizure, 
which is important to know when considering a 
patient with refractory partial epilepsy for surgery 
[1]. This is sometimes remedied with high frequency 
filters, but these can also remove some relevant brain 
activity, so blind-source separation methods like 
CCA are preferable.

Other types of artifacts are common in EEGs as 
well, including artifacts caused by eye movement 
and “electrode pop” artifacts. In visual analysis of 
EEGs, these artifacts can be incorrectly mistaken for 

epileptic activity or other neurological phenomena. 
Therefore, an artifact removal feature is helpful to 
allow the interpreter of an EEG to make a more 
informed analysis. Furthermore, the identification 
and removal of artifacts is an essential preprocessing 
step for quantitative analysis of EEGs, in which only 
cerebral activity is relevant.

Blind-source separation 

It is not ideal to simply ignore portions of the data 
that are contaminated with artifacts, since there 
may be clinically significant brain activity that is 
obscured by the artifacts. Ideally, it is best to isolate 
and remove non-brain activity while preserving the 
brain activity that occurs simultaneously. Blind-
Source separation methods are an effective way of 
solving this problem.

CCA and ICA are both blind-source separation 
methods and are used in similar ways to remove 
EEG artifacts with both methods following the same 
basic structure:

1. Decompose the EEG data into a set of
components. Both methods intend to isolate
artefactual activity into separate components
from brain activity. Each channel of the
original EEG data is made up of some linear
combination of these components.

2. Determine which components are artefactual.

3. Reconstruct the data using the aforementioned
linear combinations of components, while
excluding the components that have been
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determined to be artefactual.

The result of these processes is a clean EEG with any 
identified artifacts removed from affected channels 
(with any underlying brain activity intact).

The decomposition into source signals is achieved 
by an algorithm that computes an unmixing matrix 
W, which gives the estimated source signals when 
multiplied by the original EEG data. Different 
algorithms are used by ICA and CCA. Note that 
although there are an equal number of EEG 
channels and source signals, there is not necessarily 
any correspondence between the two: a single EEG 
channel may be a linear combination of many or few 
source signals.

Canonical correlation analysis 

One particularly effective technique for reducing 
the presence of artifacts in EEG data is Canonical 
Correlation Analysis, or CCA. It is most effective 
for removing muscle artifacts, due to muscle 
artifacts having lower autocorrelation than other 
components.

Our implementation of CCA for muscle artifact 
removal is based on the 2006 paper “Canonical 
Correlation Analysis to Remove Muscle Artifacts 
from the Electroencephalogram” [2]. To implement 
muscle artifact removal using CCA in the Python 
programming language, we make use of the scikit-
learn library's cancor method. The method accepts 
matrices X and Y as input. For an EEG recording with 
n samples and c channels, X is a matrix consisting 
of the first (n-1) samples, while Y contains the final 
(n-1) samples. Thus X and Y both have shape c* (n-
1) and contain mostly the same data, but Y is one
sample ahead.

After using cancor. Fit, the c by c square 
transformation matrix W is stored in the attribute 
cca.x rotations. This is also called a demixing matrix, 
because multiplying X by this matrix yields a matrix 
S containing the estimated source components: i.e. 

the c time series where each is maximally auto-
correlated while being uncorrelated with the other 
components. The inverse of W specifies the linear 
combinations of these source components that 
produce each of the channels in the original EEG 
data.

After obtaining the CCA components, we determine 
which components contribute most to muscle 
artifacts using an autocorrelation threshold. Muscle 
artifacts tend to be less auto-correlated than brain 
signals in EEG data. We access the autocorrelation 
value of each component using the corrcoeff method 
from Numpy. Then, we discard components with 
an autocorrelation value less than the threshold 
by changing the columns corresponding to these 
components in (W) to vectors of zeroes. Since the 
CCA method gives the components in order of 
decreasing autocorrelation, this means that some 
number of columns on the right of the matrix will 
be zeroed out, depending on the chosen threshold. 
Finally, we multiply the source signal matrix by the 
zeroed-out mixing matrix (W) to get the data with 
muscle artifacts removed.

CCA Results 
Below we show the results of our implementation 
of CCA for EEG muscle artifact removal. Figure 
1a shows the original EEG recording, which has 
muscle artifacts affecting channels F7-T3, T3-T5, 
F8-T4, T4 to T6, and T6-O2. This recording was 
obtained from the Temple University Hospital EEG 
Corpus [3]. Figure 1b shows the same recording 
with muscle artifacts reduced using a conservative 
autocorrelation threshold of 0.35; and figure 1c 
shows the recording with muscle artifacts removed 
using a more aggressive autocorrelation threshold 
of 0.9. We use the MNE-Python library’s plotting 
functionality to plot the results.

It is remarkable that even when using an aggressive 
autocorrelation threshold which causes more CCA 
components to be discarded, channels unaffected 

Figure 1a: Original EEG recording with muscle artifact.
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by the muscle artifact remain mostly unchanged by 
visual inspection. This is evidence of the effectiveness 
of CCA in isolating muscle artifacts. However, there 
are certainly some notable distortions such as a clear 
reduction in amplitude at the beginning of the F3-
C3 channel. Our CCA Artifact Removal program 
was tried on various other EEGs with similar results. 
Collaborator and registered EEG technologist Jared 
Beckwith confirmed that the program seems to 
properly remove muscle artifacts.

Independent component analysis 

Independent component analysis is another 
blind-source separation technique, but the source 
components obtained through this method differ 
from those obtained through CCA. Whereas CCA 
gives signals that are maximally auto-correlated and 
mutually uncorrelated, ICA gives signals that are 
statistically independent. One ICA algorithm called 
Info Max achieves this by minimizing the mutual 
information between the obtained source signals [4].

This is done by repeatedly updating a randomly 
initialized demixing matrix W until it converges:

( 1) ( ) (I tanh(Y) Y ) ( )TW t W t c W t+ = + −

Then, the estimated source components make up 
the rows of the matrix S where S = WY. Note that 
tanh(Y) may be substituted for Y - tanh(Y) if the 
data is sub-gaussian. In practice, an extended version 
of this algorithm that is better at dealing with data 
of unknown gaussianity is used by software such as 
EEGLAB to perform ICA decomposition of EEG data 
[5]. ICA is more effective than CCA at isolating non-
muscle artifacts, which can include eye movement, 
heart, or electrical line noise artifacts. However, 
there is no simple way to automatically determine 
which of the ICA components are artefactual. This 
is usually done through manual visual inspection 
of the components and indicators like a scalp 
topography map or power spectral density which 
can be computed separately for each component. The 
figure below shows an ICA component and its scalp 
topography map, which is a visual representation of 

Figure 1b: CCA Artifact Reduced EEG with autocorr threshold 0.35.

Figure 1c: CCA Artifact Reduced EEG with autocorr threshold 0.9.
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the strength of the component across the scalp. Its 
activity power spectrum is also shown, which shows 
the density of different frequencies in the time series. 
These features are important because they are used 
as input to our artificial neural networks. Th ese 
figures 2a, 2b and 2c were obtained from the IC 
[6] (Figure 2a-c).

The scalp topographies of eye components tend to 
look as if there is a dipole, or small “bar magnet” 
creating an electrical field centered near the eyes [6]. 
An activity power spectrum concentrated under 5 
Hz is also characteristic of eye components.

Some attempts have been made to automatically 
classify ICA components. The IC Label Project is 
one example, which uses Artificial Neural Networks 
trained on a large crowd-sourced dataset to classify 
ICA components, giving probabilities than an IC 
is brain activity or one of the following types of 
artifacts: muscle, eye, line noise, channel noise, or 
other [7]. In this project, we use a similar approach 
and the same dataset as IC Label to attempt to build 

a simple MLP-based classifier that can detect eye 
components. 

ICA automatic eye artifact recognition 
implementation 

Like the CCA artifact remover, we implement the 
ICA eye component recognizer in Python. We use 
code provided by IC Label to load and normalize the 
data. We utilize the scikit-learn library’s MLP class to 
create and train the neural networks.

The IC Label dataset does not include the original 
independent components rather, it has various 
features that have been calculated from the original 
data including topographic scalp map images, power 
spectral density, and autocorrelation functions. We 
use each of these three features as inputs to separate 
multilayer perceptrons. Each of these MLPs has two 
hidden layers of size 2n and n respectively, where 
n is the size of the input layer. The components in 
the IC Label training set are labeled with estimated 
probabilities that the component is either brain 
activity, muscle artifact, eye artifact, line noise, 

Figure 2a: An ICA brain activity component

Figure 2b: Scalp topography map of component 2a
Figure 2c: Power spectral density plot of 
component 2a
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channel noise, or other. For the purpose of training 
our classifiers to recognize eye components, we 
consider a component to be an eye component 
if that is the category with the highest labeled 
probability. Thus, in the unlikely worst-case scenario 
that a component has nearly equal probabilities 
for all categories, it may still be considered an eye 
component with a probability as low as 17%. This is 
a major limitation imposed by our decision to use 
binary classifiers: hybrid components which cannot 
be adequately described as a single type of artifact 
are not accounted for. After optimizing these three

single-feature binary classifiers using the 
stochastic-gradient-descent based “adam” solver, 
we train a combined MLP that uses the output 
probabilities of the single-feature classifiers as 
input (Figure 3).

Results
We tested the three single-feature classifiers as well 
as the combined classifier on the 130 independent 
components from the ICLabel test data set, which 
contains ICs labeled by experts. The test set consists 
of 28 eye ICs and 102 non-eye ICs. We define an 
eye IC the same as we did in the training set an eye 
IC is one for which "eye" is labeled as the highest 
probability category, and a non-eye IC is any other 
IC (Table 1).

Of the single-feature classifiers, the topographic 
classifier is most successful. This classifier has 90% 

accuracy, and correctly identifies all but 3 of the 
eye ICs. However, this classifier also has 10 false 
positives, which is the highest false-positive rate out 
of the four classifiers.

The PSD classifier appears to have learned very little, 
if anything it invariably classifies all of the 130 ICs 
as non-eye ICs. It gives slightly different output 
probabilities for each IC, ranging between 30 and 
40% probability of being an eye IC, but none are over 
50% so none are classified as an eye IC.

The autocorrelation classifier is between the other 
single-feature classifiers in effectiveness. This 
classifier correctly identifies seven eye ICs with only 
one false positive; but like the PSD classifier, the 
output tends to err towards a non-eye classification 
resulting in many false negatives.

The combined classifier was more effective than any 
of the single-feature classifiers. It is 92% accurate, 
showing slight improvement over the topographic 
classifier. The main area of improvement is a lower 
false positive rate which raises its accuracy overall 
even though it identifies two fewer true positives.

Conclusions and Future 
Improvements 
We are pleased with the performance of the CCA 
Artifact remover, although this is based only on 
qualitative inspection. In the future, we hope 
to implement quantitative measures to test its 

Figure 3: Neural network architecture (Simplified)

Table 1. Table of combined independent classifier
Classifier Accuracy True Positives False Positives True Negatives False Negatives

Topographic 90% 25 10 92 3
Autocorrelation 83% 7 1 101 21

PSD 78% 0 0 102 28
Combined 92% 23 5 97 5
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performance. In addition, it would be helpful to plot 
the original EEG as well as the artifact-removed EEG 
on the same plot, since this would make it easier to 
see where channels have been modified, and make 
comparisons to other methods like high-frequency 
filters.

We did not expect great performance from any of the 
single-feature classifiers, as even an expert cannot 
usually classify an IC with confidence without 
looking at multiple features. Despite its high false-
positive rate, the topographic classifier exceeded 
expectations and was surprisingly effective. The 
combined classifier which took the scalp topography, 
power spectral density, and 1 second autocorrelation 
functions into account performed best, but only 
slightly better than the topographic classifier. We 
expect that we could get better results by using more 
advanced neural network architectures. Our neural 
network structure is extremely minimal, as we use 
only basic multilayer perceptrons with a couple of 
hidden layers. A more sophisticated approach would 
involve convolutional neural networks these are the 
types of artificial neural networks that were used 
to train the classifier used in the original IC Label 
study. CNNs are especially good at recognizing 
shapes in image data, which makes them well-suited 
for identifying the "dipole near the eyes" shape that 
is characteristic of the scalp topography maps of eye 
components.

Although the IC Label training dataset is incredibly 
large, containing over 200,000 components, only 
5937 of these are labeled with category probabilities. 
Since our classifier was supervised, we could only 
use these 5937 IC components for training. A 

semi-supervised rather than completely supervised 
approach would allow us to better leverage the size 
of the dataset to improve training results. 
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