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Despite improvements in neonatal care, infants born very prematurely who survive the neonatal period 
are still at risk of neurodevelopmental disabilities. One of the main determinants for a poorer outcome 
seems to be damage to the cerebral white matter, which frequently occurs during the perinatal period. 
This article summarizes the radiological assessment of white matter injury in very preterm infants, striving 
to aid clinicians who provide parents and care takers with prognostic information on the development of 
their preterm born infants. As the expertise of radiologists in assessing neonatal brain MRI may vary widely 
amongst centers, we also strive to provide radiologists with information on imaging findings of white 
matter injury.
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In infants born very prematurely (gestational age 
<32 weeks), germinal matrix, intraventricular 
hemorrhage and white matter injury are fre
quently encountered [1–3], while cerebellar injury 
is increasingly recognized [4–6]. These injuries 
are associated with later cognitive and motor 
impairment [1,7–13].

White matter injury, also called periventricu
lar leucomalacia, is one of the most frequently 
occurring forms of brain injury in infants born 
very prematurely. 

Over the last few years, there has been a grad
ual change in incidence from cystic white matter 
injury to more diffuse white matter injury, where 
the majority of very preterm infants now show 
more subtle abnormalities of the d eveloping 
white matter [3,7,14,15].

Diffuse white matter injury is generally held 
responsible for the high incidence of cognitive 
and behavioral disorders in very preterm born 
infants [1,2,8]. 

The two neuroimaging modalities generally 
used in the neonatal period are cranial ultra
sonography (CUS) and MRI. CUS is safe, 
easily accessible, can be used on a serial basis 
and is reliable for the detection of most forms 
of neonatal brain injury [16]. MRI is a safe and 
valuable tool to assess development and pathol
ogy of the very preterm infant’s brain and gives 
detailed information on the exact location and 
extension of injury [9,17–20]. Advanced MR tech
niques, such as diffusion tensor imaging (DTI) 
or volumetric analyses, can detect axonal distur
bances and volume loss resulting from diffuse 
white matter injury.

CT should only be used for specific limited 
indications in the neonate as it involves consid
erable radiation and generally will not provide 
more information than CUS and/or MRI [16]. 

The aim of this article is to describe, in detail, 
the role and limitations of both widely accepted 
neonatal neuroimaging modalities (CUS and 
MRI), with a specific focus on preterm white 
matter injury, the findings that can be encoun
tered and the prognostic significance of these 
findings. 

White matter injury
The main pathogenic mechanisms for white mat
ter injury in the very preterm neonate are ischemia 
and infection. These often coexist and may lead to 
focal or diffuse white matter injury and/or hem
orrhages in the perinatal period due to the vul
nerability of the developing white matter, imma
ture vasculature and impaired c erebrovascular 
 autoregulation of the immature brain [2,21,22].

In focal white matter injury or cystic peri
ventricular leucomalacia (Figure 1), there is local
ized necrosis with loss of cellular elements that 
evolves over several weeks into macroscopic cys
tic lesions, readily visualized by both CUS and 
MRI. More commonly, the necrosis is micro
scopic in size and evolves into glial scars over 
several weeks. This more diffuse white matter 
injury accounts for the vast majority of cases 
[2]. The glial scars are characterized by astro
gliosis and microgliosis. Damage to and signifi
cant decrease in premyelinating oligodendro
cytes occurs [2,21,23]. Subsequently, this leads to 
hypomyelination and cerebral white matter loss 
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(Figure 2), resulting in decreased volumes of com
missures, such as the corpus callosum [24]. The 
white matter injury will eventually also lead to 
gray matter loss and decreased volumes of the 
thalamus, basal ganglia, cerebral cortex and 
cerebellum as early as term equivalent age, as a 
result of neuronal and axonal loss and abnormal 
connectivity [2,7,23,25,26]. Diffuse noncystic white 
matter injury in itself is not readily depicted 
by neuroimaging. The resulting volume loss 
can be identified by measuring the ventricular 

dilatation, or by volumetric ana lysis of white 
and gray matter structures [27,28]. DTI studies 
have suggested axonal loss in the white matter of 
 preterm infants at term equivalent age [2,26,29–33].

Imaging findings of white matter 
injury on CUS & MRI

 n Periventricular echodensities
On CUS, nonphysiological periventricular ech
odensities (PVE) (Figure 3) of the white matter 
are thought to reflect white matter injury. Their 
appearance is classified as homogeneous or inho
mogeneous, and the echogenicity staged as grade 
one or two [34]. The more inhomogeneous and 
echogenic the PVE and the longer their dura
tion, the more likely it is that they present white 
matter injury. Presence of nonphysiological PVE 
on CUS is predictive of abnormal white matter 
on MRI at term. However, absence of PVE does 
not predict normal white matter on MRI, but 
does predict a favorable outcome [35]. Presence of 
nonphysio logical PVE in itself is not associated 
with  unfavorable shortterm outcomes [35–37].

In a retrospective study, inhomogeneous PVE 
showed no association with punctate white mat
ter lesions (PWMLs) on MRI [38]. The MRI or 
histological equivalent of inhomogeneous PVE 
remains unknown. The retrospective study by 
Leijser et al. showed that the performance of a 
MRI study before term equivalent age besides 
sequential CUS did not seem warranted in 
infants with mildtomoderate abnormal white 
matter. Additional MRI only slightly increased 
the predictive value of CUS in severe white mat
ter changes [38]. In our recent study on ultra
sound detection of white matter injury and its 
practical implications, the authors provided 
recommendations for performing serial CUS in 
all very preterm neonates during the perinatal 
period and a MRI at term equivalent age in some 
(Figure 4) [35].

 n Diffuse excessive high-signal 
intensity
Diffuse excessive highsignal intensity (DEHSI) 
(Figure 5) on conventional T2weighted (w) MRI 
has been described in the periventricular white 
matter in premature infants and is seen in the 
majority of these infants [39–41]. For a long time, 
it was thought to represent diffuse white matter 
injury on account of altered apparent diffusion 
coefficient (ADC) and fractional anisotropy 
(FA) values compared with normal term born 
neonates [31]. However, this has recently been 
questioned by several authors [41–43]. It is now 
assumed that DEHSI represents a developmental 

Figure 1. Focal white matter injury. (A) Cystic degeneration of white matter in 
the centrum semi-ovale (arrows) on axial T2-weighted magnetic resonance image. 
(B) Cystic periventricular leucomalacia readily diagnosed (arrows) on a sagittal 
ultrasonography image.

Figure 2. Diffuse white matter injury 
leading to hypomyelination and volume 
loss, resulting in widening of the 
pericerebral space. The arrows indicate the 
absence of myelination in the centrum 
semi-ovale in a very preterm infant imaged 
around term.
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phenomenon rather than white matter injury 
because of its high incidence and the lack of asso
ciation with shortterm neurodevelopmental out
come [41,44,45]. So far, no histological e quivalent 
of DEHSI has been found.

 n Punctate white matter lesion
Focal small PWMLs (Figure 6) have been described 
as small areas with high signal intensity on T1w 
MRI images and a less pronounced lowsignal 
intensity on T2w MRI images [46,47]. These 
lesions can be differentiated from small hemor
rhages by using gradient echo MRI techniques, 
which are susceptible to hemorrhages, and blood 
break down products, such as hemosiderin [48]. 

PWMLs are thought to represent more focal 
white matter injury. There is no known histo
logical correlate and the pathogenesis is not com
pletely understood, although they may be the 
MR equivalent of astrogliosis [40]. Some PWMLs 
are hemorrhagic. If so, these lesions probably 
occur due to increased pressure in the medullary 
veins draining towards the ventricles and repre
sent small hemorrhagic venous infarctions [48]. In 
the acute phase, some of these lesions show dif
fusion restriction on diffusionweighted imaging 
(DWI) sequences compatible with small venous 
infarcts. In the perinatal period when these 
lesions occur, they can easily be missed on CUS.

Since PWMLs occur during the perinatal 
period and tend to fade and decrease in number 
over time, it is likely that the exact incidence of 
these lesions is underestimated at term equiva
lent age, the preferred age of MRI for most pre
term infants to investigate the extent of white 
matter injury [40]. These focal PWMLs are 
associated with a poorer neurodevelopmental 
outcome [41,46].

Neuroimaging modalities used to 
depict white matter injury

 n Cranial ultra sonography
Serial CUS is very reliable for the detection of 
peri and intraventricular hemorrhage and its 
complications (posthemorrhagic ventricular dil
atation and periventricular hemorrhagic infarc
tion) [3,49]. In addition, it is used to evaluate ven
tricular size, and the status of the basal ganglia 
and the white matter in very preterm neonates 
during the perinatal period [16]. Recent studies 
have shown that ultrasonography can reliably 
detect severe (cystic) white matter injury, but it 

Figure 3. White matter injury on cranial ultrasonography. (A) High echogenicity (arrows) of 
nonphysiological periventricular echodensities, as shown on a coronal image at the level of choroid 
plexus in the lateral ventricles in a preterm infant with a gestational age of 31 weeks. (B) Sagittal 
view in the same infant showing inhomogeneous periventricular echodensities in the parietal white 
matter (arrow).

Serial CUS in 
first week

Serial CUS for 
complications P/IVH,
brain growth and maturation†

P/IVH No P/IVH

Low-frequency serial CUS 
for brain growth and 
maturation†

MRI around TEA

MRI around TEA

No abnormalitiesAbnormalities

No MRI

Figure 4. Recommendations for neuroimaging in very preterm neonates. 
†Intensify if complications occur.  
CUS: Cranial ultrasonography; P/IVH: Peri/intraventricular hemorrhage; TEA: Term 
equivalent age.
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is less reliable for the detection of mild or moder
ate white matter abnormalities [50,51]. Moreover, 
it has been shown that PVE of the white mat
ter on ultrasonography can predict abnormal 
white matter on MRI at term equivalent age, 
but absence of PVE did not predict absence of 

white matter changes. Germinal matrix and 
intraventricular hemorrhages, on the other 
hand, were predictive of abnormal white matter 
on MRI and together with abnormal ventricular 
size or shape, were  reasonably predictive of an 
 unfavorable o utcome [35].

Optimization of CUS to increase its accuracy 
and reliability has been extensively described 
by the authors’ group [16,49,52]. However, even 
while using optimal protocols and a modern 
ultrasound system operated by an experienced 
ultra sonographist, CUS seems to underestimate 
diffuse white matter injury. As 25–50% of very 
preterm infants with diffuse white matter injury 
develop cognitive problems [2], this may prompt 
the use of MRI around term equivalent age in 
these infants [35].

 n MRI
MRI is becoming more widely available and 
is increasingly important for neonatal brain 
imaging. It is safe and reliable, but poses chal
lenges regarding patient preparation, safety 
and sequence optimization in neonates [19]. 
Compared with ultrasonography, it has the dis
advantage of the necessity to transport the neo
nate from the neonatal intensive care unit to the 
radiology department. The development of MRI 
compatible incubators has largely overcome this 
disadvantage as patient preparation can now be 
performed in the neonatal intensive care unit 
and after transportation, the entire incubator 
can be placed into the MR scanner [9].

At the Leiden University Medical Center, 
all neonatal MRI examinations are performed 
using a 3T MRI system (Philips Medical 
Systems, Best, The Netherlands) according to 
a standard protocol for imaging the newborn 
infant’s brain [19]. The infants are sedated using 
chloral hydrate (55 mg/kg), lay supine and 
are swaddled during the scanning procedure. 
Ear protection consists of neonatal earmuffs 
(Natus Minimuffs®; Natus Medical Inc., CA, 
USA) covered by a headphone. All MRI exami
nations include a 3D T1Turbo Field Echo 
sequence (TR 9.7 ms, TE 4.6 ms, FOV 180 mm, 
matrix size 192 × 152, flip angle 8°, TFE fac
tor 128, slice thickness 1 mm), a T2Turbo 
Spin Echo sequence (TR 6269 ms, TE 120 ms, 
FOV 180 mm, matrix size 336 × 234, TSE 
factor 18, slice thickness 2 mm), a T2* fast 
field echo sequence (TR 735 ms, TE 16 ms, 
FOV 230 mm, matrix size 256 × 163, f lip 
angle 18°, slice thickness 4 mm) and a DWI 
sequence (SEEPI in three directions, bvalue 
of 1000 s/mm2, TR 2406 ms, TE 64 ms, EPI 

Figure 5. Periventricular diffuse excessive 
high signal intensity (arrows) is now 
thought to be a developmental 
phenomenon rather than white matter 
injury.

Figure 6. Punctate white matter lesions 
(arrows) located in the deep white matter 
around the lateral ventricles are thought 
to represent more focal white matter 
injury.
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factor: 37, FOV: 180 mm, matrix size: 6 × 69, 
slice thickness 4 mm).

 n Frequently used MRI techniques
Most MRI sequences are performed to assess the 
development or injury of the brain in preterm 
infants. Specifically, myelination can be assessed 
on T1w and T2*w MRI sequences. MRI can 
easily detect germinal matrix/intraventricular 
hemorrhages, periventricular hemorrhagic infarc
tions, cystic white matter lesions and PWML 
using T1w, T2w, T2*w gradient echo and/or 
DWI sequences. White matter volume loss result
ing in increased pericerebral spaces, ventricular 
dilatation and thinning of the corpus callosum 
can be reliably evaluated on T1w and T2w 
sequences. The gray matter volume loss resulting 
from white matter injury can be recognized as a 
less complicated gyral pattern and lower  volumes 
of the basal ganglia and/or thalami.

MRI obtained at term equivalent age in pre
term infants has prognostic significance, as paren
chymal lesions, such as hemorrhages, changes 
consistent with white matter injury, infarctions, 
hypomyelination and reduction of white mat
ter volumes have been shown to be predictive of 
cognitive and motor delay and cerebral palsy at 
2 years of age [41,44,53]. The combination of these 
different parenchymal lesions adds up to predict 
an adverse outcome in most preterm infants with 
severe white matter lesions, but prognostication is 
less certain in infants with mild or moderate white 
matter lesions, which occurrs in the majority [54].

 n Advanced MRI techniques 
DTI has been proposed as an additional tool in 
the assessment of white matter injury in preterm 
infants and may provide more adequate diag
nostic and prognostic information in relation to 
neurological outcome than other MR techniques 
[55,56]. DTI describes the diffusion of water mol
ecules in tissues and reflects the direction of the 
underlying microstructure. In DTI, diffusion is 
measured in at least six diffusional directions, 
while in DWI, diffusion is measured in only three 
perpendicular directions. Contrast is based on the 
Brownian motion of water molecules, which is 
influenced by various factors, including fiber ori
entation, integrity of cell membranes and degree 
of myelination. DTI can be used to assess cere
bral development and connectivity by calculating 
 diffusivity values [55,57].

The physical constant characterizing water 
molecule displacement is called the ADC or 
mean diffusivity. In very preterm infants, the 
ADC of the white matter is high due to the high 

water content of the immature brain. When the 
brain further matures, the ADC will decrease [55]. 
ADC values may be abnormal in infants with 
brain injury or abnormal brain  development [58]. 

While the axons in the developing brain orga
nize and myelinate, the displacement of water 
molecules, as described by the FA value, is most 
restricted in the perpendicular direction and least 
restricted parallel to the myelinating fibers. The 
maturation of white matter is accompanied by an 
increase in anisotropic diffusion and thus in FA. 

Figure 7. Fibers passing through the 
posterior limb of the internal capsule in a 
preterm infant imaged at a postmenstrual 
age of 40 weeks.
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Fiber tractography offers insight into develop
ing white matter by visualization of the white 
matter tracts (Figures 7 & 8) [55,59–63].

Diffusion parameters at term equivalent 
age have only scarcely been studied in rela
tion to neurodevelopmental outcome and have 
shown an association between lower FA values 
in the posterior limb of the internal capsule 
and higher ADC values in the splenium of 

the corpus callosum at term, and motor delay 
around 2 years of age [64,65]. DTI values at term 
equivalent age may help further prognostication 
of neurodevelopmental outcome at 2 years. In 
combination with clinical parameters and white 
matter injury seen on T1w and T2w MRI, 
specificity further increases.

Over the last decade, numerous MRI tech
niques have been proposed to measure brain 
volumes in the very preterm infant as a measure 
of brain development and injury. Segmentation 
techniques for gray matter, unmyelinated and 
myelinated white matter, and cerebrospinal fluid 
have been developed [28,66]. However, in daily 
clinical practice, their use is not feasible and the 
relation to neurodevelopmental outcome has not 
been studied extensively. Linear measurements 
have been developed and validated in the pre
term infants’ brain and can be applied  manually 
to 2D and 3D data sets [67].

The utility of MR spectroscopy for risk 
stratifying preterm infants in relation to long
term adverse outcome is not well established. 
There are difficulties concerning the use of this 
technique, such as agerelated differences in 
metabolites, as measured by MR spectroscopy in 
the perinatal and early childhood period [68]. MR 
spectroscopy has not been found to be a good 
predictor of outcome in preterm infants at the 
age of 18–24 months [69].

Conclusion
Longterm clinical followup remains neces
sary to further evaluate the prognostic values of 
certain neuroimaging findings and quantitative 
values around term equivalent age, especially for 
cognitive neurodevelopmental outcome in very 
preterm neonates.

Advanced techniques, such as DTI, magneti
zation transfer imaging, functional resting state 
MRI and volumetric methods, are still under 
active investigation. Serial MRI and the appli
cation of these newer analysis techniques will 
provide insights into the trajectories of brain 
development and the impact of injury on the 
development [9].

Future perspective
Development of brain functions and the 
structuralfunctional correlates of brain injury 
remain difficult to evaluate in preterm infants. 
MRI at term equivalent age better depicts dif
fuse white matter injury in very preterm infants 
than ultrasonography. Combined grading of 
white matter injury and advanced (quantita
tive) MRI techniques, such as DTI, help to 

Figure 8. Preterm infant imaged at a 
postmenstrual age of 62 weeks showing 
an increase in length and number of fibers 
passing through the posterior limb of the 
internal capsule as a result of brain 
maturation and development.
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Executive summary

White matter injury
 � White matter injury occurs frequently in very preterm neonates.
 � White matter injury seems to be one of the main determinants for a poorer neurodevelopmental outcome in very preterm infants.
 � White matter injury results in hypomyelination, underdevelopment of white matter tracts, gray matter and commissures.

Imaging findings of white matter injury on cranial ultrasonography & MRI
 � Diffuse white matter injury is a common finding on MRI in preterm infants, but is not reliably detected by ultrasonography.
 � It is now assumed that diffuse excessive high-signal intensity represents a developmental phenomenon rather than white matter injury, 

as there is no association between diffuse excessive high signal intensity and short-term neurodevelopmental outcome.

Advanced MRI techniques
 � Diffusion tensor imaging quantifies development and injury to the white matter.
 � Abnormal diffusion tensor imaging values around term equivalent age in preterm infants predict psychomotor delay. 

Future perspective
 � Long-term follow-up is necessary to further evaluate the prognostic value of MRI findings at term equivalent age, especially for cognitive 

neurodevelopmental outcome.
 � Serial MRI and the application of newer analysis techniques will provide further insights into the trajectories of the developing and 

injured brain in the very preterm infant.

prognosticate adverse neurodevelopmental 
outcome [54]. However, most very preterm 
infants show mildtomoderate diffuse white 
matter injury and in this group, prediction of 
outcome remains uncertain. Wholebrain sta
tistical methods developed for neonatal DTI 
analysis, such as optimized tractbased spatial 
statistics [70] and atlasbased analysis [71], might 
have the potential to detect mildtomoderate 
white matter injury related to the neurological 
outcome. Another quantitative MR technique 
to evaluate brain development and possibly 
brain injury in preterm infants is magnetization 
transfer imaging, which can be used to evaluate 
myelination [72]. Magnetization transfer is a MR 
imaging phenomenon based on the interaction 
between immobile protons in macromolecules 
and free water protons of tissue. A magnetiza
tion transfer ratio is obtained by calculating the 
percentage difference between two images, one 
with and one without an offresonance radio 
frequency pulse [73]. Magnetization transfer 
ratio provides a reproducible measurement sen
sitive to myelination and thus an index to brain 
maturation [74]. 

Functional resting state MRI may be a new 
noninvasive technique to assist evaluating early 
life brain function and its recovery from injury 
[75,76]. This technique is based on data analysis 
applied to functional MRI, revealing patterns 
of interconnections between neural networks. 
Resting state networks have been identified in 
preterm infants [77–79]. Additional research is 
necessary to determine the clinical utility of rest
ingstate functional connectivity  analyses and 
the potential for the method to reveal the ana
tomical substrate for cognitive deficits in preterm 
infants who do not appear to have  abnormalities 
on other imaging techniques [68].
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