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Imaging innovations for cancer therapy 
response monitoring

Cancer therapy response monitoring
Personalized medicine is predicated on changing 
an ineffective therapy to one that is more effi-
cacious for a specific patient. Therapy response 
monitoring using imaging methods is an impor-
tant component of personalized medicine. In 
cancer treatment, standard anatomical-based 
imaging can detect macroscopic changes in 
tumor size, but these often take many weeks to 
months to develop. Functional imaging meth-
ods that probe tumor physiology have recently 
been demonstrated capable of detecting tumor 
responses from days to weeks after starting 
therapy. Such methods could be used to guide, 
noninvasively, changes in treatment in order to 
optimize the chances of cure. They could be uti-
lized to change ineffective therapies after only 
days of use, instead of waiting many months to 
find no effect.

A number of imaging-based methods have 
recently been developed that can detect cell death 
in tumor responses to treatment as reviewed in [1]. 
These include 2-[18F]-fluoro-2-deoxy-d-glucose 
PET (FDG-PET) and [1-13C]-hyperpolarized 
pyruvate imaging as markers of tumor glucose 
metabolism, 3´-deoxy-3´-18F-f lurothymidine 
(FLT) for DNA synthesis, and PET and mag-
netic resonance spectroscopy (MRS) for amino 
acid and lipid metabolism. In addition, special-
ized methods in MRI and quantitative ultra-
sound (QUS) have recently been developed to 
detect cell death, which can also be used to track 

the effects of therapy [2,3]. Other methods for cell 
death detection include antibody-based labeling 
imaging using SPECT, PET, MRI and optical 
imaging, all of which can potentially be used to 
guide personalized therapy.

Using breast cancer as an example, patients 
with locally advanced breast cancer (LABC) 
represent a typical patient population who 
benefit from changing ineffective therapies to 
more efficacious treatments. Breast cancer is 
the most common malignancy for females in 
North America. Approximately 5–15% of the 
estimated 200,000 new cases diagnosed each 
year will present with LABC [4–5]. LABC has 
variable definitions, including stage III disease 
or inoperable disease. For the purposes of this 
review, the data presented are restricted to 
women with tumors greater than 5 cm and/
or tumors with chest wall or skin involvement 
(i.e., T3 or T4 disease in the breast), with or 
without clinical nodal involvement, but with no 
evidence of distant metastatic disease. LABC 
carries a much poorer prognosis compared with 
early stages, with only 55% of LABC patients 
surviving at 5 years because of the high risk for 
metastatic spread [6]. Also, despite aggressive 
therapeutic combinations, including chemo-
therapy, surgery and radiation therapy (RT), 
the locoregional recurrence rate remains high 
at 10–20% [6].

The current treatment of LABC includes 
aggressive neoadjuvant chemotherapy followed 
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by surgery that is generally a mastectomy with 
axillary nodal clearance, followed by radiation 
treatment and possibly herceptin and/or hor-
monal manipulation, if indicated [7–9]. Several 
authors have pointed out the importance of 
clinical and pathological complete response to 
neoadjuvant chemotherapy as a marker of bet-
ter outcomes, with survival rates reaching 70% 
[10,11]. This better prognosis could be related 
to the selection of patients with more chemo-
therapy-sensitive tumors, or may be related 
to improved loco-regional control. Along this 
line, a recent update of the Early Breast Cancer 
Trialists Collaborative Group (EBCTCG) meta-
analysis demonstrated a significant improvement 
in overall survival for node-positive patients who 
received adjuvant radiation treatment, compared 
with those treated with surgery alone [12,13]. 
These findings stress the importance of locore-
gional control as a way to improve the outcomes 
for LABC. Several trials are aiming at optimiz-
ing the chemotherapy combination to evaluate 
the benefit of concomitant radiation and che-
motherapy to maximize the rate of pathological 
complete response. 

However, the search for the optimal LABC 
treatment remains controversial because deter-
mining the optimal treatment paradigm is 
fraught with uncertainties, both in terms of 
treatment regimen and duration of treatment 
[8,9]. While complete pathological response to 
neoadjuvant chemotherapy has been shown 
to correlate strongly with patient survival [14] 
this prognostic factor is assessed at the time of 
surgery, as after this point the window for a 
neoadjuvant treatment is closed. Conventional 
clinical surrogates based on anatomical infor-
mation from ongoing physical assessment, and 
standard clinical imaging methods such as 
mammography and B-mode ultrasound (US) 
suffers from an inability to objectively assess 
treatment response early during the course of 
treatment [15]. Subjective physical assessment is 
also not quite reliable, especially at early treat-
ment stages, as analyzed from our own institu-
tional patient data. Out of 250 patients with 
LABC treated over the last 4 years, data indicate 
that only one out of 250 patients were switched 
to salvage therapy on the basis of clinical exami-
nation after one cycle of chemotherapy. Most 
of the women whose disease was ultimately 
refractory to chemotherapy (n  =  50) were 
offered salvage therapy only after 4–5 cycles 
of chemotherapy (3–4 months after initiating 
chemotherapy) when physical examination was 
used as a response detector. 

The early detection of patients refractory to 
chemotherapy is critical, and indication of this 
can be seen in a study by Huang et al., who have 
shown that salvage treatment for chemotherapy-
resistant (nonresponsive) tumors with LABC 
can result in a survival rate of 46% at 5 years 
[16]. Surgery alone at this stage is often not 
possible. Thus, the detection of nonresponsive 
tumors could facilitate the switch to early salvage 
therapy. Consequently, imaging for early detec-
tion of response or absence of response is very 
important [17]. Objective, low-cost functional 
imaging methods capable of assessing tumor 
response to guide the tailoring of therapy could 
thus be very useful.

Potential methods, including radionuclide 
imaging, MRI techniques, dynamic contrast-
enhanced US (DCE-US), QUS methods for cell 
death detection, diffuse optical imaging (DOI) 
methods and photoacoustic imaging (PAI), are 
discussed later as emerging methods to carry out 
such functional analyses. Such methods could 
soon enhance the development of personalized 
medicine.

Radionuclide imaging: visualizing 
cellular biology, metabolism 
& receptor expression 
Radionuclide imaging, including PET and 
SPECT, can be used for evaluating measures that 
reflect cellular biochemistry, biology, metabo-
lism and receptor expression [1]. Such functional 
measures can provide an earlier classification of 
treatment responders or nonresponders, in com-
parison to using standard tumor size measures, 
which can occur later during treatment.

PET has been applied to the monitoring of 
cellular glucose consumption via visualizing glu-
cose analog uptake using FDG [18], which has 
been shown to correlate with a number of viable 
cancer cells [19]. FDG-PET has exhibited a speci-
ficity and sensitivity of near 90% for identifying 
primary and metastatic tumors in various cancer 
patients [20]. It has also been demonstrated to 
have capabilities for distinguishing responding 
patients early following therapy [21–23]. PET has 
also been employed to evaluate tumor cell pro-
liferation through visualizing 2[11C]thymidine 
and FLT uptake [24,25]. This has been found 
to demonstrate capabilities of early therapy 
response prediction in breast cancer patients [26]. 
PET has also been shown to be capable of imag-
ing hypoxia, which is observed in 50–60% of all 
solid tumors [27]. Imaging of hypoxia using PET 
has demonstrated potential for the monitoring 
of response or even predicting upfront therapy 
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response [28,29]. SPECT, an earlier technology, 
and PET can both be utilized for detecting pro-
grammed cell death by tracing phosphatidyl-
serine, which is exposed on the outer leaflet of 
the plasma membrane bilayer in early stages of 
apoptosis [30,31]. This marker has, however, not 
been found to be very specific for apoptotic cell 
death with cross-reactivity to cells in other states 
of cell death.

These techniques have been also used for 
imaging receptors on the tumor cell surface 
[32]. Androgen and estrogen receptor expres-
sion have been evaluated in prostate and breast 
cancer tumors by imaging [18F]fluoro-oestra-
diol and 16-[18F]fluoro-5-dihydrotestosterone 
uptakes, respectively, where both were found to 
have correlations with treatment response [33,34]. 
Radionuclide imaging techniques have recently 
been adjusted for visualizing tumor-associated 
overexpression of antigens, such as HER2, using 
affibody molecules [35,36]. Affibody molecules are 
a newly introduced class of tiny 7-kDa phage 
display-selected affinity proteins. Their major 
advantage over antibodies is due to their much 
smaller size, and they are capable of more rapid 
tumor localization in addition to a more rapid 
clearance from nonspecific compartments. Pilot 
clinical studies using indium-111 and gallium-
68-labeled anti-HER2 affibody tracer have 
demonstrated their ability for monitoring tumor 
response in cancer patients [37]. PET, however, 
requires radionuclides and remains limited in 
resolution due to limitations in positron detec-
tion. Moreover, the injection of radionuclides 
limits number of times patients would be imaged 
during their therapy to assess tumor response. 
Other methods, including MRI, offer potential 
for nonradiolabeled imaging at higher spatial 
resolutions.

MRI: measuring water relaxation, 
diffusion & exchange
Conventional MRI techniques such as T

1
 and 

T
2
 relaxation and diffusion of water are sensi-

tive to the environment around the water mol-
ecules being measured. They therefore provide 
possibilities for monitoring therapy response via 
the breakdown of macromolecules, loss of mem-
brane integrity, change in cell size and change 
in water content occurring during cell death. 
However, these changes have typically been 
detected only at late stages of apoptosis, when 
there is a decrease in cell density and an increase 
in extracellular water [38,39]. Figure 1A & B shows 
the late change in conventional T

1
 and T

2
 relax-

ation times in an in vitro model where apoptosis 

was induced in acute myeloid leukemia (AML) 
cells using cisplatin, and cells imaged 36 and 
48 h after treatment. The apoptotic cell death 
fractions induced by cancer therapy at these 
times are presented in Figure 1F for comparison. 
Recent work offers some explanation of the low 
sensitivity of these techniques to cell death and 
suggests ways to improve it, as follows.

Conventional T
1
 relaxation time measure-

ments at common clinical frequencies of 1–3 T 
depend on motions mainly from free water 
protons. One method of probing the motion of 
protons on larger macromolecules uses complex 
imaging methods which rely on T

1
 relaxation 

in the rotating frame, T
1p

. With this technique, 
contributing molecular motion frequencies are 
determined by the strength of a spin-locking 
pulse, where appropriate strength yields T

1p
, 

which increases at earlier stages of apoptosis 
than conventional relaxation [40–42]. However, 
T

1p
 studies [40] and the closely related technique 

of magnetization transfer [43] have shown that 
these changes are related mainly to an increase 
in extracellular water. Figure 1C shows the magne-
tization transfer ratio (MTR) after apoptosis is 
induced; however, this change is not significant 
even at late stages of apoptotic cell death.

It is also possible for pH changes during apop-
tosis to affect T

1p
, but other methods such as 

chemical exchange saturation transfer (CEST) 
are more commonly used to examine pH. CEST 
has been related to cellularity in brain tumor 
xenografts [44] and so offers additional prom-
ise for therapy monitoring. T

1p
, magnetization 

transfer and CEST all involve the use of long 
radiofrequency pulses, which are limited by the 
amount of energy that can be deposited into the 
body (i.e., the specific absorption rate). In addi-
tion, these methods can be technically difficult 
to implement, both because the concentrations 
of macromolecules that need to be detected are 
low and because good B

0
 and B

1
 field homogene-

ity are needed (i.e., this is a low signal-to-noise 
ratio estimate).

Conventional relaxation measurements can 
also be affected by the rate of water exchange 
between intracellular and extracellular environ-
ments. This exchange is much faster than typical 
T

1
 relaxation times, but relaxation can be altered 

by the addition of extracellular contrast agents, 
such as the clinically used Gd-DTPA and its 
low molecular weight derivatives. With a wide 
enough range of contrast agent concentrations, 
the exchange rate of water across the cell mem-
brane, along with the extracellular water fraction 
(Figure 1D & E), can be determined and this has 
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shown promise in vitro as a marker of apoptosis 
[45] owing to the relation of exchange to cell size, 
shape and particularly membrane integrity.

In  vivo, gadolinium-based contrast agents 
have mainly been employed in dynamic con-
trast-enhanced MRI (DCE-MRI), as recently 
reviewed in [46,47], but often with a focus on vas-
cular changes and the assumption of fast water 
exchange. Exchange itself has frequently been 
viewed as a hindrance because it can produce 
incorrect values for the volume transfer constant, 
K

trans
, and the extravascular extracellular water 

fraction, v
e
. Therefore, the research focus has 

often been on minimizing the effect of exchange 
on these parameters by limiting the amount of 
contrast agent injected or through the appropri-
ate selection of scan parameters [48]. Nevertheless, 
given the usefulness of exchange as a marker of 
nonvascular, apoptotic change, contrast-enhanced 
methods that are more sensitive to exchange are 
being developed.

Clinical work using three different flip angles 
at the late stages of contrast agent uptake has 
permitted estimation of exchange [49], although 
the amount of data collected limits preci-
sion. To be sensitive, measurements need to 
be made at multiple flip angles for a range of 
contrast agent concentrations. Longer repeti-
tion times (TRs) with well-chosen flip angles 
will give higher signals and greater sensitivity 
to exchange. However, longer repetition times 
and more flip angles decrease temporal resolu-
tion, which is particularly important to obtain 
accurate pharmacokinetic parameters. Alternate 

injection methods may lessen temporal resolu-
tion restrictions. Detailed T

1
 measurements dur-

ing a steady-state infusion have been done in 
the past [50], but require long waiting periods to 
reach steady-state. Recent work indicates that 
slower injection of the contrast agent bolus [51] 
or multiple injections [2,52] may loosen temporal 
resolution requirements and allow for the more 
detailed T

1
 measurements in the tissue that 

are needed to determine exchange precisely. 
Preliminary work during only the slowly varying 
late portion of uptake following three separate 
Gd-DTPA-BMA injections in a rat xenograft 
model showed that, with four flip angles at each 
contrast agent concentration, parametric maps 
of the extracellular water fraction (Figure 2A) and 
the water exchange rate across the plasma mem-
brane (Figure 2B) could be obtained. This method 
is not valid in all regions; areas of low uptake or 
areas where uptake is not at steady-state have 
been eliminated from the maps. Nevertheless, 
the parameters show correlation when compared 
with histology (Figure 2C & D).

Conventional diffusion measurements of 
therapy response are related mainly to tumor 
cellularity. Separation of intracellular and 
extracellular diffusion and determination of 
water exchange are theoretically possible with-
out contrast agents, using a standard diffusion 
sequence, but only at high gradient strengths 
[53]. Information at smaller length scales is lim-
ited by the range of diffusion times available. 
Short diffusion times invalidate the assumption 
that motion during the gradients is negligible 
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Figure 1. MRI parameters of cell death. Data presented is from studies of acute myeloid leukemia cell samples at 1.5 T (A–E) compared 
with the fraction of cells undergoing apoptosis (F) 36 and 48 h after treatment with the chemotherapy drug cisplatin. Apoptotic counts 
were based on cells exhibiting nuclear condensation on H&E staining (confirmed by TUNEL). (A) Conventional T

1
 and (B) T

2
 relaxation times 

show relatively small changes at late stages of treatment. (C) The change in magnetization transfer ratio is not statistically significant. (D) The 
extracellular water fraction and (E) water exchange rate from relaxation studies in the presence of the contrast agent Gd-DTPA-BMA show 
changes at the earlier 36-h time-point.
MTR: Magnetization transfer ratio.
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relative to motion during the diffusion time. 
There are, however, methods of altering the 
diffusion sequence to obtain shorter diffusion 
times. A conventional diffusion sequence has 
two gradient lobes with constant amplitude sep-
arated by a diffusion time, but it is possible to 
vary the gradient amplitude over time, sinusoi-
dally for example. This yields a sequence sensi-
tive to diffusion with particular frequency com-
ponents. High frequencies correspond to short 
diffusion times, and thus restrictions can be 
seen not just on the cellular level, but on much 
shorter distance scales. Such oscillating gradient 
sequences have been shown to be sensitive to 
intracellular changes such as cytoskeleton dis-
ruption [54] and nuclear size [55]. This technique 
has been applied to a rat brain tumor model 
and found greater contrast and heterogeneity 
following treatment than in images obtained 
with conventional diffusion measurements [56]. 
This technique is improved by higher gradient 
strengths and these are becoming more common 
clinically. Therefore, this method offers promise 
in monitoring cell death for therapy response.

DCE-US: imaging blood perfusion 
Blood perfusion is a physiological parameter of 
significant experimental and clinical importance 
that reflects the adaptive response of organs to 
their normal biological environment, to disease, 
trauma and the malignant progression of cancer 
[57]. Perfusion is also intrinsically linked to the 
efficacy of therapeutic interventions, including 
radiotherapy [58], thermal [59] and drug therapy 
[60], where treatment success relies on adequate 
tissue oxygenation, temperature distributions 
and sufficient vascular access of drugs to their 
molecular targets, respectively.

Currently, a variety of medical technologies, 
such as contrast CT, contrast MR and PET, are 
clinically available to generate perfusion maps. 
These techniques rely upon the external detec-
tion of exogenous tracers that can be distin-
guished from tissue and whose dynamics are 
related to physiological features (blood flow, vas-
cular volume, vascular morphology and perme-
ability, among others) of the microvasculature. 
DCE-US is a promising modality that combines 
the strengths of diagnostic US imaging (i.e., fast, 
portable, safe, widely available and cost effec-
tive) with the unique properties of intravascular 
microbubble contrast agents to visualize and 
quantify the blood volume and flow velocities 
in organs and solid tumors. Recently, DCE-US 
perfusion measurements have been demon-
strated to correlate with coregistered DCE-MRI 

and other gold standard measures of organ blood 
flow [61,62].

US contrast agents comprise nontoxic micron-
sized bubbles (1–10 µm diameter) of high molec-
ular weight gas encapsulated by a thin, biocom-
patible shell [63,64]. As a tracer, microbubbles are 
confined to the blood pool and travel with simi-
lar kinetics to red blood cells [65]; microbubbles 
are easily discriminated from surrounding tis-
sues due to the large acoustic impedance mis-
match with the blood, as well as their acoustic 
resonance at the diagnostic frequency range [66]; 
and the relationship between the microbubble 
concentration and the attenuation-corrected 
backscattered echo used for quantification is 
linear (up to a certain concentration) [67]. 

Therapy response monitoring using DCE-US 
is performed by measuring the time–intensity 
course of an intravenous bolus of microbubble 
contrast agent as it passes through the imaging 
plane [68,69]. Characteristics of the microvascu-
lature and microcirculation can be extracted 
directly from the shape of the time–intensity 
curve (e.g., area under the curve, time to peak 
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Figure 2. Parametric maps from T1 relaxation measurements of cell death. 
Maps were made from data acquired during the slowly varying late-uptake stage 
following contrast agent injection in a xenograft model in the hind limb of a rat. 
(A) The fraction of water that is extracellular and (B) the exchange rate of water from 
the intracellular to extracellular spaces. Many areas with higher extracellular water 
fraction correlate to lighter areas on (C) H&E-stained slides. (D) Areas that stain 
positively on TUNEL correlate to areas with high water exchange. Scale bar represents 
10 mm in (A & B) and 5 mm in (C & D).
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intensity and mean transit time, among others), 
providing an easy (model free), reasonably repro-
ducible semi-quantitative measurement [69,70]. 
Alternatively, quantification of blood flow can 
also be accomplished by recording the replenish-
ment of the imaging plane following the local 
disruption of the contrast agent during a con-
stant infusion, using a method first proposed 
for myocardial perfusion [71]. Recent models of 
microbubble replenishment kinetics have fur-
ther improved the reproducibility of clinical 
perfusion measurements [72,73]. Quantifying 
the time–intensity curve of a constant infusion 
and disruption–replenishment measurement 
is simpler in practice because with bolus mea-
surements, effectively close to a delta function, 
increased contrast is generated directly within 
the site of measurement, whereas using constant 
infusion methods avoids the unknown influ-
ence of cardiopulmonary transit. In addition, 
constant infusion methods offer the practical 
advantage that many measurements can be made 
in multiple anatomic planes during a single infu-
sion, allowing a quasi 3D assessment of tumor 
microvascularity.

DCE-US is currently used to monitor a vari-
ety of clinical interventions, including guiding 
and evaluating radiofrequency ablation (RFA) 
therapy [74–76], assessing therapeutic response 
to radiotherapy [77], and monitoring inflam-
matory activity during the relapse and remit-
tance of Crohn’s disease [78]. One of the most 
promising applications of DCE-US is to moni-
tor changes in vascularity and perfusion within 
tumors being treated with vascular disrupting 
and anti-angiogenic agents (Figure 3) [68,79,80]. In 
a recently published study [68], DCE-US identi-
fied patients that were responding to anti-angio-
genic drugs for metastatic renal cell carcinoma 
within 2 weeks after the start of treatment. In 
the near future, DCE-US may be used to effi-
ciently identify promising antivascular agents 
in the preclinic, promptly identify responding 
patients and assist with the individualization of 
patient care.

QUS: monitoring cell death response
Cell death introduces structural changes in the 
cell’s nucleus including nuclear condensation 
and fragmentation. We have previously demon-
strated that nuclear structure is closely linked 
to US backscatter properties of cells and tissues 
for high-frequency US. The changes in nuclear 
structure associated with cell death, hence results 
in differentiable echogenicities of living cells, 
necrotic cells and cells dying of programmed 

cell death or apoptosis. This has been confirmed 
through several studies conducted in  vitro, 
in situ, ex vivo and in vivo [3,81–88,89]. US radiofre-
quency (RF) signals carry information about tis-
sue echogenicity but until recently have not been 
readily accessible on commercial US systems. 
Since a large number of instrument parameters 
are involved in a typical US imaging and data 
acquisition session, it is difficult to establish a 
reasonable comparison between imaging data 
acquired by different standard US machines, or 
even by the same machine when different set-
tings are used. QUS methods have been pro-
posed to address this shortcoming. QUS ana-
lyzes the acquired raw data before it is envelope 
detected, log amplified and processed to form a 
B-mode US image and employs calibration tech-
niques to provide parameter estimates, which 
are predominantly independent of instrument 
settings. Such estimates are frequently based on 
backscatter analysis of RF echoes and include 
the integrated backscatter, RF envelope statis-
tics, frequency dependence of the backscatter, 
US tissue attenuation, and, in a broader sense, 
can include elastic properties of tissues, propaga-
tion of shear waves in tissues, and other signal 
classification techniques such as entropy met-
rics of RF ultrasonic backscatter [90,91]. Different 
subsets of these parameters have been utilized in 
a number of clinically related applications and 
particularly for tissue classification purposes 
such as differentiating benign versus malignant 
disease [92–99].

The application of QUS techniques for the 
detection of cell death is a relatively new devel-
opment [100,101]. High-frequency (20–60 MHz) 
QUS parameters have been found in preclinical 
animal tumor experiments to demonstrate repro-
ducible and statistically significant features in 
the US signals that are associated with cell death. 
The methods are robust and can be applied to 
detecting and determining the extent of cell 
death from different anticancer therapies [3,84,89]. 
This is because high-frequency US is particu-
larly sensitive to the structural changes that cells 
and tissues undergo during treatment response 
[82,86,88]. Such changes, including nuclear con-
densation and fragmentation, frequently result 
in substantial increases in tissue echogeneity and 
consequently cause a large boost in backscatter 
signal. Other factors such as cell shape may also 
contribute, but the nuclear changes associated 
with cell death have been demonstrated to be 
responsible for the contrast in QUS parameters. 
In this context, whereas high-frequency US pro-
vides better lateral and axial resolutions (tens 
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of microns), its clinical application is limited 
due to a limited depth of US penetration [102]. 
Conventional (low-) to mid-range US frequen-
cies (1–20 MHz) have much deeper penetration 
and are hence broadly used in medicine, and 
very recently have been used to monitor cell 
death response to cancer treatment with QUS 
methods, as described later. 

Whereas the detection of tissue changes related 
to necrosis using US methods were measured 
nearly 50 years ago, it is only very recently that 
quantitative methods have been applied using 
clinical US frequencies. In a set of recent stud-
ies, conventional US (3–10 MHz, 6 dB band-
width) was used for real-time detection of cell 
death using well-controlled AML cell culture 
experiments. Results demonstrated an ability 
to detect as little as 10% apoptotic cells using 
US frequencies in the 10 MHz range, parallel-
ing changes observed using high-frequency US 
[3,101,103]. Time-course experiments indicate that 
changes are detectable as early as 6 h after expo-
sure to chemotherapy drugs. These findings have 
been confirmed in vivo using prostate cancer PC3 
tumor xenografts in mice [101,104,105]. Here, large 
macroscopic areas of cell death were induced by 
novel anti-angiogenic agents in combination with 

radiation. Results based on experiments using 
over 50 animals assessed with high-frequency 
and conventional-frequency US suggests that 
the monitoring of treatment efficacy is possible 
at low-frequency US. 

In a very recent pilot clinical study, QUS at 
conventional frequencies has been applied for 
evaluation of tumor cell death response in LABC 
patients receiving neoadjuvant chemotherapy 
[106]. Conventional US data were acquired prior 
to treatment onset and at four-times during 
treatment. In each session, several scan planes 
with the size of 6 × 4 cm were acquired from the 
same nominal regions. The RF signal’s power 
spectrums were normalized at each region of 
interest using a reference’s power spectrum 
obtained from an agar-embedded glass-bead 
phantom model, at the same region of inter-
est’s position. The results (n  =  10  patients) 
demonstrated a close association between QUS 
changes after one to two cycles of chemotherapy 
(few weeks) and clinical response in the tumor 
many months later. More specifically, patients 
who had a significant clinical response demon-
strated changes in QUS parameters consistent 
with cell death, while women with no changes 
in QUS parameters demonstrated no ultimate 

Faster replenishment

After 2 weeks of treatment
Before treatment

0

0.2

0.4

0.6

0.8

1.0

1.2

0
5 10 15 20

Time after disruptions (s)

L
in

ea
r 

in
te

n
si

ty
 u

n
it

s

Decreased blood volume

Blood perfusion:after 2 weeks 
of treatment

Blood perfusion: baseline

1 cm

Figure 3. Tumor response to anti-angiogenic therapy can be monitored with dynamic contrast-
enhanced ultrasound. (A) Parameters that quantify tumor blood volume, flow velocity and perfusion 
are extracted from the kinetics of microbubble replenishment. Dynamic contrast-enhanced ultrasound 
methods are able to quantify changes in the tumor vasculature in as little as 1–2 weeks of treatment. 
Shown here, anti-angiogenic drugs reduce the blood volume of this renal cell carcinoma by approximately 
80%. An increase in the replenishment speed suggests that the therapy is targeting the smaller vessels 
and capillaries. (B) Replenishment kinetics can be quantified on a pixel-by-pixel basis to supplement 
anatomical images with functional overlays. The spatial distribution of vascular parameters can provide 
additional indices (i.e., heterogeneity) of tumor response.

www.futuremedicine.com 317future science group

Imaging innovations for cancer therapy response monitoring   REVIEW



clinical response (Figure 4). The promising results 
emerging from this study pave the way for estab-
lishing protocols for the clinical applications of 
the conventional frequency QUS techniques in 
therapy response monitoring. As such, QUS at 
conventional frequencies is expected to provide 
rapid and quantitative functional information 
in real time for evaluating responses to a specific 
therapy in the near future.

DOI: evaluating tissue functional & 
structural changes
The need for a noninvasive, nonionizing and 
inexpensive imaging modality to monitor treat-
ment response has recently led to renewed interest 
in the potential of optical imaging. Conventional 
optical imaging methods were introduced in the 
1920s in order to detect lesions in the breast [107]. 
However, these methods were not successful due 
to image distortions as a result of multiple light 
scattering. Recent advances in optical technolo-
gies in the past decade have led to an increased 
focus on the use of optical imaging modalities to 
diagnose and monitor treatment response [108].

DOI is a tomographic technique that employs 
near-infrared light to provide quantitative spec-
tral information regarding the absorption and 
scattering properties of tissue [108,109]. There 
are three types of DOI systems: continuous 
wave, frequency domain and time domain. In 
continuous wave systems, light is emitted at 
constant amplitude and the intensity of light 
transmitted across the breast is measured. In 
frequency domain systems, the light is emitted 
continuously but its amplitude is modulated 
at a particular frequency. The intensity decay 
and phase shift of the emitted light are used to 
obtain optical properties of the tissue. In time 
domain systems, the tissue is illuminated with 
picosecond pulses of light. The temporal dis-
tribution of photons as they exit the tissue are 
measured and used to calculate tissue optical 
properties [110]. These can then be converted to 
parameters related to tissue microstructure and 
biochemical composition such as water, lipid 
and hemoglobin. Since optical contrast comes 
from intrinsic tissue components, DOI does not 
require exogenous markers making it ideal for 
treatment monitoring. 

DOI has been shown to be capable of pro-
viding functional information related to brain 
activity [111–117]. In studies of breast tissue, 
DOI has been used to investigate the underly-
ing physiological differences as a result of age, 
BMI, menopausal status and fluctuations in the 
menstrual cycle [118]. It has also been used to 

differentiate between normal and malignant 
breast tissue [119]. Angiogenesis, cellular prolif-
eration, hypoxia and extracellular matrix break-
down are biological factors that have all been 
linked with cancer and were shown to directly 
influence the concentration of optical param-
eters such as total hemoglobin, water and lipid 
concentrations [119,120]. Clinical studies have 
indicated that DOI may provide useful infor-
mation on whether or not a particular treatment 
regimen is successful [121–126]. 

In a recent study, DOI was used to monitor the 
response of breast cancer patients undergoing neo-
adjuvant chemotherapy [125]. Results have shown 
that optical parameters, such as oxyhemoglobin, 
deoxyhemoglobin, water and scattering power, 
can provide an indication of response within 4 
weeks in patients undergoing various neoadju-
vant treatments. Responders showed a significant 
reduction in these optical parameters within 4 
weeks after starting the neoadjuvant treatment. 
By contrast, patients who did not respond well to 
the treatment showed little-to-no change in these 
parameters after treatment initiation as shown 
in Figure 5. A similar study showed that oxyhe-
moglobin increases significantly in responding 
patients, as opposed to nonresponding patients, 
which exhibited a decrease in oxyhemoglobin 
on day 1 after treatment initiation [122]. These 
studies demonstrate that there is a strong corre-
lation between the treatment response and the 
changes in the functional and structural optical 
parameters.

PAI: contrasting changes in blood 
volume & oxygenation status
A hybrid imaging technology that involves opti-
cal illumination and US detection is PAI. Even 
though the photoacoustic effect has been known 
for over a hundred years (first discovered by Bell 
in 1880 [127]), it has only recently evolved as a 
biomedical imaging modality with commercial 
systems now available [201–203]. In typical PAI 
systems, short laser pulses (in the order of a few 
nanoseconds) are used to illuminate the target 
tissues. Tissue structures that absorb the optical 
energy heat up, rapidly expand and then gradu-
ally contract as energy is lost through thermal 
diffusion to the surrounding tissue. The rapid 
expansion creates a photoacoustic pressure wave 
that can then be detected with conventional 
US technology. The main tissue structure that 
absorbs the majority of the propagating light in 
the near-infrared spectral range is the red blood 
cell. The absorption coefficient ratio between 
blood and surrounding tissues is as high as 
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Figure 4. The application of conventional frequency quantitative ultrasound for monitoring 
tumor cell death response. (A & B) Representative parametric 0-MHz intercept images of a large tumor 
during neoadjuvant chemotherapy for a (A) clinically responding patient, (B) clinically nonresponding 
patient. (C & D) Quantitative 0-MHz intercept data averaged over the tumor area for the (C) clinically 
responding patient, (D) clinically nonresponding patient. Scans 1, 2, 3 and 4 correspond to the pretreatment 
scan, and the scans acquired at week 1, 4 and 8, respectively. At scan 3 (4 weeks) of the clinically 
responding patient an increase in intercept is apparent compared with scan 1 (pretreatment). In the case 
of the clinically nonresponding patient there is no striking change in the 0-Mhz intercept during the 
majority of therapy compared with the case of a clinically responding patient. (E) The whole mount 
pathology corresponding to the clinically responding patient indicates a small residual mass (identified 
by the arrow) in the mastectomy specimen (10-cm wide). (F) The whole mount pathology corresponding 
to the clinically nonresponding patient indicates a large compact residual mass (identified by the arrow) 
in the mastectomy specimen (8-cm wide).
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six orders of magnitude [128]. Therefore, typi-
cal photoacoustic images based on endogenous 
contrast depict either resolvable blood vessels, 
the aggregate signal from many nonresolvable 
blood vessels or combinations of both. Moreover, 
oxyhemoglobin and deoxyhemoglobin have dif-
ferent optical absorption spectra. Several groups 
have shown that by illuminating tissue suc-
cessively with wavelengths that correspond to 
the hemoglobin and deoxyhemoglobin optical 
absorption spectral peaks, spatial maps of the 
total hemoglobin concentration and the oxy-
gen saturation of hemoglobin can be generated 
[129–131]. A number of groups are now working 
on combining the oxyhemoglobin concentration 
measurements with volumetric blood flow to cal-
culate the metabolic rate of oxygen [132]. These 
functional parameters are of great interest in the 
monitoring of treatment response. Finally, with 
the introduction of exogenous contrast agents, 
such as organic dyes or nanoparticles, specific 
structures can be targeted with high sensitiv-
ity. Examples include the use of intravenously 
injected indocyanine green (ICG) solutions to 
examine the function of kidneys [133], green 

fluorescent protein production [134,135] and gold 
nanoparticle distribution [136]. 

Since PAI is well suited for functional imag-
ing based on the sensitivity to blood volume and 
oxygenation status, there is significant potential 
in the application of photoacoustics to cancer 
treatment monitoring. Work in the field of DOI 
(see ‘DOI: evaluating tissue functional and struc-
tural changes’ section) suggests that the absolute 
changes in the tumor/normal tissue ratio of deoxy-
hemoglobin concentration was the most sensitive 
indicator of pathological response to treatment 
[137]. Given the sensitivity of PAI to blood and 
its change in the absorption as a function of oxy-
genation status, it is expected to be more sensitive 
than the DOI counterpart and with better spatial 
localization. PAI is currently being explored in 
this capacity for combining such measurements 
with US imaging. The goal is to use QUS to 
monitor cell death, as explained in the ‘QUS: 
monitoring cell death response’ section, and PAI 
to probe blood volume, oxygenation status and 
estimate the metabolic rate of oxygen. There are 
significant advantages to this approach: US and 
photoacoustic images are naturally coregistered 

(a ) (b )(a ) (b )

0

20

40

60

80

100

120

Pre
tre

at
m

en
t

Pre
su

rg
er

y

1 
wee

k

4 
wee

ks

8 
wee

ks

Hb

HbO2

% water
SP

0

20

40

60

80

100

120

Pre
tre

at
m

en
t

Pre
su

rg
er

y

1 
wee

k

4 
wee

ks

8 
wee

ks

Hb

HbO2

% water
SP

Pretreatment Hb

Nonresponder Responder

Presurgery Hb Pretreatment Hb Presurgery Hb

P
er

ce
n

ta
g

e 
o

f 
p

re
tr

ea
tm

en
t 

sc
an

 (
%

)

P
er

ce
n

ta
g

e 
o

f 
p

re
tr

ea
tm

en
t 

sc
an

 (
%

)

50
45
40
35
30
25
20
15
10
5
0

50
45
40
35
30
25
20
15
10
5
0

1 cm 1 cm

Figure 5. The application of diffuse optical imaging for evaluating cancer treatment response. Representative (A) nonresponders’ 
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2
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Reproduced with permission from Soliman et al. [125].
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and in both cases the endogenous contrast is 
used to assess the treatment response. US will 
be primarily used to probe cellular structure and 
function and photoacoustics will be primarily 
used to probe vascular structure and function, 
covering the two most important tissue elements 
of interest for cancer therapy monitoring: cancer 
cells and blood vessels. 

Clinical PAI is still in its early stages and 
the main clinical target has been early tumor 
detection for breast cancer. Systems have been 
developed that use an array of 590 transducers to 
receive the photoacoustic signal and use a scan-
ning stage so that the laser beam can be trans-
lated to illuminate the region of interest of the 
breast [138,139]. In pilot experiments, the investi-
gators found that high-intensity regions in their 
3D PAI datasets were associated with increased 
hemoglobin distributions that they attributed to 
vascularization characteristic to the malignan-
cies examined. In another approach, a commer-
cial US hand-held linear probe is used with side 
laser illumination that achieves and coregisters 
optoacoustic (functional) and US (anatomical) 
images [140]. The group has also reported unique 
signatures associated with malignancies, with 
regions of high vascularity in the tumor regions 
associated with strong photoacoustic signals. 
These early clinical results illustrate the poten-
tial of using these systems for imaging tumors 
and cancer treatment monitoring. Finally, sev-
eral groups have reported on the changes that 
occur in the photoacoustic signals after thermal 
coagulation of tissues [141–143].

Future perspective
�� Radionuclide imaging

Radionuclide imaging methods are expanding 
as new molecules of clinical pertinence are dis-
covered and as new probe agents are developed. 
It may be possible in the future to couple these 
relevant biomarkers for response detection and 
new probe designs for therapy purposes. The 
advantage of the technique is the specificity and 
sensitivity to cell death. However, the need to 
inject radionuclide at each time point for which 
an assessment of the tumor response is required, 
as well as the logistical and regulatory constraints 
of the administration of such radioactive agents, 
reduce the appropriateness of the technique for 
longitudinal studies of tumor response for which 
many imaging time points may be required.

�� MRI
Environment-sensitive methods of MRI 
have been demonstrated to be promising for 

detecting the cellular and microscopic-level 
changes of apoptosis. However, contrast agent 
methods for MRI can be limited in the ability 
to deliver contrast agent to the tissue of interest. 
For example, low contrast agent concentration 
makes parametric maps of exchange based on T

1
 

imprecise. Targeted contrast agents and contrast 
agents with higher relaxivities (stronger effect 
per unit concentration) would be of benefit in 
future work, as well as different injection strate-
gies. Stronger magnetic fields are becoming more 
common in the clinic, including stronger gradi-
ents, which will benefit methods like oscillating 
gradient diffusion. In addition, different gradi-
ent waveforms may be examined that are capable 
of picking out ranges of frequencies or distance 
scales that are of interest in therapy response.

�� DCE-US
DCE-US is evolving alongside the developments 
of microbubble engineering and advancements in 
US imaging technology. Recently introduced 2D 
matrix arrays allow volumetric imaging of contrast 
agent perfusion in real time. Considered the new 
‘state of the art’, 3D and 4D imaging overcomes 
some of the challenges of traditional US, which 
include: constrained spatial sampling to a single 
imaging plane at any one time; out of plane target 
motion that results in unrecoverable loss of data; 
and minimal control over the US beam width 
in the elevation direction [70]. 4D DCE-US can 
monitor microbubble kinetics in multiple imag-
ing planes simultaneously, enabling a more rig-
orous interpretation of contrast kinetics flowing 
in and out of a volume of tissue and improving 
measurement reproducibility in heterogeneous 
tumors [144]. 

New applications of US imaging are emerg-
ing by virtue of developing US contrast agents. 
Submicron perflurocarbon droplets are currently 
being investigated as an extravascular contrast 
agent with capabilities to better detect small can-
cers and quantify vessel wall permeability [145]. 
Molecular imaging using US is made possible 
by engineering the encapsulating shell of the 
microbubble to contain ligands targeted to bio-
logical markers of disease [146–148]. Nevertheless, 
presently these markers remain limited to the 
vascular endothelium.

�� QUS
QUS methods can now be readily implemented 
using a number of commercially available high- 
and low-frequency US instruments. Coupled 
with information from carefully controlled 
biological experiments in  vitro and in  vivo, 

www.futuremedicine.com 321future science group

Imaging innovations for cancer therapy response monitoring   REVIEW



investigators are arriving at well-formed under-
standings of structural features that influence 
QUS parameters. This has led to reproducible 
results in the differentiation of benign versus 
malignant disease and also for the detection 
of cell death. In a similar context, US strain 
and shear wave imaging, which can reflect 
tissue stiffness (as representatives of elastog-
raphy), have also been hypothesized to have 

large contrast between treatment-responding 
and -nonresponding malignant tissues. These 
methods are currently available in a number 
of clinical US devices as well. Given the rela-
tively low cost of US equipment, and the fact 
that contrast is generated by the process of cell 
death itself (i.e., without the need for the injec-
tion of contrast agents), it should be possible in 
the near future to start using these methods as 

Executive summary

Background
�� Imaging response to therapy has been of growing interest where various cellular and/or functional mechanisms are understood. Related 

development of therapies has benefited from the ability to monitor or predict responses to different treatments. Benefiting from different 
mechanisms as sources of imaging contrasts, a multimodality approach may provide a more informative tool for monitoring treatment 
response, compared with a single imaging modality or imaging mode.

Radionuclide imaging
�� Radionuclide imaging has enabled cancer-associated contrast imaging in studies of cellular biology, biochemistry, metabolism and 

receptor expression. Owing to high specificity and sensitivity to cell death, these modalities can be used to detect treatment response by 
administering subpharmacological doses of agents. This avoids any adverse pharmacological effects from the labeled probe molecules. 
Recent studies have suggested the successful application of small-sized tracer molecules for fast tumor penetration and clearance. 

�� This modality, however, requires radionuclides and remains limited in resolution owing to limitations in emission detection. Moreover, the 
injection of radionuclides limits the number of times patients would be imaged during their therapy to assess tumor response.

MRI
�� MRI methods sensitive to particular environments are presently promising for detecting the cellular and microscopic-level changes 

associated with cell death processes, such as apoptosis. These include the use of rotating frame relaxation and magnetization transfer to 
probe macromolecular changes and water influx; extracellular contrast agents that are sensitive to water exchange across the membrane, 
which can increase following the start of cell death; and diffusion with time-varying gradients, which is sensitive to changes at smaller 
distance scales than conventional diffusion and demonstrates an increase in the apparent diffusion for high gradient frequencies.

�� Current methods of MRI, however, typically suffer from low signal-to-noise ratio, and consequently low sensitivity and specificity for the 
detection of cell death. Ongoing research attempts to address these issues by measuring more sensitive parameters associated with cell 
death.

Dynamic contrast-enhanced ultrasound
�� Dynamic contrast-enhanced ultrasound inherits the strengths of diagnostic ultrasound imaging to be fast, portable, safe, widely available 

and cost effective. It leverages the unique properties of microbubble contrast agents to monitor therapeutics that rely upon and target 
blood perfusion.

�� Unfortunately, due to regulatory hurdles, microbubble agents remain limited in their clinical approval in many countries.

Quantitative ultrasound
�� Differentiable echogeneities exhibited by living and dead cells enables the monitoring of cell death response via quantitative ultrasound 

(QUS) techniques at high frequencies and recently at clinical range frequencies. In the near future, conventional frequency QUS is expected 
to provide rapid and quantitative functional information in real time, and at the patient bedside for evaluating therapy response early 
following treatment.

�� Given the fact that ultrasound is not a volumetric modality and its 2D scan planes have a relatively limited field of view, finding the same 
nominal regions of interest throughout the different scan sessions during the course of treatment can be difficult. Although this usually 
is not the case for the first few weeks of treatment where the early prediction of treatment response is proposed to focus on, it would 
more likely be encountered afterwards especially when the tumor starts to shrink and alter. Employing 3D optical trackers during the scans 
to record physical coordinates of the scan planes, which enables 3D volume reconstruction, as well as acquiring several number of scan 
planes at each session to cancel out the sessions’ variability, may address this issue to some extent. 

Diffuse optical imaging
�� Diffuse optical imaging is a noninvasive, nonionizing imaging modality that employs near-infrared light to provide tissue functional and 

structural information. Recent findings have demonstrated that this modality can be used to monitor treatment response in breast cancer 
patients.

�� Owing to the high rates of attenuation of near-infrared light in soft tissues, the application of diffuse optical imaging is, however, primarily 
limited to breast and brain, presently.

Photoacoustic imaging
�� Photoacoustic imaging (PAI) can be used to provide functional information about the response of the tumor vasculature to cancer 

treatments. PAI can be used in combination with QUS to better characterize tumor response in terms of changes in blood oxygenation as 
a function of treatment in combination with cell death.

�� PAI is a relatively superficial modality, hence its early-stage clinical application is mainly limited to breast, presently. 
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