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Neurological imaging: statistics behind 
the pictures

  perspective

Scientific challenges
The clinical importance, structural fragility and 
organizational complexity of the brain require 
unique skills, powerful technologies and large 
amounts of data to study its intricate anatomi-
cal structure, functional connectivity, metabolic 
activity and physiology. Neurological imaging, 
or neuroimaging, along with modern quantita-
tive and visualization techniques enable diverse 
means for untangling the secrets of the nor-
mal and pathological brain from development, 
through normal aging. There is a broad spec-
trum of neuroimaging modalities, significant 
presence of intrinsic and extrinsic noise, and 
extensive intra- and inter-subject variability. 
This explains why many neuroimaging bio-
markers may have only marginal power to detect 
different brain phenotypes. These challenges 
demand reliable and efficient computational 
statistics methods for synthesizing, analyzing, 
modeling and interpreting the vast amounts of 
neuroimaging data [1]. Indeed, some techniques 
and computational methods are more suscep-
tible to pathological, morphological and time-
dependent variation. For instance, some volume-
based structural MRI [2,3], tensor-based [4] and 
functional imaging [5,6] approaches are sensitive 
for detecting, monitoring and tracking demen-
tia-driven brain changes from mild cognitive 
impairment to Alzheimer’s disease.

Statistical methodologies
Many complementary types of statistical tech-
niques exist to cope with the gamut of specific 
neuroimaging challenges arising from multiple 
imaging scales, normal imaging variability, 
high dimensional data, varying study designs 

and different a priori assumptions. These 
include parametric and nonparametric statisti-
cal tests  [7,8], linear and nonlinear models [9], 
dimensionality reduction techniques [10], boot-
strapping and resampling methods [11,12], and 
survival analyses [13], among others. The choice 
of an appropriate and sufficiently powerful sta-
tistical technique is paramount in any neuroim-
aging study as both false-positive (type I) and 
false-negative (type II) errors are not only likely, 
but inevitable [14]. The most common approach 
to communicate neuroimaging statistical results 
involves statistical mapping using diverse arrays 
of color maps to depict phenotypic effects, cor-
relations, associations, peak outcomes, morpho-
metric or physiological measurements beyond 
normally expected noise levels. Table 1 illustrates 
some examples of common color maps frequently 
used in structural, functional, diffusion, spectro-
scopic and tomographic neuroimaging. These 
examples of common color maps may lead to 
misunderstandings caused by fact that the range 
of intensity values mapped onto the RGB colors 
could be linearly or nonlinearly transformed by 
researchers and may vary significantly between 
different scientific reports.

Validity & reproducibility
Nowadays there are many large and publicly 
accessible databases [15–18] providing storage, 
management and retrieval of raw and derived 
neuroimaging data on a large scale (hundreds 
and thousands of subjects). This greatly facili-
tates the processes of algorithm development, 
mathematical modeling and testing of novel 
computational techniques for analyzing mul-
timodal neuroimaging data. For example, the 
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recent efforts on the human [101] and mouse [102] 
connectome projects employ diverse MRI pro-
tocols and multiparametric approaches to study 
the structural and functional aspects of brain 
connectivity [19,20]. Many new and innovative 
approaches fusing imaging, phenotypic and 
clinical data are proposed and tested to identify 
associations, trends and patterns characterizing 
intricate relations between developmental, cog-
nitive and psychiatric traits and various func-
tional anatomical biomarkers. Validation and 
reproducibility of the enormous amount of new 
techniques, models, results and findings remain 
challenging because of lack of exact data and 
protocol provenance, significant intrinsic and 
extrinsic variability within and between different 
cohorts (even within the same population), and 
model limitations of the available computational 
techniques [21,22].

Figure 1 & Table 2 show examples of common 
neuroimaging modalities, typical statistical 
maps, applications and imaging resolutions. 
Space and time resolutions refer to the most 
common ranges for world-space scaling (space) 
and possible temporal frequency (time) for 
image acquisitions for each specific imaging 
modality. The processes of result validation 
and reproducibility of different neuroimaging 
analyses and statistical maps are often difficult 

because of a number of intrinsic and extrinsic 
factors. Examples of intrinsic factors include 
the significant intra- and inter-subject vari-
ability, presence of noise in the imaging data, 
and variations in study designs, sample sizes 
and sampling protocols. The significant num-
ber of available mapping techniques, statistical 
methodologies and computational tools used in 
the processing of neuroimaging data demon-
strate extrinsic factors impacting neuroimaging 
result validation.

Challenges
�� Analysis of imaging, genetics 

& phenotypic data
The analysis of imaging and nonimaging data 
is rapidly becoming an important component of 
most modern neuroimaging studies. Nowadays, 
many neuroimaging studies include heteroge-
neous data from hundreds of subjects including 
multimodal imaging, multiple clinical measure-
ments and diverse subject demographics. In fact, 
some studies include large genetics datasets (e.g., 
single nucleotide polymorphisms [SNPs], partial 
or complete genome mapping, gene-expression). 
The integration of quantitative and qualitative 
imaging, phenotypic and genomic data becomes 
challenging because different types of data are 
expressed in noncongruent bases and represent 
correlated (dependent) or orthogonal (indepen-
dent) dimensions. Yet, the potential for signifi-
cant health benefits provides strong incentives 
to design, validate and productize novel compu-
tational modeling and statistical analysis tech-
niques that enable efficient, robust and powerful 
holistic analyses of multimodal neuroimaging 
data, clinical measurements, phenotypic records 
and genetic data. Some recent studies are mak-
ing headway in analyzing such multiform data. 
Examples include the use of Alzheimer’s Disease 
Neuroimaging Initiative data [23,24,103] to inves-
tigate the relationship between genetic varia-
tion and imaging biomarkers via genome-wide 
association and shape analyses, and a study of 
schizophrenia using imaging, cognition, genetics 
and pharmacotherapeutic data [25].

�� Spatial versus geometric modeling
Traditional statistical mapping of neurological 
images focuses on spatial characterization of 
anatomical features in 2D, 3D or 4D images. 
Examples of such spatial neuroimaging model-
ing include structural analysis [26,27], voxel-based 
morphometry [28], statistical parametric map-
ping [29,30] and network analyses [31–33]. Most 
of these analytic techniques utilize univariate 

Table 1. Examples of color maps frequently used in communicating 
neuroimaging results.

Color map description Typical display

Binary

Grayscale

Bone 

Blue

Red

Green

Hot-metal

Red–Green–Blue (RGB)

Rainbow 

Spectral

Cool

All of these maps can have varying left- and right-end range limits, as well as adjustable pivotal 
points within the interval range [55].
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intensity-based measures of brain anatomy or 
functional activation directly obtained from 
the tomographically or stereotactically acquired 
imaging data. New complementary approaches 
extracting, modeling and analyzing geometric 
data derived from the raw neuroimaging data are 
increasingly becoming an integral component of 
many contemporary neuroimaging studies. Such 
geometric modeling techniques, derived from 
the raw imaging data, include shape analyses 

[34,35], tensor modeling and analyses [36,37], as 
well as tractography and white matter integ-
rity [38,39]. These geometric techniques rely on 
sophisticated mathematical models to represent 
static or dynamic features of brain structure and 
function as multidimensional curved manifolds 
(spaces locally homeomorphic to Euclidian 
spaces of the same dimension with no curva-
ture), higher-order generalizations of scalars, 
vectors and matrices (tensors), and topologically 

Controls
RRMS
SPMS

*p < 0.05
**p < 0.001

Subiculum
volume

Hippo
volume

CA1 volume**

*

900

1000

800
700
600
500
400
300
200
100

0

J K

I

Figure 1. A summary of the most common neurological imaging protocols, their characteristics, applications and examples 
of computational statistical mapping. See also Table 2.
Cho: Choline; Cr: Creatine; Glx: Glutamine; mI: Myo-inositol; NAA: N-acetylaspartate.
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equivalent canonical spaces [40–42]. Figure 2 dem-
onstrates an example of a canonical brain refer-
ence (atlas), the International Consortium for 
Brain Mapping Brain Atlas [43], where the entire 
brain is parcellated into disjoint and complemen-
tary regions of interest. The volume, geometric 
properties (e.g., regional surface complexity) and 
the inter-regional affinities (e.g., relative position 
or size) of this partition are all important char-
acteristics of anatomical brain integrity. These 
shape and manifold-based measures can be com-
puted for a large and diverse pool of subjects and 
then can be compared individually, or as a (sub)
group, to an atlas, compared to other cohorts, 
or used as imaging markers to study the associa-
tions between neuroimaging predictors, clinical 
measurements and subject phenotypes. 

�� Statistical inference
Statistical power is a quantitative measure of 
the probability that a computational inference 
method would produce a false negative decision 
(i.e., fail to detect the presence of a real effect). 
Power estimates for many neuroimaging studies 
require knowledge of the approximate effect-size 

being studied, the sample-size, and the exact sta-
tistical model employed in the analysis, estimates 
of the expected normal data variability, and 
investigator-defined false-positive (type I) error 
rate. Power analysis, sample-size calculations 
(e.g., numbers needed to treat), and calculations 
of the minimum effect size can all be used inter-
changeably based on whether the investigator is 
able to specify either a realistic sample-size of the 
experiment, the desired power of the study, or 
accurately identify the underlying effect-size of 
interest. Power analyses in brain imaging studies 
are challenging as they require separate analyses 
for many brain regions of interest, each of which 
has a different effect size and variability.

All computational and statistical inference 
methods require some a priori assumptions. 
These typically concern the generation of the 
observed data and specifications of model prob-
ability distributions. Examples of such a priori 
conditions include parametric, nonparametric 
and semiparametric assumptions. Parametric 
assumptions require that the data probability 
distributions can be described by a specific fam-
ily of distributions (e.g., Poisson, Exponential, 
General Normal, or Gaussian distributions) 
involving only a finite number of unknown 
parameters. Nonparametric assumptions indi-
cate that the data-generating process obeys some 
more relaxed properties (e.g., the distribution has 
a well-defined median). Semiparametric assump-
tions represent an intermediate type of condi-
tion; for instance, the data distribution may have 
a well-defined mean, range or shape, at the same 
time as demanding that two or more variables 
have a specific linear model relationship. The 
parametric neuroimaging statistics are applicable 
for detecting mean differences and are appro-
priate for identifying between-group (spatial) 
or within-subject (temporal) differences when 
the underlying research hypotheses are directly 
related to central tendency. On the other side, 
nonparametric approaches, typically based on 
data rank-orders, are applicable for studies where 
the distributions of the parameters of interest are 
skewed, have heavy tails, exhibit noncontiguous 
support or are otherwise nonregular [44].

Multiple comparison problems in neuroimag-
ing studies may occur when investigators conduct 
a large set of statistical inferences simultaneously, 
which may lead to inference errors (e.g., intervals 
that fail to include their corresponding popula-
tion parameters or hypothesis tests with under-
estimated false positive error). Although several 
alternative solutions to the multiple compari-
sons problem exist (e.g., Bonferroni correction, 

Figure 2. (A) Coronal, (B) sagittal, (C) axial and (D) 3D cortical surface views 
of the International Consortium for Brain Mapping Brain atlas. Geometric 
models of global and local brain structure provide mechanisms for classifying shape 
form and size of different regions of interest by measuring various quantitative 
characteristics, such as shape area, fractal dimension and curvedness, etc. [16].
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False Discovery Rate, Family-Wise Error Rate), 
these may either be too conservative or insuffi-
ciently corrective [45]. Most brain imaging stud-
ies demand multiple comparison corrections, 
although such post hoc analyses need not be per-
formed on the entire brain, but can be localized, 
using regional masks, to specific (smaller) brain 
regions identified by previous studies, which 
increases the power to detect phenotypic and 
genetic effects on brain structure and function.

�� Future perspective
Computational and statistical modeling, charac-
terization and inference of future neuroimaging 
studies are likely to rely on significantly increased 

volume and heterogeneity of multimodal imag-
ing data across different scales, complex subject 
phenotypes, integrated individual subject and 
reference human genomics data, advanced com-
putational infrastructure, as well as powerful new 
technologies for the management, processing and 
visualization of these intricate data. Examples 
of powerful new multimodal imaging proto-
cols include simultaneous PET-CT scanning 
used in clinical imaging [46,47], joint PET-MRI 
providing high spatial resolution and excellent 
morphologic discrimination of MRI and the 
exquisite sensitivity of nuclear imaging in both 
preclinical and clinical settings [48,49], combining 
fluorescence molecular tomography, near-infrared 

Executive summary

Scientific challenges
�� Neurological imaging enables us to untangle the secrets of the normal and pathological brain from development, through normal aging. 
�� There is a broad spectrum of neuroimaging modalities, significant presence of intrinsic and extrinsic noise and extensive intra- and 

inter-subject variability, which demand reliable and efficient computational-statistics methods for synthesizing, analyzing, modeling and 
interpreting the vast amounts of neuroimaging data. 

Statistical methodologies
�� Examples of statistical techniques for analyzing neuroimaging data include parametric and nonparametric statistical tests, linear and 

nonlinear models, dimensionality reduction techniques, bootstrapping and resampling methods and survival analyses. 
�� The choice of an appropriate and sufficiently powerful statistical technique is paramount in any neuroimaging study as both  

false-positive and false-negative errors are inevitable.

Validity & reproducibility
�� The availability of large-scale neuroimaging databases facilitates the processes of algorithm development, mathematical modeling and 

testing of novel computational techniques for analyzing multimodal neuroimaging data. 
�� Validation and reproducibility of the enormous amount of new techniques, models, results and findings remain challenging because of 

lack of exact data and protocol provenance, significant intrinsic and extrinsic variability within and between different cohorts, and model 
limitations of the available computational techniques.

Analysis of imaging, genetics & phenotypic data
�� Many neuroimaging studies include heterogeneous data of hundreds of subjects including multimodal imaging, multiple clinical 

measurements, diverse subject demographics, as well as partial or complete genome mapping. The integration of quantitative and 
qualitative imaging, phenotypic and genomic data becomes challenging because different types of data are expressed in noncongruent 
bases and represent correlated or orthogonal dimensions.

Spatial versus geometric modeling
�� Traditional statistical mapping of neurological images focuses on spatial characterization of anatomical features in 2D, 3D or 4D images 

where univariate intensity-based measures of brain anatomy or functional activation are acquired and analyzed. 
�� Modern neuroimaging approaches extract, model and analyze geometric data derived from the raw neuroimaging data and rely on 

sophisticated mathematical models to represent static or dynamic features of brain structure and function as multidimensional curved 
manifolds, higher-order generalizations of scalars, vectors and tensors.

Statistical inference
�� Statistical power is a quantitative measure associated with the approximate effect-size, the sample-size, the exact statistical model 

employed in the analysis, estimates of the expected normal data variability, and investigator-defined false-positive error rate. 
�� Power analyses in brain imaging studies are challenging as they require separate analyses for many brain regions of interest each of 

which has a different effect size and variability. 
�� All computational and statistical inference methods require some a priori parametric, nonparametric and semi-parametric assumptions. 

Multiple comparison problems in neuroimaging studies may occur when investigators conduct a large set of statistical inferences 
simultaneously, which may lead to inference errors.

The future of statistical brain mapping
�� Computational and statistical modeling, characterization and inference of future neuroimaging studies are likely to rely on significantly 

increased volume and heterogeneity of multimodal imaging data across different scales, complex subject phenotypes, integrated 
individual subject and reference human genomics data, advanced computational resources, as well as open, collaborative and 
distributed mechanisms for sharing data, disseminating exact data analysis protocols, and incorporating modern Grid and Cloud 
computing infrastructures.
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imaging, CT and MRI [50,51], as well as variants 
of integrated x-ray, nuclear imaging, and optical 
imaging in all-in-one tomographic scanner [52–54].

The reproducibility and validity of new 
findings may be increased if the neuroimaging 
community embraces open, collaborative and 
distributed mechanisms for sharing data, dis-
seminating exact data analysis protocols, incor-
porating modern Grid and Cloud computing 
infrastructures, and supports the engagement 
of multidisciplinary investigators in such trans-
lational studies. The following activities and 
resources may be critical for the successful 
translational application of modern neuroim-
aging techniques in the near future – open and 
collaborative communication between multiple 

disciplines, sharing of imaging data and meta-
data, as well as wide distribution of methods, 
software tools, web services, computational 
infrastructure and detailed analysis protocols.
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