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. Neurological imaging: statistics behind

Neurological imaging represents a powerful paradigm for investigation of brain structure, physiology and
function across different scales. The diverse phenotypes and significant normal and pathological brain
variability demand reliable and efficient statistical methodologies to model, analyze and interpret raw
neurological images and derived geometric information from these images. The validity, reproducibility
and power of any statistical brain map require appropriate inference on large cohorts, significant
community validation, and multidisciplinary collaborations between physicians, engineers and statisticians.

KEYWORDS: brain mapping imaging modalities neuroimaging statistics

Scientific challenges

The clinical importance, structural fragility and
organizational complexity of the brain require
unique skills, powerful technologies and large
amounts of data to study its intricate anatomi-
cal structure, functional connectivity, metabolic
activity and physiology. Neurological imaging,
or neuroimaging, along with modern quantita-
tive and visualization techniques enable diverse
means for untangling the secrets of the nor-
mal and pathological brain from development,
through normal aging. There is a broad spec-
trum of neuroimaging modalities, significant
presence of intrinsic and extrinsic noise, and
extensive intra- and inter-subject variability.
This explains why many neuroimaging bio-
markers may have only marginal power to detect
different brain phenotypes. These challenges
demand reliable and efficient computational
statistics methods for synthesizing, analyzing,
modeling and interpreting the vast amounts of
neuroimaging data [1]. Indeed, some techniques
and computational methods are more suscep-
tible to pathological, morphological and time-
dependent variation. For instance, some volume-
based structural MRI [2,3], tensor-based [4] and
functional imaging [s.6] approaches are sensitive
for detecting, monitoring and tracking demen-
tia-driven brain changes from mild cognitive
impairment to Alzheimer’s disease.

Statistical methodologies

Many complementary types of statistical tech-
niques exist to cope with the gamut of specific
neuroimaging challenges arising from multiple
imaging scales, normal imaging variability,
high dimensional data, varying study designs

10.2217/1IM.11.37 © 2011 Future Medicine Ltd

and different @ priori assumptions. These
include parametric and nonparametric statisti-
cal tests [7.8], linear and nonlinear models [9],
dimensionality reduction techniques [10], boot-
strapping and resampling methods [11.12), and
survival analyses [13], among others. The choice
of an appropriate and sufficiently powerful sta-
tistical technique is paramount in any neuroim-
aging study as both false-positive (type I) and
false-negative (type II) errors are not only likely,
but inevitable [14]. The most common approach
to communicate neuroimaging statistical results
involves statistical mapping using diverse arrays
of color maps to depict phenotypic effects, cor-
relations, associations, peak outcomes, morpho-
metric or physiological measurements beyond
normally expected noise levels. Tasce 1 illustrates
some examples of common color maps frequently
used in structural, functional, diffusion, spectro-
scopic and tomographic neuroimaging. These
examples of common color maps may lead to
misunderstandings caused by fact that the range
of intensity values mapped onto the RGB colors
could be linearly or nonlinearly transformed by
researchers and may vary significantly between
different scientific reports.

Validity & reproducibility

Nowadays there are many large and publicly
accessible databases [15-18] providing storage,
management and retrieval of raw and derived
neuroimaging data on a large scale (hundreds
and thousands of subjects). This greatly facili-
tates the processes of algorithm development,
mathematical modeling and testing of novel
computational techniques for analyzing mul-
timodal neuroimaging data. For example, the
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recent efforts on the human [101] and mouse [102]
connectome projects employ diverse MRI pro-
tocols and multiparametric approaches to study
the structural and functional aspects of brain
connectivity [19,20]. Many new and innovative
approaches fusing imaging, phenotypic and
clinical data are proposed and tested to identify
associations, trends and patterns characterizing
intricate relations between developmental, cog-
nitive and psychiatric traits and various func-
tional anatomical biomarkers. Validation and
reproducibility of the enormous amount of new
techniques, models, results and findings remain
challenging because of lack of exact data and
protocol provenance, significant intrinsic and
extrinsic variability within and between different
cohorts (even within the same population), and
model limitations of the available computational
techniques [21,22].

Ficure 1 & Tasie 2 show examples of common
neuroimaging modalities, typical statistical
maps, applications and imaging resolutions.
Space and time resolutions refer to the most
common ranges for world-space scaling (space)
and possible temporal frequency (time) for
image acquisitions for each specific imaging
modality. The processes of result validation
and reproducibility of different neuroimaging
analyses and statistical maps are often difficult

Imaging Med. (2011) 3(4)

because of a number of intrinsic and extrinsic
factors. Examples of intrinsic factors include
the significant intra- and inter-subject vari-
ability, presence of noise in the imaging data,
and variations in study designs, sample sizes
and sampling protocols. The significant num-
ber of available mapping techniques, statistical
methodologies and computational tools used in
the processing of neuroimaging data demon-
strate extrinsic factors impacting neuroimaging
result validation.

Challenges

B Analysis of imaging, genetics

& phenotypic data

The analysis of imaging and nonimaging data
is rapidly becoming an important component of
most modern neuroimaging studies. Nowadays,
many neuroimaging studies include heteroge-
neous data from hundreds of subjects including
multimodal imaging, multiple clinical measure-
ments and diverse subject demographics. In fact,
some studies include large genetics datasets (e.g.,
single nucleotide polymorphisms [SNPs], partial
or complete genome mapping, gene-expression).
The integration of quantitative and qualitative
imaging, phenotypic and genomic data becomes
challenging because different types of data are
expressed in noncongruent bases and represent
correlated (dependent) or orthogonal (indepen-
dent) dimensions. Yet, the potential for signifi-
cant health benefits provides strong incentives
to design, validate and productize novel compu-
tational modeling and statistical analysis tech-
niques that enable efficient, robust and powerful
holistic analyses of multimodal neuroimaging
data, clinical measurements, phenotypic records
and genetic data. Some recent studies are mak-
ing headway in analyzing such multiform data.
Examples include the use of Alzheimer’s Disease
Neuroimaging Initiative data [23,24,103] to inves-
tigate the relationship between genetic varia-
tion and imaging biomarkers via genome-wide
association and shape analyses, and a study of
schizophrenia using imaging, cognition, genetics
and pharmacotherapeutic data [25].

B Spatial versus geometric modeling

Traditional statistical mapping of neurological
images focuses on spatial characterization of
anatomical features in 2D, 3D or 4D images.
Examples of such spatial neuroimaging model-
ing include structural analysis [26,27], voxel-based
morphometry [28], statistical parametric map-
ping [29,30) and network analyses [31-33]. Most
of these analytic techniques utilize univariate
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intensity-based measures of brain anatomy or
functional activation directly obtained from
the tomographically or stereotactically acquired
imaging data. New complementary approaches
extracting, modeling and analyzing geometric
data derived from the raw neuroimaging data are
increasingly becoming an integral component of
many contemporary neuroimaging studies. Such
geometric modeling techniques, derived from
the raw imaging data, include shape analyses

(34,35], tensor modeling and analyses [36,37], as
well as tractography and white matter integ-
rity [3839]. These geometric techniques rely on
sophisticated mathematical models to represent
static or dynamic features of brain structure and
function as multidimensional curved manifolds
(spaces locally homeomorphic to Euclidian
spaces of the same dimension with no curva-
ture), higher-order generalizations of scalars,
vectors and matrices (tensors), and topologically

*%
CA1 volume

| Controls
m RRMS
[1SPMS

*p < 0.05
**p < 0.001

Subiculum

|T‘ volume

Hippo
volume

Figure 1. A summary of the most common neurological imaging protocols, their characteristics, applications and examples
of computational statistical mapping. See also Tasie 2.
Cho: Choline; Cr: Creatine; Glx: Glutamine; ml: Myo-inositol; NAA: N-acetylaspartate.
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Figure 2. (A) Coronal, (B) sagittal, (C) axial and (D) 3D cortical surface views
of the International Consortium for Brain Mapping Brain atlas. Geometric
models of global and local brain structure provide mechanisms for classifying shape
form and size of different regions of interest by measuring various quantitative
characteristics, such as shape area, fractal dimension and curvedness, etc. [16].
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equivalent canonical spaces 40-42]. Ficure 2 dem-
onstrates an example of a canonical brain refer-
ence (atlas), the International Consortium for
Brain Mapping Brain Atlas [43], where the entire
brain is parcellated into disjoint and complemen-
tary regions of interest. The volume, geometric
properties (e.g., regional surface complexity) and
the inter-regional affinities (e.g., relative position
or size) of this partition are all important char-
acteristics of anatomical brain integrity. These
shape and manifold-based measures can be com-
puted for a large and diverse pool of subjects and
then can be compared individually, or as a (sub)
group, to an atlas, compared to other cohorts,
or used as imaging markers to study the associa-
tions between neuroimaging predictors, clinical
measurements and subject phenotypes.

W Statistical inference

Statistical power is a quantitative measure of
the probability that a computational inference
method would produce a false negative decision
(i.e., fail to detect the presence of a real effect).
Power estimates for many neuroimaging studies
require knowledge of the approximate effect-size

Imaging Med. (2011) 3(4)

being studied, the sample-size, and the exact sta-
tistical model employed in the analysis, estimates
of the expected normal data variability, and
investigator-defined false-positive (type I) error
rate. Power analysis, sample-size calculations
(e.g., numbers needed to treat), and calculations
of the minimum effect size can all be used inter-
changeably based on whether the investigator is
able to specify either a realistic sample-size of the
experiment, the desired power of the study, or
accurately identify the underlying effect-size of
interest. Power analyses in brain imaging studies
are challenging as they require separate analyses
for many brain regions of interest, each of which
has a different effect size and variability.

All computational and statistical inference
methods require some a priori assumptions.
These typically concern the generation of the
observed data and specifications of model prob-
ability distributions. Examples of such « priori
conditions include parametric, nonparametric
and semiparametric assumptions. Parametric
assumptions require that the data probability
distributions can be described by a specific fam-
ily of distributions (e.g., Poisson, Exponential,
General Normal, or Gaussian distributions)
involving only a finite number of unknown
parameters. Nonparametric assumptions indi-
cate that the data-generating process obeys some
more relaxed properties (e.g., the distribution has
awell-defined median). Semiparametric assump-
tions represent an intermediate type of condi-
tion; for instance, the data distribution may have
a well-defined mean, range or shape, at the same
time as demanding that two or more variables
have a specific linear model relationship. The
parametric neuroimaging statistics are applicable
for detecting mean differences and are appro-
priate for identifying between-group (spatial)
or within-subject (temporal) differences when
the underlying research hypotheses are directly
related to central tendency. On the other side,
nonparametric approaches, typically based on
data rank-orders, are applicable for studies where
the distributions of the parameters of interest are
skewed, have heavy tails, exhibit noncontiguous
support or are otherwise nonregular [44).

Multiple comparison problems in neuroimag-
ing studies may occur when investigators conduct
a large set of statistical inferences simultaneously,
which may lead to inference errors (e.g., intervals
that fail to include their corresponding popula-
tion parameters or hypothesis tests with under-
estimated false positive error). Although several
alternative solutions to the multiple compari-
sons problem exist (e.g., Bonferroni correction,

future science group
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False Discovery Rate, Family-Wise Error Rate),
these may either be too conservative or insuffi-
ciently corrective [45]. Most brain imaging stud-
ies demand multiple comparison corrections,
although such post hoc analyses need not be per-
formed on the entire brain, but can be localized,
using regional masks, to specific (smaller) brain
regions identified by previous studies, which
increases the power to detect phenotypic and
genetic effects on brain structure and function.

B Future perspective

Computational and statistical modeling, charac-
terization and inference of future neuroimaging
studies are likely to rely on significantly increased

volume and heterogeneity of multimodal imag-
ing data across different scales, complex subject
phenotypes, integrated individual subject and
reference human genomics data, advanced com-
putational infrastructure, as well as powerful new
technologies for the management, processing and
visualization of these intricate data. Examples
of powerful new multimodal imaging proto-
cols include simultaneous PET-CT scanning
used in clinical imaging (46,47], joint PET-MRI
providing high spatial resolution and excellent
morphologic discrimination of MRI and the
exquisite sensitivity of nuclear imaging in both
preclinical and clinical settings [48.49], combining
fluorescence molecular tomography, near-infrared

Scientific challenges
Neurological imaging enables us to untangle the secrets of the normal and pathological brain from development, through normal aging.
There is a broad spectrum of neuroimaging modalities, significant presence of intrinsic and extrinsic noise and extensive intra- and
inter-subject variability, which demand reliable and efficient computational-statistics methods for synthesizing, analyzing, modeling and
interpreting the vast amounts of neuroimaging data.

Statistical methodologies
Examples of statistical techniques for analyzing neuroimaging data include parametric and nonparametric statistical tests, linear and
nonlinear models, dimensionality reduction techniques, bootstrapping and resampling methods and survival analyses.
The choice of an appropriate and sufficiently powerful statistical technique is paramount in any neuroimaging study as both
false-positive and false-negative errors are inevitable.

Validity & reproducibility
The availability of large-scale neuroimaging databases facilitates the processes of algorithm development, mathematical modeling and
testing of novel computational techniques for analyzing multimodal neuroimaging data.
Validation and reproducibility of the enormous amount of new techniques, models, results and findings remain challenging because of
lack of exact data and protocol provenance, significant intrinsic and extrinsic variability within and between different cohorts, and model
limitations of the available computational techniques.

Analysis of imaging, genetics & phenotypic data
Many neuroimaging studies include heterogeneous data of hundreds of subjects including multimodal imaging, multiple clinical
measurements, diverse subject demographics, as well as partial or complete genome mapping. The integration of quantitative and
qualitative imaging, phenotypic and genomic data becomes challenging because different types of data are expressed in noncongruent
bases and represent correlated or orthogonal dimensions.

Spatial versus geometric modeling
Traditional statistical mapping of neurological images focuses on spatial characterization of anatomical features in 2D, 3D or 4D images
where univariate intensity-based measures of brain anatomy or functional activation are acquired and analyzed.
Modern neuroimaging approaches extract, model and analyze geometric data derived from the raw neuroimaging data and rely on
sophisticated mathematical models to represent static or dynamic features of brain structure and function as multidimensional curved
manifolds, higher-order generalizations of scalars, vectors and tensors.

Statistical inference
Statistical power is a quantitative measure associated with the approximate effect-size, the sample-size, the exact statistical model
employed in the analysis, estimates of the expected normal data variability, and investigator-defined false-positive error rate.
Power analyses in brain imaging studies are challenging as they require separate analyses for many brain regions of interest each of
which has a different effect size and variability.
All computational and statistical inference methods require some a priori parametric, nonparametric and semi-parametric assumptions.
Multiple comparison problems in neuroimaging studies may occur when investigators conduct a large set of statistical inferences
simultaneously, which may lead to inference errors.

The future of statistical brain mapping
Computational and statistical modeling, characterization and inference of future neuroimaging studies are likely to rely on significantly
increased volume and heterogeneity of multimodal imaging data across different scales, complex subject phenotypes, integrated
individual subject and reference human genomics data, advanced computational resources, as well as open, collaborative and
distributed mechanisms for sharing data, disseminating exact data analysis protocols, and incorporating modern Grid and Cloud
computing infrastructures.
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imaging, CT and MRI (5051, as well as variants
of integrated x-ray, nuclear imaging, and optical
imaging in all-in-one tomographic scanner [52-54].

The reproducibility and validity of new
findings may be increased if the neuroimaging
community embraces open, collaborative and
distributed mechanisms for sharing data, dis-
seminating exact data analysis protocols, incor-
porating modern Grid and Cloud computing
infrastructures, and supports the engagement
of multidisciplinary investigators in such trans-
lational studies. The following activities and
resources may be critical for the successful
translational application of modern neuroim-
aging techniques in the near future — open and
collaborative communication between multiple

disciplines, sharing of imaging data and meta-
data, as well as wide distribution of methods,
software tools, web services, computational
infrastructure and detailed analysis protocols.
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