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Abstract

The prevalence of eye diseases worldwide is dramatically increasing and represents a major 
concern in underdeveloped and developed regions, especially sight threatening diseases. 
Ocular diseases, previously associated with a higher depression risk, also impose a substantial 
economic burden on affected families and society, thus the importance of early detection and 
accurate treatment. In order to avoid and prevent blindness. We should emphasize that cataract is 
a clouding (opacification) in a normal transparent lens which leads to a vision. It is commonly due 
to aging but may also be present at birth and occur due to trauma or radiation exposure. With the 
increasing population of elderly people and cataract patients in China, the social burden of cataract 
is presently a big challenge and will continue to be a challenge in the future. Genetics has shown 
to play an important role in the occurrence of eye diseases, with the detection of a numbers of 
specific gene mutations. LncRNAs has emerged as a novel class of regulatory molecules involved 
in numerous biological processes and complicated diseases. However the proper connections and 
pathways they may use to influence the susceptibility to developing cataracts have not yet been 
completely elucidated. In this review, we focus on the lncRNAs characteristics and its regulation, 
and summarize these results from separate, independent, cataract related studies in addition to 
discussing possible pathways by which lncRNAs might contribute to the development of cataract.
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Introduction
A  cataract  is a clouding (opacification) in a normal 
transparent of  lens which leads to a decrease in vision. In 
healthy unclouded lens, light is able to pass through to the 
retina, allowing us to see details. Around 40 years old, the 
proteins in the lens start to break down and clump together, 
which leads to the development of a cloudy area on the 
lens [1]. It often develops slowly and can be unilateral or 
bilateral. The symptoms include blurry or  double vision, 
faded colors, and halos around light, photophobia, and 
nyctalopia [2]. Poor vision caused by cataracts may also 
result in an increased depression risk and adverse events 
including falls and fractures [3-4]. Cataracts are commonly 
due to  aging  but may also be present at birth and occur 
due to  trauma  or radiation exposure. Biological aging is 
the most common cause of cataracts but other risk factors 
include diabetes, smoking tobacco, and prolonged exposure 
to  ultraviolet radiation, skin diseases, injury, infection, 
smoking, and genetic factors [5].

Cataracts are the leading cause of reversible blindness and 
33% of  visual impairment remains a severe public health 

challenge worldwide, especially in China [6]. With the 
increasing population of elderly people and cataract 
patients in China, the social burden of cataract is presently 
a big challenge and will continue to be a challenge in the 
future [7]. Therefore, it is critical to explore the potential 
risk factors for ARC from an epidemiological perspective 
to determine the mechanism for the formation of cataracts 
and a potential method for cataract prevention. Surgery 
is needed only if the cataracts are causing problems and 
generally results in an improved quality of life [8]. Cataract 
surgery is not readily available in many countries, which 
is especially true for women, those living in rural areas, 
and those who do not know how to read. It is the cause 
of approximately 5% of blindness in the United States 
and nearly 60% of blindness in parts of Africa and South 
America [9]. Blindness from cataracts occurs in about 10 to 
40 per 100,000 children in the developing world, and 1 to 4 
per 100,000 children in the developed world [10].

The transparency of lens tends to deteriorate with ultraviolet 
radiation, oxidative stress, age and many other toxic factors, 
eventually resulting in the development of cataract [11,12]. 
Increased proteolysis, alteration of cell cycle, DNA damage, 
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changes in growth and differentiation of lens epithelial 
cells are the main morphological and functional changes 
occurring during the process of cataract development [13]. 
Accumulating evidence reveals that gene expression in 
the lens epithelium is significantly altered during cataract 
formation. For instance, metallothionein IIA, osteonectin 
and adhesion‐related kinase are up‐regulated in cataractous 
lenses relative to transparent lenses [14-16], whereas many 
ribosomal proteins and protein phosphatase 2A are down 
regulated in cataractous lenses relative to transparent 
lenses  [17,18]. Metallothionein IIA participates in metal 
binding and detoxification. Osteonectin is a calcium‐
binding protein, which serves as a key regulator of cell 
growth. Decreased protein synthesis, a pathological process 
involved in the development of cataract can be the result of 
reduced expression of ribosomal proteins [11].

The non-coding region of the genome has recently been 
recognized to possess a crucial functional importance in 
normal development and physiology and this discovery has 
focused increasing attention on its potential to contribute 
towards diverse disease etiology [19]. LncRNAs are define 
as transcripts with nucleotides size ranging from 200 to 
100000, structurally resembling mRNA and presenting 
little to no protein-coding potential and can be classified 
into several types according to their genonic locations. 
Although the vast majority of lncRNAs are situated in 
the nucleus [20]. However, a substantial minority (nearly 
15%) are present in the cytoplasm [21]. LncRNAs can be 
classified as sense or antisense, the former comprising of 
those that overlap with protein-coding genes, and the 
later comprised those that are antisense transcribed to 
protein-coding genes. If the promoter and transcript are 
situated in proximity and also in a head-to head orientated 
fashion, the lncRNA is then said to be bidirectional [22-
24]. Many studies reported important regulatory roles 
for LncRNAs in multiple biological processes, including 
cell lineage commitment, stem cell maintenance, and 
cellular phenotype differentiation [25-27]. Transcriptional 
regulation may be influenced by LncRNAs via several 
modes such as decoy, signal, guide and scaffold [28]. They 
might also be as signals in response to multiple stimuli, 
participate in recruiting corresponding complexes in order 
to directly or indirectly silence or activate the expression of 
a gene [29-31]. In addition, some lncRNAs may affect gene 
expression through post-transcriptional events, lncRNAs 
also participate in the modification process post translation 
[32]. Nevertheless, several lncRNAs have been implicated 
in various diseases such as neurodegenerative diseases, 
multiple tumors and cancers [33-45], and common ocular 
diseases such as glaucoma, and diabetic retinopathy, among 
others, the proper connections and pathways they may use 
to influence the susceptibility to developing cataracts has 
not yet been completely elucidated [46,47]. 

In this article, we aim to demonstrate implication of 
lncRNAs in cataracts development by summarizing results 
from separate, independent studies.

Literature of Review

LncRNAs in Cataracts βΒ1-crystallin (CRYBB1) and 
βΒ2-crystallin (CRYBB2)
Close to half of all cases of congenital cataracts are 
reportedly caused by genetic mutations [48], a dozen genes 
have successfully been associated with the development 
of the condition [49] such as membrane transport protein 
genes, cytoskeletal protein gene, crystallin genes and 
transcription factor genes. Crystallins, composed of α , β 
and γ, represent ocular lens’ structural proteins, and are 
necessary for normal lens transparency and refractive 
power preservation [50]. Initially thought to be only 
present in the lens, however their expression have been 
detected in various  tissues [51,52]. α-crystallins act as small 
heat-shock proteins; whereas functions of βγ-crystallins 
are not completely elucidated. β- and γ-crystallins share a 
common core protein structure with two similar domains, 
each composed of characteristic key-motifs [53-55]. 
Characterized as oligomers, β-crystallin family actually 
comprises basic (βΒ1, βΒ2, βΒ3) and acidic (βΑ3/A1, 
βA2, βA4) proteins [56]. Basic β-crystallins possess both 
N-terminal and C-terminal extensions, whereas acidic 
β-crystallins have only N-terminal extensions [57]. 

The discovery of multiple mutations mostly in Chinese 
families suggests an important role played by CRYBB1 in 
congenital cataract. CRYβA3/A1-Crystallin Knockout was 
not only linked to the development of nuclear cataract 
but is also suspected to induce impaired lysosomal cargo 
Clearance and calpain activation. Homozygous CRYBB1 
deletion mutation underlies autosomal recessive congenital 
cataract whereas missense mutation S228P and nonsense 
mutation (p.Q223X) have been previously associated with 
autosomal dominant congenital cataract. Additionally, 
the  CRYBB1  mutation (c.347T>C), CRYBB2  mutation 
(c.355G>A) are novel in patients with congenital cataract 
[58-61].   

βΒ2-crystallin (CRYBB2) is highly expressed in the 
postnatal lens cortex and linked to the development of 
cataracts, hinting at the alteration of gene expression in the 
lens epithelium during the development of cataract. Reports 
about the effect of  CRYAA and CRYBA1/CRYBA3’s down 
regulation and the up regulation of the receptor tyrosine 
kinase Adhesion-Related Kinase (ARK) in a mouse model 
of age related cataracts [62]. Furthermore, metallothionein-
IIA, osteonectin and ARK were also proved to be 
comparatively up regulated in cataractous lenses [14-16]. 
Additionally, genes such as GCS1,  and POLR2E were also 
found to be extensively down regulated in cataractous 
lens  [63]. Crystallins, indexing CRYBB2 in particular, are 
suspected to be able to primarily act as lens structural 
proteins [64]. The relative CRYBB2 protein expression was 
demonstrated to change markedly during the first year of 
life, suggesting that CRYBB2 serves a contributive function 
in lens development [65]. Moreover, targeted Knockout 
(KO) of CRYBB2 in mice has been demonstrated to induce 
age related and congenital cataracts [66,67]. However, its 
functional significance is not yet known.
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Analyze lncRNAs and mRNAs by performing expression 
profiling on CRYBB2 knockdown induced cataracts and 
non-treated mice. Their results showed a total of 329 
differentially expressed in lncRNAs  CRYBB2 KO group 
mice lenses (a total of 149 lncRNAs identified to be up 
regulated, 180 lncRNAs were found down regulated) [68].

MIAT
MIAT, also known as Gomafu in human or Rncr2 in mouse, 
is a lncRNA initially identified in 2000 as a susceptibility 
locus for myocardial infarction patients, located at 22q12.1, 
highly expressed in retinal precursor cells and highly 
conserved in placental mammals [69-71]. It also shows a 
deregulation in multiple diseases such as neuroendocrine 
prostate cancer, non small cell lung cancer diseases, diabetic 
cardiomyopathy and neuropathy, chronic chagas disease , 
chronic lymphocytic leukemia, schizophrenia, ocular 
neovascularization, bone disease and ischemic stroke  
[71-74]. 

A recent study performed lncRNA microarray on 
cataractous and transparent lens and identified 38 
differentially expressed lncRNAs, including 21 up regulated 
and 17 down regulated among which MIAT’s expression 
level was significantly higher in cataractous lens. Further 
investigations on MIAT expression level on aqueous humor 
and whole blood collected from healthy controls, cataract, 
glaucoma and PVR patients in order to verify their early 
findings. The results showed that MIAT is significantly up-
regulated in the plasma and aqueous humor of cataract 
patients, but not in other patients with glaucoma, PVR [75]. 
Oxidative stress is considered an important risk factor for 
the development of age-related cataract because lens cells 
are constantly exposed to reactive oxygen species including 
hydroxyl radical (OH), free radicals superoxide (O2

-), H2O2 
and hypochlorous acid (HClO) [13,76]. Accumulated 
products of oxidative stress are present in cataract patients 
and may explain why they possess a higher MIAT expression 
level compared to the matched controls. The viability and 
proliferation ability of human lens epithelial cells could be 
reduced by oxidative stress, whereas they were showed to be 
further decreased when subjected to a MIAT’s knockdown, 
implying that an increased MIAT level is possibly a response 
against oxidative stress. Opacification of posterior capsule 
is the main complication of cataract surgery. Following the 
insult of surgery, residual lens epithelial cells rapidly grow at 
the equator and under the anterior lens capsule. These cells 
proliferate and migrate onto the posterior capsule [77,78]. 
The response of lens epithelial cells can be considered a 
wound‐healing reaction resulting from the activation of 
inflammatory cells and production of cytokines and growth 
factors after surgery [79]. The above findings suggest that 
MIAT might potentially be used as a specific biomarker in 
early detection of cataract.

LncRNA H19
LncRNA H19, is a transcript from the H19/IGF2 gene, and 
located at 11p15.5 locus. Its expression is very high in fetus 
but tends to decrease progressively after birth, and these 
favorable characteristics enable its function as a genetic 

biomarker [80]. It actually regulates various biological 
processes by acting as a ceRNA that releases the miRNA’s 
targets via the competition for miRNA to influence the 
related protein factors [81]. LncRNA H19 has been found 
to be implicated via different signaling pathways in many 
kinds of tumors, and its mutation in mouse zygotes lead to 
prenatal lethality, suggesting an important role in normal 
growth and development and prompting new research 
paradigm to further understand intrinsic mechanisms of 
lncRNAs [82-85]. 

MicroRNAs (miRNAs) are the most frequently studied 
class of the non-coding RNAs, and possess a length of ~22 
nucleotides (nt). They participate in the mediation of post 
transcriptional gene silencing via controlling the translation 
of mRNA into proteins [86,87]. Specifically expressed in lens, 
previous researches have tried to decipher the regulating 
role of miRNAs in HLECs function and found out that in 
some cases, miRNAs level decreased in cataractous lens cells 
from rats [88,89]. Cheng and al. recently used sequencing 
technology aiming to identify and compare expression of 
lncRNAs in age related cataracts and further explore the 
oxidative damage repair mechanism. In their experiment, 
more than 50 lncRNAs were differently expressed, among 
which lncRNA H19 was up regulated at early age-related 
cataract development and ultra violet radiation-induced 
oxidative damage model cells, whereas miR‐29a expression 
decreased in the three types of early ARC and in HLECs 
exposed to UVB irradiation. Reactive oxygen species 
accumulates oxidative stress by inducing damage to the 
DNA that can lead to the age‐related cataract development 
[13]. Human thymine DNA glycosylase plays an important 
role in aberrant BER pathway of oxidative damaged DNA.
These data indicate that lncRNA H19 could be a useful 
biomarker of early age-related cataract and deciphering the 
proper relation between lncRNA H19 and miR-29a may 
represent a target for age related cataract treatment. 

Conclusion

By summarizing results from separate independent cataract-
related studies, we reviewed lncRNAs characteristics and 
regulation, and tried to discuss potential pathways by 
which βΒ1-crystallin (CRYBB1), βΒ2-crystallin (CRYBB2), 
MIAT, LncRNA H19 may contribute to the development of 
cataracts. However, further researches and investigations are 
needed to discover the vast number of cataract-associated 
lncRNAs, their characteristics and expression patterns, 
and decipher pathways of their involvement and role in 
the pathogenesis of this potentially blinding condition. We 
stress that this article creates a paradigm for future studies 
of lncRNAs in the early determination and monitoring of 
the evolution of cataract and may prove to be useful for 
early determination of whether a patient with a suspected 
lncRNAs should receive prioritized treatment to help slow 
the progression of the condition, and subsequently avoid 
blindness, and retain quality of life.

Review Article The role of LncRNAs in the development of cataracts
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