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ABSTRACT 

Translational stroke research is a challenging task that needs long term team work of the stroke research community. Highly 
reproducible stroke models with excellent outcome consistence are essential for obtaining useful data from preclinical stroke 
trials as well as for improving inter-lab comparability. However, our  review of literature shows that the infarct variation coeffi-
cient of commonly performed stroke models ranges from 5% to 200%. An overall improvement of the commonly used stroke 
models will further improve the quality for experimental stroke research as well as inter-lab comparability. Many factors play 
a significant role in causing outcome variation; however, they have not yet been adequately addressed in the Stroke Therapy 
Academic Industry Roundtable (STAIR) recommendations and the Good Laboratory Practice (GLP). These critical factors 
include selection of anesthetics, maintenance of animal physiological environment, stroke outcome observation, and model 
specific factors that affect success rate and variation. The authors have reviewed these major factors that have been re-
ported to influence stroke model outcome, herewith, provide the first edition of stroke model guidelines so to initiate active 
discussion on this topic. We hope to reach a general agreement among stroke researchers in the near future with its succes-
sive updated versions. 
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ABBREVIATION 
 

 
 

AC: Alternating Current 
ACA: Anterior Cerebral Artery 
AComA: Anterior Communicating Arteries 
AMPA: Amino-3-Hydroxy-5-M Ethyl-4-Isoxazol-

Propionic Acid 
ATP: Adenosine Triphosphate 
BBB: Blood-Brain-Barrier 
CBF: Cerebral Blood Flow 
CCA: Common Carotid Artery 
CNS: Central Nervous System 
DC: Direct Current 
dMCAO: Distal MCA Occlusion 
ECA: External Carotid Artery 
GLP Good Laboratory Practice 
GABA: γ-Aminobutyric-Acid 
H&E: Hematoxylin And Eosin 
ICA: Internal Carotid Artery 
ISCBFM: International Society For Cerebral Blood Flow 

And Metabolism 

LDF: Laser Doppler Flowmetry 
MAP2: Microtubule-Associated Protein 2 
MCA: Middle Cerebral Artery 
MCAO: Middle Cerebral Artery Occlusion 
NMDA: N-Methyl-D-Aspartate 
PaCO2: Partial arterial Carbon Dioxide Pressure 
PaO2: Partial arterial Oxygen Pressure 
PComA: Posterior Communicating Arteries 
PID: Proportional–Integral–Derivative 
PLL: Poly-L-Lysine 
pMCAO: Proximal MCA Occlusion 
pSDM: Percentage Of Standard Deviation To Mean 
PTA: Pterygopalatine Artery 
rCBF: Regional Cerebral Blood Flow 
SAH: Subarachnoid Hemorrhage 
SD: Standard Deviation 
SEM: Standard Error Of Mean 
SFES: Society For Experimental Stroke 
SMG Stroke Model Guidelines 

http://www.s4es.org/�


LIU et al, Stroke Model Guidelines 

- 5 - 

J Exp Stroke Transl Med (2009) 2(2): 2-27 
Society for Experimental Stroke (www.s4es.org) 

SOP: Standard Operational Procedures 
STAIR: Stroke Therapy Academic Industry Roundtable 
tCCAO: Temporary Common Carotid Artery Acclusion 
TTC: 2,3,5-Triphenyltetrazolium Chloride 

DEFINITION 

pSDM: percent of SD to mean  

Because investigators have used different units of measurement 
for the infarction volume and such data have been expressed ei-
ther in mean ± SD or mean ± SEM, we adapted pSDM (percent of 
SD to mean,) as the coefficient for infarction volume variation for 
the purpose of increasing comparability between studies. The 
SEM, when used by many of the original investigators, has been 
converted to SD for the calculation of the pSDM. 

 

1. INTRODUCTION 
 

 

The Stroke Therapy Academic Industry Roundtable 
(STAIR) was established in order to address the challenges 
encountered in finding an effective neuroprotective therapy 
for acute stroke (Fisher et al. 2007; Stroke Therapy Aca-
demic Industry Roundtable 1999). Besides the STAIR’s 
concern for study design, other issues relating to experi-
mental stroke research, especially animal stroke modeling 
have been raised (Dirnagl 2006; Savitz 2007; van der Worp 
et al. 2005). This is an important issue, and it is now rec-
ommended that any stroke model that aims to achieve 
scientific and therapeutic value must meet certain require-
ments. The model must be both highly consistent in induc-
ing injury, performed under conditions to avoid co-founding 
factors influencing outcomes and widely available to most 
investigators. With the STAIR guidelines providing an ex-
cellent framework for the design of preclinical stroke trials, 
a detailed guidance for conducting individual experiments 
using stroke models will further improve model consistency, 
reliability and inter-lab comparability. A review of literature 
shows that the infarct variation coefficient of commonly 
performed stroke models ranges from 5% to 200% (see 
following paragraphs). Many factors play a significant role 
in causing outcome variation; however, they are not fully 
defined in the STAIR guidelines. These critical factors in-
clude selection of anesthetics, maintenance of animal phy-
siological environment, stroke outcome observation, and 
animal species used.  

Here we provide the first edition of stroke model guidelines 
(SMG) so as to initiate an active discussion on this topic, 
with the ultimate aim of reaching a general agreement 
among stroke researchers in future up-dated versions. Be-
cause rodents are the mostly commonly used animals for 
preclinical stroke trials, the first version of SMG starts with 
rodent stroke models. In its successive versions, the con-
tents may expand into stroke models of other species. The 
SMG ,starts with a general overview of the design and set-
up of a typical preclinical stroke trial, followed by more de-
tailed guidelines on the implementation of each step.  

2. GENERAL GUIDANCE FOR A PREC-
LINICAL STROKE TRIAL 

Before starting an experimental preclinical stroke trial the 
following steps are necessary for ensuring a good quality 
study. Specific guidance for most steps is provided in sub-
sequent paragraphs.  

1. Revisit the latest STAIR criteria for achieving an 
optimized study design 

2. Select the most appropriate stroke model for your 
study 

3. Determine stroke model parameters, such as an-
ticipated infarct size and surgical procedure 

4. Determine the use of anesthetics 
5. Determine the components of the inhaled gas 
6. Determine the necessity and settings of intubation 

and ventilation 
7. Set up monitoring for arterial blood pressure, 

blood gases, blood glucose 
8. Set up temperature monitoring and maintenance 
9. Set up regional cerebral blood flow monitoring 
10. Determine a protocol for post-operational care 
11. Determine the method and timing for infarct vo-

lume measurement 
12. Determine the appropriate tests and timing for the 

assessment of functional deficits 
13. Do a pilot study and adjust the experimental set-

tings for further optimization 
14. Assess the compliance of the trial with “Good La-

boratory Practice” standards. 

3. REVISITING THE STAIR CRITERIA 

GUIDANCE  

The design of a preclinical stroke trial should start with a 
revisiting of the latest version of stroke therapy academic 
industry roundtable (STAIR) criteria. Receiving some useful 
suggestions with caution from the STAIR criteria may help 
with improving the study design to some extent although 
there are debates on some issues that STAIR addressed. 

SUPPORTING DISCUSSION 
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The STAIR criteria provides some useful recommendations 
for improving the design of preclinical stroke trials.  

To date, the STAIR group has met six times discussing and 
revising their recommendations for preclinical and clinical 
stroke trials (Fisher 2003; Fisher 2005; Fisher et al. 2009; 
Fisher et al. 2007; Saver et al. 2009; STAIR Group 1999; 
STAIR Group 2001). Recommendations provided by the 
STAIR consortia emphasize the design quality of both ex-
perimental and clinical stroke trials. With respect to experi-
mental animal stroke trials, STAIR recommendations have 
highlighted the need for investigators to consider factors 
such as species and gender differences, clinical relevance 
of animal models, dose-response determinations, thera-
peutic time windows, blood-brain-barrier (BBB) permeability 
and tissue drug levels, treatment randomization,, physio-
logical monitoring, and at least 2 outcome measures cover-
ing both acute and long-term endpoints. 

The STAIR criteria should be used with caution because 
there may be conflicts between its suggested late treatment 
and therapeutic windows.  

In the STAIR I, the ideal neuroprotective drug trial was de-
scribed thus: “should demonstrate efficacy in at least 2 
species, in at least 2 laboratories that use different models, 
is effective in both permanent and transient focal ischemia, 
and improves short-term and long-term histological and 
functional outcomes, even when administered several 
hours after the onset of ischemia” (STAIR Group 1999). 
Keeping the therapeutic window in mind, it may be simply 
impossible to demonstrate robust neuroprotection when the 
treatment is delivered too late. The therapeutic window is 
roughly a few hours in rodent MCA occlusion (MCAO) 
models. For example, in a 300 g rat, a 2-hour duration of 
transient MCAO produces a large infarct volume of 400-
450 mm3, which is similar in size to the infarct caused by 
permanent MCAO after 24 hours (Greco et al. 2007; Masa-
da et al. 2001). Hence, it is likely that a preclinical stroke 
trial using a 2 hour transient MCAO model and a late 
treatment time point (e.g., 6h post-MCAO) (Simard et al. 
2009; Yin and Zhang 2005) would have missed the thera-
peutic window and the opportunity to observe a treatment 
effect.  In this instance, a baseline injury quantification 
study, performed at different treatment time points (e.g.,, 2, 
4, 6 hours post-MCAO) would improve study design and 
increase the chance of obtaining a positive neuroprotective 
effect.. Some histopathological methods and diffusion-
weighted imaging techniques described in the infarct vo-
lume measurement section of this guideline can be used 
for the detection and quantification of baseline injury start-
ing several hours after ischemia. 

The STAIR criteria should be used with caution because 
there may be conflicts between its suggested observational 
time and the natural history of stroke evolution.  

As discussed in more detail below, both the infarction evo-
lution and changes in functional deficits have their own 
natural histories. Measuring infarct volume evolution is time 
sensitive and methodology dependent (see section on In-
farction volume measurement). Assessment of functional 
recovery is even more complicated, is model depen-
dent,and is time sensitive in relation to the recovery pattern 
and functional test being used (see section of Functional 
evaluation). Therefore, it may sound arbitrary to recom-
mend all outcome measures be performed in 1-3 days and 
in 7-30 days. 

Would the STAIR criteria help with increasing the chance of 
a true discovery (no, but this was not really its aim)?  

As stated in the STAIR I, the purpose of STAIR is “to pro-
pose recommendations for ways to optimally preclinically 
assess neuroprotective and restorative drugs for acute 
ischemic stroke”. However, these recommendations were 
condensed into a few designing principles even with the 
latest update (Fisher et al. 2009), which has been function-
ing like an elevated threshold limiting experimental discov-
ery entering into clinical trials. These STAIR criteria may 
help with improving the design quality of preclinical stroke 
trials, reducing bias and false positive conclusions (Fisher 
et al. 2009), but has little to do with increasing the chance 
of scientific discoveries. It is the research direction that 
holds the chance of scientific breaking through  while the 
optimized methodologies increase the sensitivity for posi-
tive findings. The research directions that hold the contin-
ued promise for neuroprotection for ischemic stroke has 
been discussed in our previous review paper (Liu and Le-
vine 2008). Optimization of preclinical stroke trials is more 
complicated than that the STAIR has recommended, which 
is what we need to address in this stroke model guidelines 

4. STROKE MODEL SELECTION  

Various stroke models have been developed to mimic dif-
ferent stroke subtypes or pathological mechanisms and can 
be generally classified into two categories: focal cerebral 
ischemia models and global cerebral ischemia models. 
Global ischemia models mimic the clinical conditions of 
brain ischemia following cardiac arrest or profound system-
ic hypotension, focal models represent ischemic stroke, the 
most common clinical stroke subtype. The most commonly 
used focal ischemia models are the intraluminal filament 
model (Koizumi et al. 1986) and the Tamura model (Tamu-
ra et al. 1981a).  Some additional stroke models involve 
special mechanisms to induce artery occlusion/ischaemia, 
such as the thromboembolic, endothelin and photochemical 
models. 

GUIDANCE  
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There are mainly two factors that influence the selection of 
in vivo stroke models for preclinical trials. These are the 
potential protection mechanism of the neuroprotective can-
didate and the highest achievable model quality with a par-
ticular lab setting.  

For examples, if the candidate is predicted to reduce 
ischemic injury by attenuating cerebral edema after throm-
bolytic therapy, the thromboembolic model should be used; 
if the predicted neuroprotection is associated with a particu-
lar brain cortex region, the photochemical model will be 

preferable because this model is able to produce ischemic 
injury in an arbitrary geometric shape at any location on the 
brain surface. If the predicted protection mechanism of a 
drug candidate is shared by several stroke models, the 
selection of a preferred model could be determined by the 
achievable model quality, as judged by success rate and 
outcome consistency. In most cases, the choice is between 
the intraluminal model and the Tamura model. 

 

 

TABLE 1. SUMMARY OF STROKE MODEL SELECTION 

Stroke model Preferred application Reference 

Photochemical model Neuroprotection is associated with a 
particular brain cortex region. 

Free radicals and endothelial injury 
play major roles in lesion develop-
ment. 

(Chen et al. 2004; De Ryck et al. 
1996; De Ryck et al. 1989; De 
Ryck et al. 2000; Eichenbaum et al. 
2002; Futrell et al. 1988; Lozano et 
al. 2007; Ostrovskaya et al. 1999) 

Autologous clot model Clot-related protection mechanisms. (Beech et al. 2001; Busch et al. 
1997; Harada et al. 2005; Kano et 
al. 2003; Kano et al. 2005; Kilic et 
al. 1998; Krueger and Busch 2002; 
Orset et al. 2007; Romanos et al. 
2007; Tejima et al. 2001; Toomey 
et al. 2002; Vosko et al. 2003) 

Endothelin-1 model Transient to semi-permanent focal 
cerebral ischemia that need outcome 
measurements of both histology and 
neurofunctions 

(Biernaskie et al. 2001; Horie et al. 
2008; Nikolova et al. 2009; Windle 
et al. 2006) 

Tamura model Permanent focal cerebral ischemia. 

Transient focal cerebral ischemia in 
which functional assessment is not 
needed. 

(Bederson et al. 1986b; Buchhold 
et al. 2007; Chen et al. 1986; Roof 
et al. 2001) 

Intraluminal model Permanent and transient focal cere-
bral ischemia that need outcome 
measurements of both histology and 
neurofunctions 

(Candelario-Jalil et al. 2008; Khan 
et al. 2006; Liu et al. 2006; Shima-
mura et al. 2006a; Shimamura et 
al. 2006b; Solaroglu et al. 2006; 
Tsubokawa et al. 2007; Tsubokawa 
et al. 2006a; Tsubokawa et al. 
2006b) 

 

SUPPORTING DISCUSSION 
About the photochemical model 
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Implementation of the photochemical model involves injec-
tion of a photosensitive dye that penetrates the BBB. The 
photochemical reaction produces singlet oxygen and free 
radicals, which causes endothelial injury and formation of 
microthromboses. The light used for inducing this reaction 
can be laser or filtered non-laser light, and can be shone 
onto a section of artery wall or any location of the skull. 
Therefore, this model is useful for neuroprotection that is 
associated with a particular brain cortex region and in-
volves free radical scavenging as a protective mechanism 
(Chen et al. 2004; De Ryck et al. 1996; De Ryck et al. 
1989; De Ryck et al. 2000; Eichenbaum et al. 2002; Futrell 
et al. 1988; Lozano et al. 2007; Ostrovskaya et al. 1999). 

About the autologous clot model 

Although the autologous clot model that mimics thromo-
boembolic stroke has been developed (Kudo et al. 1982), 
and efforts have been made to improve its outcome consis-
tency, (Wang et al. 2001; Zhang et al. 1997b) this model is 
still not suitable for validating neuroprotective effects be-
cause of its uncontrollable reperfusion and unacceptable 
variation of infarct area (Wang et al. 2001; Zhang et al. 
1997a; Zhang et al. 1997b). Therefore, this model is re-

served for clot-related protection mechanisms which other 
stroke models cannot address. 

About the endothelin-1 model 

Endothelin-1 (ET-1) is a potent vasoconstrictor. It reduces 
regional cerebral blood flow and produces ischemic injury 
when being injected directly into brain tissue (Windle et al. 
2006) or adjacent to the MCA (Biernaskie et al. 2001; Niko-
lova et al. 2009). The magnitude and duration of reduction 
of cerebral blood flow is variable, dose dependent (Nikolo-
va et al. 2009), and strain dependent (Horie et al. 2008), 
persistent up to 7-16 hours (Biernaskie et al. 2001). ET-1 
has a much less potent effect for producing an infarct in 
mice than in rats (Horie et al. 2008). 

Intraluminal model versus Tamura model.  

In experienced hands, the intraluminal model and the Ta-
mura model can achieve similar success rates and out-
come consistency (Table 2). However, some types of the 
Tamura model may cause just cortical injury with small 
infarction volume, which does not produce consistent func-
tional deficits (Chen et al. 1986; Roof et al. 2001). 

 

TABLE 2. COMPARISON OF THE INTRALUMINAL MODEL AND THE TAMURA 
MODEL 

Model Intraluminal Tamura 

Need for craniotomy No Yes 

Incur brain trauma No Yes 

Occlusion methods Monofilaments: 
heat/flame blunted 

PLL coated 

Silicone-rubber coated 

Microclips 

Suture tying 

Suture/wire retraction 

Electrocoagulation 

Success rate for transient 
MCAO 

60-100% 40-75% 

Infarct distribution Basal ganglia and cortex Depending on occlusion site. Only cortical infarct 
occurs if occlusion site is lateral to the olfactory tract 

Reported best pSDM 10-20% in rats  

5-10% in mice 

6.6-16% in rats 

10-13% in mice 

Functional deficit Severe and consistent Mild and inconsistent, especially when the infarct is 
limited to the cortex 
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For detailed discussion of Tamura model and intraluminal model please refer to the related sections below. 

 

5. THE INTRALUMINAL MODEL 
For the intraluminal model, the key factors that affect out-
come consistency are the physical properties of the oc-
cluder, the MCAO surgical procedure and the strain of 
animal. Critical physical properties of the occluder that af-
fect stroke outcome include its tip diameter, tip length, tip 
shape, and flexibility. Some specific surgical procedures 
have also been developed for different purposes, such as 
for confirming a successful occlusion, for supplemental 
occlusion of proximal arteries, and for prevention of prema-
ture reperfusion. Animal strain is not the focus of the first 
version of SMG. 

A. THE SELECTION OF MCAO OCCLUD-
ERS 

GUIDANCE 

It has been shown that silicone-rubber coated filaments are 
superior to flame blunted and PLL coated monofilaments 
for producing consistent ischemic injury (Spratt et al. 
2006). There are insufficient data for an accurate compari-
son between silicon rubber coated monofilaments and 
glue-coated, resin-coated or nail polish-coated monofila-
ments. Flame/heat-blunted and PLL coated monofilaments 
are generally considered unacceptable for neuroprotection 
studies because of their low success rate, high subarach-
noid hemorrhage (SAH) rate, and large variability in infarc-
tion volume.  

SUPPORTING DISCUSSION 

The intraluminal MCAO models can be induced using dif-
ferent filaments. In the Koizumi model, a silicone-rubber 
coated monofilament is used, while in the Longa model a 
flame-blunted monofilament is used. Other occluders in-
clude the poly-L-Lysine (PLL) coated monofilament (Spratt 
et al 2006), methyl methacrylate glue coated monofilament 
(Shah et al 2006), silicon resin coated monofilament (Ya-
mauchi et al 2005), and nail polish coated monofilament 
(Matsushima and Hakim 1995). The physical characteris-
tics of the occluder influence outcome variation by causing 
insufficient occlusion, premature reperfusion, and/or fila-
ment dislodgement. The following paragraphs review the 
MCAO model quality obtained using the most common 
occulders and their optimizations. 

The PLL coated occluders.  

The PLL coated monofilament has the lowest success rate, 
the highest SAH rate and highest mortality rate among all 
monofilaments in rat models. MCAO models using PLL 
coated occluders have been reported to have a success 
rate as low as 13-14% in rats, with model mortality of 
around 21-31% (Spratt et al 2006). High mortality (50-60%) 
and infarct size variation have also been reported when 
using PLL coated sutures in mouse models (Huang et al 
1998). While most authors reported low success rates, high 
SAH rates, and high mortality rates when using PLL coated 
sutures for both rat models and mouse models, Belayev et 
al reported increased infarct volume and experimental con-
sistency as compared to uncoated sutures, although in 
some instances brain infarction did not occur (Belayev et al 
1996).  

Flame/heat-blunted occluders. 

Tsuchiya et al. (Tsuchiya et al 2003) showed that using 
flame blunted monofilaments to induce MCAO caused a 
40% rate of subarachnoid hemorrhage, and pSDM was 
greater than 100%. In another study (Schmid-Elsaesser et 
al 1998), models using heat-blunted 3-0 filaments had a 
success rate of 46% (without further repositioning of the 
occluder according to laser Doppler flowmetry (LDF) moni-
toring), with 44% occurrence of SAH. Premature reperfu-
sion occurred very frequently with a rate of 24% when us-
ing the heat-blunted filament group as shown through LDF 
monitoring (Schmid-Elsaesser et al 1998). The authors’ 
own experience confirmed a less than 40% success rate 
when using flame blunted monofilaments. Personal com-
munication with other MCAO model performers who have 
experience with the Longa model confirm that a flame 
blunted occluder is not an acceptable choice for neuropro-
tection studies. In the mouse intraluminal model, SAH rates 
can reach as high as 40% if uncoated heat-blunted fila-
ments are being used. In such cases, the pSDM can be 
more than 50% (Tsuchiya et al 2003). 

Silicone-rubber coated occluders.  

Studies using silicone rubber coated monofilaments have 
reported success rates ranging from 66% (Schmid-
Elsaesser et al 1998) to 100% (Liu et al 2006), and SAH 
rates from 0% (Chen et al 2008) to 8% (Schmid-Elsaesser 
et al 1998). Premature reperfusion rates have been re-
ported to be 26%; readjusting filament location for correct-
ing premature reperfusion could increase the success rate 
of MCAO(Schmid-Elsaesser et al 1998). The pSDM when 
using a silicone-rubber coated filament ranges from 30% 
(Schmid-Elsaesser et al 1998) to around 5% (Maysami et 
al 2008). It also seems that bilateral laser Doppler flowme-
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try can be a useful tool for detecting premature reperfusion 
(Hungerhuber et al 2006).  

B. OPTIMIZATION OF MCAO OCCLUD-
ERS  

GUIDANCE 

The physical properties of the occluder tip play a critical 
role in causing infarct variation and SAH occurrence. For a 
certain range of animal body weights, an optimal occluder 
diameter can be found through a series of pilot experi-
ments. It has been reported that the optimal occluder di-
ameter for rats weighing 275-320g is around 0.38 mm for 
silicon rubber coated monofilaments (Spratt et al 2006). 
The silicone rubber coating length is another important 
factor that influences the occluder’s ability to block the 
back-flow from communicating arteries (Chen et al 2008). 
Therefore, an optimal coating length may also exist for an-
imals within a certain body weight range, so matching the 
occluder size with animal size would theoretically improve 
model consistency. Note too that a shorter coating can 
preserve blood supply to the hypothalamus, minimizing 
post-surgical thermoregulatory dysfunction, particularly the 
occurrence of spontaneous hyperthermia. In order to match 
the wide range of rodent animal body weights, a large 
number of different occluders in standard size would be 
needed.  To this end, our recommendation is to obtain 
commercially made occluders, which are available in differ-
ent diameters and silicone rubber coating lengths 
(www.doccol.com). 

SUPPORTING DISCUSSION 

When the occluder is matched to animal size, improved 
success rates and reduced SAH rates can be achieved.  

In rat models of 60-min transient MCAO to 24-h permanent 
MCAO using correct-sized occluders (Candelario-Jalil et al. 
2008; Khan et al. 2006; Liu et al. 2006; Shimamura et al. 
2006a; Shimamura et al. 2006b; Solaroglu et al. 2006; 
Tsubokawa et al. 2007; Tsubokawa et al. 2006a; Tsuboka-
wa et al. 2006b), the success rate was found to be 88-
100%, and the SAH rate to be 4%. In mouse models of 60-
min transient MCAO(Chen et al. 2008; Kleinschnitz et al. 
2007; Maysami et al. 2008; Pignataro et al. 2007b; Pignata-
ro et al. 2007c), the success rate was found to be 96% and 
the SAH rate 0%.  

When the occluder is matched to animal size, impressive 
improvements in infarct consistency have been reported 
both in rats and in mice.  

A technical paper by Shimamura showed consistent infarc-
tion and a tight error bar in rat models even with inexpe-

rienced surgeons (Shimamura et al. 2006a). For a 60-min 
to permanent occlusion in rats, the pSDM is around 10% to 
20% depending on experimental design and selection of 
right-sized filaments. (Candelario-Jalil et al. 2008; Khan et 
al. 2006; Liu et al. 2006; Shimamura et al. 2006b; Solaroglu 
et al. 2006; Tsubokawa et al. 2007; Tsubokawa et al. 
2006a; Tsubokawa et al. 2006b). A 15-min occlusion could 
also produce a consistent caudate infarction with little var-
iation in mice (Pignataro et al. 2007a). For a 30-min occlu-
sion, the pSDM was reported to be around 20% in mouse 
models (Cho et al. 2007; Kim et al. 2008). Even better con-
sistency has been reported in 60-min MCAO models in 
mice, in which the pSDM was around 5-10% (Kleinschnitz 
et al. 2007; Maysami et al. 2008; Pignataro et al. 2007b; 
Pignataro et al. 2007c).  

Standard-sized occluders are available for matching  with 
animal size. 

Varying sized occluders can be conveniently obtained 
commercially (www.doccol.com) with desired tip diameter 
and silicone rubber coating length. Tip diameter can be 
selected within a range from 0.17 mm to 0.49 mm and the 
coating length in a range from 2 mm to 10 mm. This makes 
it possible to match animal body weight with occluder di-
ameter so as to achieve better results. Although there is 
not enough available data to make a detailed match chart 
between occluder size and animal size, a preliminary 
matching chart is provided by the vendor to guide investi-
gators’ selection of occluders, covering animal body 
weights from 15 to 400 grams. 

C. OPTIMIZATION OF SURGICAL PRO-
CEDURES 

GENERAL GUIDANCE 

The surgical procedure of inducing MCAO models plays an 
important role in the stroke outcome variation; and it can be 
optimized to achieve better success rates and reduce out-
come variation. Modifications and optimizations have also 
been reported concerning the inserted distance of the MCA 
occluder, CAA approach versus ECA approach, and sup-
plemental occlusion of proximal arteries. 

SPECIFIC GUIDANCE ON KEY SURGICAL STEPS 

The inserted distance of the MCA occluder.  

GUIDANCE: The inserted distance of the occluder is criti-
cal to a model´s success. For the rat model, the distance 
from the common carotid artery (CCA) bifurcation is 18-20 
mm for a 300 g (Belayev et al. 1996; Lee et al. 2004), and 
20-22 mm for a 400 g rat (Lindner et al. 2003). For the 
mouse model, a distance of 9-11 mm (Dimitrijevic et al. 
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2007; Yamashita et al. 2006) rostral to the CCA bifurcation 
needs to be reached.  

SUPPORTING DISCUSSION: It has been reported that 
different insertion distances produce significant differences 
in infarct size (Zarow et al. 1997). Over-insertion may 
cause a rupture of the anterior cerebral artery (ACA) and 
subsequent SAH whilst insufficient insertion may not be 
able to block the back-flow from the anterior communicat-
ing artery, leading to incomplete occlusion of the MCA.  

In vivo confirmation of MCA occlusion.  

GUIDANCE: A reduction in regional cerebral blood flow 
(rCBF) of at least 75% from baseline is generally accepted 
as an indicator of successful MCAO (Schmid-Elsaesser et 
al. 1998). 

SUPPORTING DISCUSSION: Because of the anatomic 
variation of carotid arteries between individuals and be-
tween strains (Dittmar et al. 2006; Oliff et al. 1995a; Oliff et 
al. 1995b), and inaccuracies in measuring the inserted dis-
tance, investigators often use LDF to instantly confirm suc-
cessful occlusion of the MCA. Due to neck movement or 
artery wall retraction, the occluder may dislodge from its 
original location if it is not properly affixed against the ar-
terial wall. Occluder dislodgement can result in premature 
reperfusion and SAH. For reducing occluder dislodgement, 
investigators have used various techniques. The smooth 
nylon surface of the occluder at the affixation position can 
be made serrated to increase traction. A microclip with 
proper biting force or a tight knot applied onto the artery 
and the serrated occluder section may help reducing dis-
lodgement.  

CAA approach versus ECA approach.  

GUIDANCE: The ECA approach is a better choice for tran-
sient MCAO because it maintains the anatomic integrity 
required for reperfusion. The CCA approach may, on the 
other hand, be a simpler surgical procedure for permanent 
MCA occlusion.  

SUPPORTING DISCUSSION: When inducing MCA occlu-
sion, the occluder may be introduced into the internal caro-
tid artery (ICA) via a cut in the CCA (the CCA approach) or 
a cut in the external carotid artery (ECA). Most intraluminal 
models that appear in the literature were induced through 
the ECA approach. Some stroke investigators introduced 
the occluder through an arteriotomy of the common carotid 
artery (Wetzel et al 2008; Xi et al 2004). The CCA ap-
proach changes the dynamics of cerebral blood flow when 
the occluder is withdrawn for reperfusion because blood 
flow will enter only from the contralateral side through the 
Circle of Willis. Changes in proximal blood supply may also 
affect infarct volume and model consistency. Studies have 

shown that occluding additional proximal arteries along with 
MCA can achieve a larger and more consistent infarct 
(Woitzik et al 2006). 

Supplemental occlusion of proximal arteries 

GUIDANCE: Supplemental occlusion of proximal arteries 
(PTA and/or CCA) decreases infarct volume variation.  

SUPPORTING DISCUSSION: When the MCA is being 
occluded, there may be residual blood flow to the MCA 
territory, which causes insufficient occlusion of the MCA. 
Residual blood flow could come from the anterior and post-
erior communicating arteries (AComA and PComA) of the 
Circle of Willis, the ICA itself, or from leptomenigeal anas-
tomoses on the cortical surface (i.e., collateral supply). 
Blood flow can also reach the MCA cortex indirectly by ex-
ternal carotid collateral flow though the pterygopalatine 
artery. Applying a vessel clip on the CCA can increase in-
farction volume by reducing the residual blood flow through 
the ICA, especially when smaller filaments are being used 
(Tsuchiya et al 2003). A more recent study has shown that 
blocking pterygopalatine artery (PTA) blood flow decreases 
infarct volume variation (Chen et al 2008). However, from 
an anatomical perspective, these surgical modifications will 
not be effective in reducing the residual flow originating 
from AComA, PComA, or leptomeningeal anastomoses. A 
more practical option is to use optimized, silicone rubber-
coated, standard-sized monofilaments, which match animal 
body weight, to induce MCA occlusion. 

6. THE TAMURA MODEL 

In 1981, Tamura described a rat model of middle cerebral 
artery occlusion (Tamura et al 1981a; Tamura et al 1981b) 
which can induce either permanent or temporary occlusion 
of the MCA. The former could be achieved by direct elec-
trocoagulation of a section of the MCA whereas the latter 
by either microclip application or artery ligation/retraction by 
a nylon suture or a rigid wire. In recent years, infarct varia-
tion with the intraluminal models has been noticed (Chen et 
al 2008; Shimamura et al 2006a), and has become a con-
cern in preclinical neuroprotective trials, especially with 
suboptimal models (Savitz 2007). Using just one rodent 
model may not be sufficient for screening neuroprotective 
candidates in preclinical stroke trials. Therefore, the Tamu-
ra model may serve as a supplemental or alternative ap-
proach for validating neuroprotective efficacy in rodents.  

A. ABOUT THE MCA OCCLUDER 

GUIDANCE  
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The MCA occluder and occlusion mechanism play no role 
in the Tamura model. A careful selection of microclips will 
be necessary for reducing artery wall mechanical injury. 

SUPPORTING DISCUSSION  

Similar success rates and stroke outcome consistency can 
be achieved with different occluders and occlusion tech-
niques, such as electrocoagulation, applying a microclip, or 
suture ligation. Model success rate, mortality rate, and in-
farct variation will differ in response to changes of occlusion 
site, occlusion extensiveness, ischemia duration, CCA oc-
clusion, and the animal’s blood pressure.  

Microclips with a biting force not greater than 15 g are 
usually used. The size, weight, and biting force of the mi-
croclip are important for a successful Tamura model. Not all 
microclips are suitable for rodent MCA occlusion. Microclips 
that have been used in this model include Codman Sundt 
AVM microclip #1-3, Zentype microclip, and Scoville Lewis 
clip.  

B. SURGICAL OPTIMIZATION 

GUIDANCE  

Ensuring a complete occlusion of the MCA is a necessary 
step for this model. In addition, the occlusion site and ex-
tensiveness must remain consistent. In the transient MCAO 
model, simultaneous occlusion of either common carotid 
artery increased the model success rate (Coert et al 1999). 
On the other hand, MCAO combined with bilateral CCAO 
should be used with caution because of a higher incidence 
of mortality. Moreover, transient MCAO by the Tamura 
model is often suboptimal and should be used with caution. 

SUPPORTING DISCUSSION:  

Visual inspection under a stereo microscope is commonly 
used for this purpose. Even with an ensured occlusion 
through transection of the MCA, infarct consistency still 
largely depends on the length of coagulated MCA (Beder-
son et al 1986b).  

Bederson et al first reported (Bederson et al 1986b) the 
correlation of success rate with the anatomic location 
where the MCA is occluded. In their experiments, a 100% 
success rate was achieved with 3 or 6 mm occlusion of the 
MCA beginning proximal to the olfactory tract.  1-2 mm 
occlusion of the MCA from its origin, at the olfactory tract, 
or lateral to the inferior cerebral vein, however, only pro-
duced infarction in 13%, 67%, and 0% of rats, respectively.  

When assessed at 3 days post surgery, one hour MCAO 
only caused cerebral infarction in 40% of rats; with simulta-
neous occlusion of ipsilateral or bilateral CCAs, the suc-

cess rate reached 60% and 75%, respectively. A higher 
success rate was also observed when the duration of MCA 
occlusion increased. One hundred percent success rate 
was observed with permanent MCAO plus bilateral CCAO. 

Chen et al reported (Chen et al 1986) that the mortality rate 
could reach 60% when the CCAs were permanently ligated 
bilaterally; the high mortality could be reduced to 7% if the 
contralateral CCA was released after 60-min of occlusion.  

Although transient direct MCA occlusion with subsequent 
reperfusion is possible by applying a microclip on, or suture 
tying, the MCA, the implementation of these techniques 
demands extremely delicate surgical skills, especially in 
mice. Consequently, this model has gradually become less 
popular since the emergence of the intraluminal model of 
transient MCAO (Koizumi et al 1986), which is relatively 
easier to perform and does not require a craniotomy.  

C. PURE CORTICAL INFARCTION VER-
SUS COMBINED INFARCTION 

GUIDANCE  

Pure cortical infarcts in this model produce very mild and 
inconsistent functional deficits and are therefore not suita-
ble for functional recovery evaluation. Permanent occlusion 
at a site proximal to the lenticulostriate branches (pMCAO) 
produces a larger infarct with more persistent functional 
deficits (Roof et al 2001), and may be preferable for as-
sessing a robust protective effect of therapeutic agents for 
stroke.  

SUPPORTING DISCUSSION  

The site of MCA occlusion has also been shown to influ-
ence the severity and consistency of histologically-revealed 
damage as well as functional deficits. Occlusion of the 
MCA lateral to the olfactory tract produces a pure cortex 
infarction because the basal ganglia blood supply from the 
lenticulostriate branches is spared; occlusion of the MCA at 
its origin produces a combined infarction including both 
cortex and basal ganglia. Microclips and retraction/release 
methods are used for transient MCAO/reperfusion and pro-
duce a pure cortical infarct due to operational limitation. 
Electrocoagulation necessarily produces permanent occlu-
sion; it can be applied at various sites along the MCA to 
produce a variety of lesions from a pure cortical infarct to 
combined infarcts of both basal ganglia and cortex. 

 

D. INFARCT VOLUME VARIATION AND 
OPTIMAL ISCHEMIA DURATION  
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GUIDANCE 

Transient MCA occlusion of 30-min by the Tamura model is 
too mild to produce a brain infarct, but selective neuronal 
damage in the striatum and subcortex areas in the ipsila-
teral side could be observed (Yang et al 2001). A 3-h oc-
clusion time is preferable for transient cortical ischemia 
because of increased consistency. Infarct volume consis-
tency could be improved with supplemental CCA occlusion. 
Similar results have been reported with different occlusion 
methods. 

SUPPORTING DISCUSSION 

Improved infarct consistency has been reported with simul-
taneous occlusion of the common carotid arteries (Coert et 
al 1999). For example, the pSDM for 1-h MCAO was 200%, 
1-h MCAO plus ipsilateral CCAO was 133.5%, and 1-h 
MCAO plus bilateral CCAO 100.9%. The pSDM for 3-h 
MCAO plus bilateral CCAO was 59%. The best consistency 
was observed with permanent MCAO plus bilateral CCAO 
with the pSDM being 43.75%. 

A pSDM range of 10% to 160% has been reported when 
using a Zen-type microclip for direct MCA occlusion in rats. 
Margaill et al achieved excellent consistency in rats, with a 
pSDM of 10% for striatum infarcts and 15-16% for cortex 
infarcts in transient MCAO of 60-90 min (Margaill et al 
1996). However, in a 1-h MCAO model, David et al re-
ported significant variation with the pSDM  being 68% (Da-
vid et al 1996). Morikawa et al reported an even higher 
pSDM of 160% for cortex infarcts and 83% for striatum 
infarcts with a 2-h transient MCAO(Morikawa et al 1992). 
Using a Zen-type microclip for MCA occlusion in mice 
seems to result in less variation than in rat models. Kitaga-
wa et al achieved a pSDM of 10% for permanent MCAO, 
and of 45.65% for 60-min transient MCAO (Kitagawa et al 
2004).  

When proximal arteries were occluded in addition to micro-
clip occlusion of the MCA, a pSDM range of 16% to 119% 
could be achieved. Using a Sundt microclip for direct 
MCAO plus bilateral CCAO, Buchan et al (Buchan et al 
1992) achieved pSDMs of 119%, 86% and 16%  for 1-h, 2-
h, and 3-h transient MCAO respectively, when combined 
with the same duration of contralateral CCAO and perma-
nent ipsilateral CCAO, in normotensive rats. A pSDM of 
32% could be reached for 24-h permanent MCAO com-
bined with permanent bilateral CCAO. In a 3-vo transient 
MCAO model with all three vessels released at the same 
time after a period of occlusion, the pSDM was 38% 
(Schielke et al 1999) for 3-h transient MCAO, and 32% 
(Coert et al 2003) for 2-h transient MCAO. In hypertensive 
rats, a 90-min transient MCAO combined with permanent 
occlusion of the ipsilateral CCA can produce a consistent 
infarct volume with a pSDM of 25% (Colbourne et al 2000). 

Using suture tying methods in rats, the pSDM range has 
been reported as being from 13% to 99%. Selman et al 
reported the pSDM in a 1-h transient MCAO model to be 
99% (Selman et al 1994). Better consistency could be 
achieved by increasing the duration of MCA occlusion. 
Permanent MCA ligation combined with permanent ipsila-
teral CCA ligation and transient 60-min occlusion of the 
contralateral CCA (Chen et al 1986) produced a pSDM of 
19%. Infarct variation coefficients of 13% have been re-
ported (Drummond et al 1995) with 3-h transient MCAO in 
hypertensive rats.  

For MCA cauterization and permanent cut methods, a 
pSDM range of 6.6% to 149% has been reported. Morika-
wa reported a pSDM of 53% for cortex infarcts and 34% for 
striatum infarcts (Morikawa et al 1992). In a permanent 
distal MCAO model with ipsilateral CCA occlusion, Brint et 
al also reported (Brint et al 1988) a pSDM of 16-149% in 
Wistar rats and 6.6-35% in spontaneously hypertensive 
rats, which was associated with a more severe infarct in 
Wistar rats. 

A pSDM range of 12.5% to 50% could be reached in a 3-vo 
Tamura model. Yanamoto et al evaluated a 3-vo model 
both in normotensive rats and mice, in which the MCA was 
cauterized and cut permanently, along with temporary bila-
teral CCAO (Yanamoto et al 2003). When the CCAs were 
released after 60-min, the pSDM reached 50 % in rats and 
24% in mice. When the CCAs were released at 2-h post 
occlusion, the pSDM in rats was reduced to 12%; this is an 
improvement over their earlier work which described (Ya-
namoto et al 1998) a pSDM of 22% in a 3-vo transient 
MCAO of 2-h in normotensive rats (all three vessels were 
released after 2-h occlusion).  

7. INFARCTION VOLUME MEASURE-
MENT 

A. METHODS FOR INFARCTION VISUA-
LIZATION 

Measuring infarct volume evolution is time sensitive and 
methodology dependent. Tissue processing for histopatho-
logical staining may produce significant volume variation. 
Definitive determination of cerebral infarct is made by mi-
croscopic examination of hematoxylin and eosin (H&E) 
stained brain sections. Infarcted brain tissue appears as a 
sharply delineated pan-necrotic area on H&E stained brain 
sections (Garcia et al 1993). On H&E stained brain sec-
tions ischemia-induced neuronal morphological changes 
can be detected within a few hours after MCA occlusion 
while it usually needs 24-h for these ischemic changes to 
mature into a well-developed infarct. There are other more 
sensitive staining methods that can detect ischemic injury 
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as early as 15-min post MCA occlusion. These staining 
methods include the arginophilic III staining (Czurko and 
Nishino 1993; Liu and Guo 2000a) and the immunohisto-
chemical staining of microtubule-associated protein 2 
(MAP2) (Pettigrew et al 1996). The early infarct area re-
vealed using the above-mentioned pathological methods 
does not usually have enough contrast when compared 
with adjacent non-ischemic tissue. This makes it difficult for 
direct macrometric measurement of infarct volume. Alterna-
tively, the macrometric measurement of infarct volume can 
still be achieved after microscopic delineation of the infarct 
area (Liu and Guo 2000b). The above mentioned methods 
also require tissue fixation followed by a complex staining 
process, which may produce 7-12% variation of hemis-
phere volume (Overgaard and Meden 2000). Therefore, a 
standard tissue processing protocol for these methods is 
needed for reducing variation. Currently, direct macrometric 
measurement of brain infarction is most often conducted by 
using 2,3,5-triphenyltetrazolium chloride (TTC) to stain 
fresh brain sections. The TTC staining method is able to 
offer a reasonably sharp contrast between infarcted and 
normal areas as early as 3-h in rats, and 12-h in mice. It is 
relatively simple to conduct and is widely accepted by most 
stroke investigators. 

B. DIRECT VISUALIZATION OF INFARCT 
ON TTC STAINED FRESH BRAIN SEC-
TIONS 

GUIDANCE 

TTC staining is the most widely used technique to identify 
infarcted versus viable tissue. It is not selective for brain 
tissue or cell types. A brain matrix or vibratome is neces-
sary for providing clean cut sections. The extent of brain 
infarction is optimally seen between 24-36 h post ischemia 
by the staining of fresh brain sections. Species differences 
in mitochondrial dehydrogenases may account for differ-
ences in the times at which infarction can become apparent 
(see below). In vivo TTC staining should be used only for 
transient ischemic models in its reperfusion stage after ex-
cellent reperfusion has been ensured. Better contrast and 
infarct boundary delineation may be obtained with use of 
lower TTC concentration. 

SUPPORTING DISCUSSION 

TTC serves as a proton acceptor for many pyridine nucleo-
tide-linked dehydrogenases (such as succinate dehydroge-
nase); it is reduced by these enzymes in viable brain tissue 
into a red, lipid-soluble formazan, while infarcted or non 
viable tissue remains unstained (Bederson et al 1986a; 
Liszczak et al 1984). The TTC method requires the brain to 
be sectioned into several thin parallel sections with even 

surfaces for infarct volume calculation. It has been reported 
that there is good correlation between TTC, H&E (Beder-
son et al 1986a; Lundy et al 1986), and cresyl violet stain-
ing (Tureyen et al 2004). Although TTC staining is widely 
used for infarct volume measurement, there are some is-
sues that need to be considered regarding its use.   

Macrophage/glia infiltration may confound the staining re-
sults after 36-h post-ischemia. Infiltrating cells may cause 
staining in infarcted tissue.  For example, 36-h after stroke, 
macrophages and glial cells infiltrate infarcted areas, and 
result in tissue TTC staining, which would not have been 
evident at an earlier time point (Liszczak et al 1984). 
Another issue that needs to be considered is the species 
difference of mitochondrial enzymes (Stewart et al 1998). 
For example, ischemic injury can be visualized as early as 
3 hours after stroke in rats (Bederson et al 1986a; Liu et al 
2004), but may require at least 12 hours in mice. 

TTC is able to pass the blood-brain barrier, which allows in 
vivo staining (Isayama et al 1991). However, such in vivo 
staining relies on the regional cerebral blood flow (Dettmers 
et al 1994), and may only be suitable for transient cerebral 
ischemia at the reperfusion stage; it cannot be used in 
permanent cerebral ischemia (Benedek et al 2006).  

The TTC staining process is affected by several factors, 
such as TTC concentration, staining duration, and incuba-
tion temperature. A methodology paper (Joshi et al 2004) 
demonstrated that staining with lower TTC concentration 
(0.05-0.1% versus 0.6%) at 37°C for 30-min could reduce 
non-specific staining and improve contrast between in-
farcted and normal tissue, and hence provide better deline-
ation of infarct boundaries.  

C. DIGITAL METHODS FOR DEFINING 
THE INFARCTED AREA 

GUIDANCE WITH SUPPORTING DISCUSSION 

The traditional way of acquiring a digital image of brain 
infarct is to digitalize the brain section through a stereos-
cope equipped with a macro lens. TTC-stained brain sec-
tions can also be scanned into digital files for automated 
infarct recognition (Goldlust et al 1996). Manual delineation 
of the infarct area may be needed if the contrast is insuffi-
cient for an automatic infarct selection. Due to field limita-
tion of the regular objective lens, additional optical modifi-
cation may be required in order to be able to view the entire 
brain section with a regular microscope. For volume calcu-
lation, the infarct area must have enough contrast against 
the non-infarcted area that it can be distinguished from its 
surrounding areas. Infarct area can be measured using 
imaging analyzing software such as Image Pro Plus(Liu et 
al 2006), Adobe Photoshop (Horita et al 2006), NIH image 
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J (Tureyen et al 2004), or other appropriate image 
processing programs. If the contrast is excellent, as it 
usually appears on TTC stained sections, the infarct area 
can be automatically selected and calculated based on 
color differentiation. With spatial calibration the infarct area 
can be expressed in real measurement units (e.g., mm3). 

D. CALCULATION OF INFARCT VOLUME 

GUIDANCE 

When comparing infarction volumes at different time points, 
cerebral edema and infarct shrinkage should be corrected 
for.  

SUPPORTING DISCUSSION 

Ischemic infarction evolution involves different temporal-
spatial pathological processes that may influence infarction 
volume measurement. Studies on the natural progress of 
infarct evolution show significant differences in infarction 
volume between early and late time points (Gaudinski et al 
2008; van der Worp et al 2005). Cerebral edema is more 
severe 2-3 days after acute stroke. Edema may significant-
ly increase the brain tissue volume as well as the directly 
measured infarct volume. On the other hand, when an in-
farct has been evolving for one week, it will begin to shrink 
because of attenuated edema, tissue loss, and scar con-
traction. When comparing infarction volumes at different 
time points, cerebral edema and infarct shrinkage should 
be adjusted. In this situation, a corrected infarction volume 
against edema or shrinkage (Leach et al 1993; Lin et al 
1993; Swanson et al 1990) will be more suitable.  

E. CALCULATION FORMULAE FOR IN-
FARCTION VOLUME 

The following formulae can be used for calculating the cor-
rected infarction volume for both edema and shrinkage. 

Corrected infarct area = measured infarct area + area of 
contralateral corresponding structure – area of ipsilateral 
corresponding structure (Swanson et al 1990) 

Corrected infarct area = measured infarct area x area of 
contralateral corresponding structure / area of ipsilateral 
corresponding structure (Leach et al 1993) 

Infarction volume for continuous macrosections can be 
calculated as ∑(thickness x ½ (corrected infarct area of a 

section’s rostral surface + corrected infarct area of a sec-
tion’s caudal surface) 

If the infarct volume calculation is based on thin microsec-
tions (5-10 µm thickness) at fixed interval, the formula will 
look like this: 

Infarct volume = (interval + slide thickness) x (∑ (corrected 

infarct area) - ½ corrected infarct area of the first slide - ½ 
corrected infarct area of the last slide) 

F. MEASUREMENT OF INFARCTION VO-
LUME VARIABILITY 

GUIDANCE 

Use relative volume for comparison between studies and 
indicate infarct volume variation.  

SUPPORTING DISCUSSION 

Experimental stroke models are performed with one or 
more of a variety of possible subject animals according to 
the needs of the study design. In addition, researchers 
measure infarct volume using different units and at various 
time points post ischemia. This situation generally prec-
ludes direct comparison of infarction volumes between stu-
dies. Standard deviation (SD) reflects the variability in a set 
of data while standard error of mean (SEM) reflects the 
accuracy of a mean value. Therefore the SD of infarct vo-
lume reflects the stroke model outcome variation. SD can 
be normalized to its corresponding mean as a Percentage 
of SD to Mean (pSDM). Some authors in the cited papers 
expressed data as mean ± SEM; in these cases we have 
converted SEM to SD according to the formula SD = SEM x 
SQRT N. 

8. FUNCTIONAL EVALUATION 

A. THE TIMING OF FUNCTIONAL EVAL-
UATION 

GUIDANCE 

The natural process of functional recovery should be con-
sidered in functional evaluation after experimental focal 
stroke. Evaluation should be conducted at the same post-
occlusion time point in all groups but not during the 6-12 
hours post-occlusion because at this time accelerated func-
tional recovery occurs. Maximal sensitivity for functional 
evaluation can be achieved between 2-6 hours post-
occlusion.  

SUPPORTING DISCUSSION 

The extent of functional recovery after stroke is dependent 
on time, age and environmental factors (Buchhold et al 
2007). Some functions recover faster and better than oth-
ers. The most severe sensorimotor deficits can be ob-
served at 2-6 hours post stroke with a fast recovering 
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speed being observed between 6-12 h post-MCAO (Reglo-
di et al 2003). For validating neuroprotective efficacy, func-
tional tests with a slow or absent natural recovery process 
may be most appropriate, such as forelimb flexion, gait 
disturbance, and lateral resistance (Reglodi et al 2003). 
The well-known “circling phenomenon” can be observed as 
soon as the animal is fully recovered from anesthesia, but 
may not be apparent when evaluated at 24 hours in some 
stroke models (Erdo et al 2006) despite significant infarct 
volume maturation at this time. In a permanent MCAO 
model resulting in cortical infarction, it has been reported 
that most young rats (3-4 mo) do not show “circling” when 
evaluated on day 2 post ischemia (Buchhold et al 2007). 
Hence, such a highly time-dependent motor deficit may not 
be suitable for preclinical neuroprotection stroke studies. In 
order to achieve a better sensitivity in detecting neuropro-
tective efficacy, MCAO models of moderate severity should 
be used and appropriate functional tests should be con-
ducted between 2-6 hours post ischemia because function-
al deficits usually reach maximum severity at this time. For 
confirming robust neuroprotection, functional tests that 
have a slow recovery pattern may be more appropriate. 

B. EVALUATION SYSTEMS FOR NEU-
ROLOGICAL FUNCTIONAL DEFICITS 

GUIDANCE 

Select an appropriate evaluation system to cover important 
functional deficits. It is reasonable to include more tests to 
cover different functional deficits and subsequently analyze 
both the total score and individual scores because each 
function has a different recovery pattern. Functional tests 
that have a slow recovery pattern may be most suitable to 
confirm a neuroprotective effect. 

SUPPORTING DISCUSSION 

Behavioral changes after ischemic stroke can be evaluated 
using specially designed scales. Many scales are available 
for the detection of ischemic injury, but not all scales can 
be used for the validation of an intervention’s neuroprotec-
tive capability. To qualify for neuroprotection studies, the 
neurological scale must be able to detect the major ische-
mia-induced behavioral changes, including motor, sensory, 
motion coordination, spontaneous activity, reflexes, con-
sciousness, and alertness changes. Bederson’ 4-point 
scale (Bederson et al 1986b), modified Bederson’s scale 
(Becker et al 2001; Zausinger et al 2000), and Rogers’ 8-
point scale (Rogers et al 1997), although frequently used, 
are primitive measurements of motor deficits. It may be 
more appropriate if these scales are merely used for con-
firming a successful occlusion of middle cerebral artery 
after completion of surgery.  For a more informative func-

tional assessment, more complex evaluation systems like 
the 18 and 42 point scales should be considered (Chen et 
al 2001; Reglodi et al 2003). Although several functional 
tests have been developed to provide an effective neuro-
logical evaluation scale for preclinical neuroprotection stu-
dies (Buchhold et al 2007; Reglodi et al 2003; Schallert 
2006), there are no guidelines regarding their use.  

C. ANALYSES FOR NEUROLOGICAL 
FUNCTIONAL DEFICITS 

GUIDANCE 

Ensure a blind method is adhered to for conducting the 
evaluation process. Analyze both the total score and indi-
vidual scores. When a complex battery of tests is being 
used, stratified analysis of functional deficits will be prefer-
able because the changing pattern will be different in func-
tional deficits. When indicated, use non-parametric statis-
tical methods for data analysis.  

SUPPORTING DISCUSSION 

During the evaluation process, behavioral scores are given 
by the examiner based on the examiner’s observation and 
understanding of the tests; therefore, these scores are sub-
ject to the examiner’s bias. Adapting a blind method for 
functional evaluation will be necessary for reducing bias in 
preclinical neuroprotective trials. Moreover, the data set 
obtained from scaled neurological evaluation may not al-
ways conform to a normal distribution, especially when the 
sample size is small. Non-parametric statistical analyses 
should be used if the data can’t pass a normality test. For 
example, one should use a Mann-Whitney U test for two 
group comparison and a Kruskal-Wallis analysis of ranks 
for multiple group comparison.  

9. ANESTHETICS 

GUIDANCE 

When designing a preclinical study for neuroprotection, the 
protection provided by anesthetics should be taken into 
account. When neurotransmitters or neuroplasticity are the 
main foci of a study, anesthetics such as urethane, which 
do not disturb the action of neurotransmitters should be 
used. Fasting animals should be utilized in the experimen-
tal design of neuroprotection studies though caution should 
be used to reduce hypoglycemia-related mortality when 
fasting small rodents (mice, gerbils). 

SUPPORTING DISCUSSION 
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Many commonly used anesthetics have neuroprotective 
effects against cerebral ischemic injury. These anesthetics 
include isoflurane (Kawaguchi et al 2004; Xiong et al 2003), 
sevoflurane (Nakajima et al 1997; Payne et al 2005), 
desflurane (Erdem et al 2005; Tsai et al 2004), halothane 
(Haelewyn et al 2003), xenon (David et al 2008), nitrous 
oxide (Abraini et al 2004; Haelewyn et al 2008), barbitu-
rates (Warner et al 1996), propofol (Bayona et al 2004), 
ketamine (Proescholdt et al 2001), and the local anesthetic 
lidocaine (Siniscalchi et al 1998; Weber and Taylor 1994).. 

Most anesthetics have been found to potentiate the inhibi-
tory activity of the g-aminobutyric-acid (GABA)-A receptor. 
Volatile anesthetics are also antagonists of N-methyl-D-
aspartate (NMDA) and amino-3-hydroxy-5-m ethyl-4-
isoxazol-propionic acid (AMPA) receptors, and openers of 
K+ channels (Grasshoff et al 2005). Therefore, the working 
mechanism of anesthetics needs to be considered during 
the experimental design of neuroprotection studies (Maggi 
and Meli 1986; Sceniak and Maciver 2006). When an ex-
pected neuroprotection is likely via the opening of K+ 
channels, volatile anesthetics may have compounding ef-
fect and should be avoid when possible.   

Hyperglycemic effects only occur in fed animals, and thus 
can be eliminated by fasting animals 18-24h before expe-
rimentation. Xylazine is an α2-adrenergic agonist, which 
decreases plasma insulin level and induces hyperglacemia 
(Greene et al 1987; Thurmon et al 1984). Hence, xylazine 
should be avoided when blood glucose level becomes a 
concern in experimental design. In addition to xylazine’s 
hyperglycemic effects, some commonly used volatile anes-
thetics, such as isoflurane and halothane, also may cause 
a rapid increase in blood glucose levels (up to 230 mg/dl or 
12.6 mmol/L) within 20min of induction. Ketamine/xylazine 
can result in hyperglycemia reaching 290 mg/dl (15.9 
mmol/L) (Saha et al 2005).. 

10. TEMPERATURE 

A. THE NECESSITY OF MONITORING 
TEMPERATURE 

GUIDANCE 

Controlling animal body temperature in a normal range is 
necessary for eliminating the protective effect of hypother-
mia and potential harmful effect of hyperthermia (Zaremba 
2004).  

SUPPORTING DISCUSSION 

Brain temperature during hypoxia affects brain metabolism 
significantly (Winn et al 1981). Hypothermia reduces (Flo-
rian et al 2008; Miyazawa et al 2003; Ohta et al 2007) and 

hyperthermia exacerbates (Kim et al 1996; Noor et al 2003; 
Noor et al 2005) ischemic brain injury, hence, fluctuation in 
animal body temperature will increase the variability of 
stroke outcome. Ischemia itself also affects post-ischemic 
temperature regulation, which in turn influences the extent 
and severity of brain injury and functional deficits (Col-
bourne et al 2000).. 

B. MONITORING BRAIN/CORE TEMPER-
ATURE 

GUIDANCE 

Various methods may be used for monitoring body temper-
ature in stroke animal models. The simplest way of monitor-
ing temperature is by placing a temperature probe in the 
rectum of the anesthetized animal. Monitoring brain or peri-
cranial temperature may be performed with caution in some 
experiments when a difference between brain and rectal 
temperatures is predicted. Temperature monitoring should 
commence before inducing anesthesia and there is also a 
need to monitor temperature after surgery. 

SUPPORTING DISCUSSION 

Monitoring rectal temperature assumes that there are no, 
or at least there are predictable, differences between brain 
and rectal temperatures. However, brain temperature may 
actually be considerably different from rectal temperature 
during the ischemic period (DeBow and Colbourne 2003; 
Marion 2004; McIlvoy 2004; Nussmeier 2005). Pericranial 
temperature can be monitored by placing a subcutaneous 
needle thermistor adjacent to the skull in the temporal 
muscle, ( Xiong et al 2003; Yonekura et al 2004) although it 
should be noted that this measurement is very sensitive to 
small changes in needle position. Alternatively, for experi-
ments studying the effects of temperature changes during 
cerebral ischemia, a thermistor can be inserted directly into 
the brain (DeBow and Colbourne 2003; Menzel et al 1998). 
However, the latter method involves a relatively complex 
and invasive surgery to insert the brain probe, and runs the 
risk of causing brain injury and infection.  

Hyperthermia or hypothermia can occur because of the 
surgery, anesthetic, ischemia, and/or unexpected infection. 
The use of telemetric temperature probes for monitoring 
post-ischemic body temperature has a significant advan-
tage in its capacity to measure temperature continuously in 
conscious animals. In addition, telemetry can be used with 
an automated feedback system for temperature control. 
Disadvantages of this method are the high cost of teleme-
tric systems and the need for additional surgery to implant 
probes.  
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C. MAINTAINING BRAIN/CORE TEM-
PERATURE 

GUIDANCE 

Maintaining core temperature within an appropriate range 
during ischemia can be achieved by using a water heating 
pad, electric heating blanket, heat lamp and/or heating fan. 
PID temperature controller equipped heating devices pro-
vide fast response and precise temperature control. Electric 
blankets are not recommended if a telemetric system is 
being used as they may interfere with the probe signal. 
Maintaining body temperature after surgery is necessary. 
This may be done by placing animals in a humidified warm 
chamber for a few hours. 

SUPPORTING DISCUSSION 

Since the thermal conduction of a water heating pad may 
not be rapid, an overhead incandescent lamp or heating 
fan may serve as a complementary heating source to fur-
ther control temperature. It must be taken into considera-
tion that the overhead heating source may interfere with the 
operation by heating the surgical tools and the operator’s 
hands. Temperature control when using electric heating 
pads and blankets can be improved by using a proportional 
integral derivative (PID) temperature controller to allow ex 
vivo or in vivo feedback from the sensor that monitors heat-
ing pad or animal body temperature. The electric current to 
the heating pad can be either direct current (DC) or alter-
nating current (AC), depending on the experimental design 
and budget. DC powered heating devices have less electric 
noise and are well suited for electrophysiological studies. 
AC powered heating devices may be used in most preclini-
cal stroke trials that do not need electrophysiological moni-
toring.  

Maintaining body temperature after surgery is just as im-
portant as during the ischemia period because the full re-
covery of animal body temperature regulation needs time 
(Chang et al 2008; Jia et al 2006). The most popular me-
thod of maintaining body temperature is by using a warm 
chamber that keeps the environmental temperature at 28-
32°C. The considerable advantage of the thermo-controlled 
temperature regulation system with an in vivo feedback 
system, as described by Colbourne et al (Colbourne et al 
2000), is that the investigator can regulate the temperature 
of conscious animals with precision during the post-
ischemia period. Precise temperature regulation can be 
achieved with the automated telemetry system, which uses 
fine water mist with overhead fans for cooling and infrared 
lamps for heating.  

11. MECHANICAL VENTILATION AND 
BLOOD GAS/GLUCOSE MONITORING 

A. PROPER USE OF MECHANICAL VEN-
TILATION 

GUIDANCE 

The importance of using mechanical ventilation should be 
determined by the anticipated impact of the surgic-
al/anaestheic procedure on respiratory function. The poten-
tial confounding effects from respiratory functional deficits 
can be minimized by the use of mechanical ventilation. 
Unnecessary use of mechanical ventilation should be 
avoided when a particular MCAO model is not likely to 
cause respiratory problems. 

Ventilation may be needed when the operation lasts long 
(>1 hour) and when the ischemia affects brain stem func-
tion. A mixture of 30%:70% (O2:N2 or N2O) may be used for 
preclinical stroke trials combined with individualised ad-
justment of ventilator parameters. The concentration of 
inspired oxygen and ventilator parameters (tidal volume, 
airway pressure, respiratory rate, inspiratory/expiratory 
duration) can be roughly determined by a pilot experiment 
with periodic measurements of arterial blood gases. The 
respiratory rate and stroke volume can be set differently in 
accordance with the different “dead space” of each ventila-
tor and anesthetic circuit. 

SUPPORTING DISCUSSION 

Hypoxia is injurious to the CNS, especially the adult brain. 
Normobaric hyperoxia (Singhal et al 2002) and hyperbaric 
oxygen treatment (Iwatsuki et al 1994; Takahashi et al 
1992; Wallsh et al 1986) have been demonstrated to be 
neuroprotective during ischemia and reperfusion, but also 
can have deleterious effects on the normal and injured cen-
tral nervous system (CNS) (Bostek 1989; Bulte et al 2007; 
Diringer 2008). Similarly, as carbon dioxide is a potent ce-
rebral vasodilator and causes increased cerebral blood flow 
(CBF) (Kontos et al 1977a; Kontos et al 1977b; Rusyniak et 
al 2003), hypercarbia may have a protective effect during 
ischemia and reperfusion (Vornov et al 1996). On the other 
hand, extracellular acidosis caused by hypercapnia may 
inhibit neuronal functions (Velisek 1998) and cause adeno-
sine triphosphate (ATP) depletion (Yamamoto et al 1997). 
In addition to the above, intubation and mechanical ventila-
tion are commonly used to improve control of blood oxygen 
and carbon dioxide levels. However, the intubation proce-
dure itself and control of the mechanical ventilation process 
are technically demanding and may cause tissue damage 
even in experienced hands. The use of mechanical ventila-
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tion will mostly depend on the nature of the experiments. If 
the experiment is not likely to cause respiratory failure, in-
tubation and mechanical ventilation may not be necessary. 

Since respiratory function might be suppressed by anes-
thesia, endotracheal intubation and mechanical ventilation 
may be necessary in order to maintain blood gases within 
the normal range. This is especially relevant during long 
operations (>1 hour) and when the ischemia affects brain 
stem function. The components and concentrations of the 
inspired gas are essential for maintaining arterial blood 
gases within a normal range when the airway is secured. 
Oxygen and nitrous oxide are traditionally used in a mixture 
of 30%:70% (O2:N2O) in rodent stroke models. Because 
nitrous oxide has been shown to be neuroprotective in 
ischemia-induced brain injury (Abraini et al 2004; Haelewyn 
et al 2008), it may be preferable to use nitrogen mixed with 
oxygen. Since hyperoxia has been shown to have a neuro-
protective effect in brain ischemia (Liu et al 2006; Singhal 
et al 2005; Singhal 2007), oxygen concentration and pres-
sure in the inspired air should be controlled at a stable level 
so as to avoid hypoxia and hyperoxia. Therefore, a mixture 
of 30%:70% (O2:N2) may be used for preclinical stroke tri-
als combined with individual adjustment of ventilator para-
meters. Note, however, that substituting N2 for N2O may 
slow induction and recovery times, and will generally re-
quire that the concentration of volatile anesthetics be ad-
justed upwards.  

Several studies (Bottiger et al 1999; Olsson et al 2003; 
Yang et al 1997; Yonekura et al 2004) have shown that 
with an inspired gas mixture of 30% O2 and 70% N2O, the 
pre-ischemia levels of partial oxygen pressure (PaO2), par-
tial carbon dioxide pressure (PaCO2), and pH varied from 
93.4 ± 21.1 to 208 ± 45 mmHg, from 28.1 ± 4.6 to 40 ± 5 
mmHg,  and from 7.12 ± 0.04 to 7.39 ± 0.08, respectively. 
One likely reason for these large variations may be that 
different tidal volume and respiratory rates were used 
throughout these studies. For example, the respiratory rate 
and the stroke volume were set at 120 breaths /min and 
0.25 ml in the studies of Olsson et al (Olsson et al 2003) 
whilst they were set as 130 breaths /min 0.7 ml in those by 
Sheng et al (Sheng et al 1999). In addition, the normal rest-
ing tidal volume of animals ordinarily will increase, and the 
respiratory rate will decrease, in proportion to increases in 
body weight.  

B. MONITORING GLUCOSE 

GUIDANCE 

It is necessary to monitor blood glucose levels before, dur-
ing and after ischemia, especially in models causing severe 
brain damage, or in certain newly acquired genetically 
modified strains. A glucose meter may be preferable to the 

integrated glucose measurement function of a standard 
blood gas analyzer. During the post-surgery stage, hypog-
lycemia can be prevented by proper care. An animal’s ap-
petite, food consumption, and body weight should be moni-
tored, and supplemental administration of glucose by ga-
vage or intraperitoneal injection may be needed. Hypergly-
cemia can be prevented by fasting the animal overnight 
before surgery. Any observed hyperglycemia is usually not 
treated, but it may be used as a criterion for subgrouping or 
excluding animals in data analyses. 

SUPPORTING DISCUSSION 

Since hyperglycemia can cause exacerbation of ischemic 
damage, glucose should be routinely measured during ex-
perimental stroke (Lovblad et al 2003; Parsons et al 2002). 
Many commonly used volatile anesthetics such as isoflu-
rane and halothane cause a rapid increase in blood glu-
cose (Saha et al 2005). Some transgenic animals (Rajku-
mar et al 1995; Rajkumar et al 1996) might have congenital 
diabetes or have a tendency to suffer hyperglycemia after 
an ischemic insult. In contrast, the loss of appetite or ina-
bility to access food may also cause hypoglycemia in ani-
mals and may potentially affect survival rates and out-
comes, especially in small rodents (mice and gerbils).  

For blood glucose assay, a glucose meter may give more 
precise readings than the integrated glucose measurement 
function incorporated into a blood gas analyser. In addition, 
a glucose meter uses much less blood than a blood gas 
analyser and is usually quicker. 

C. BLOOD SAMPLING FOR BLOOD GAS 
ANALYSES 

GUIDANCE 

Blood sampling is necessary for periodic measurement of 
arterial blood gas and frequency of measurement should 
be selected with reference to animal size. Although pulse 
oximetry for measuring oxygen saturation has been widely 
used in clinics, its value in middle cerebral artery occlusion 
(MCAO) models is not clear. It may be considered as an 
alternative option when blood sampling from mice/gerbils is 
not possible.  

SUPPORTING DISCUSSION 

In larger animals, it is feasible to adjust the stroke volume 
and the respiratory rate of the ventilator based on the peri-
odic measurement of arterial blood gas. However, frequent 
blood sampling is not possible in small animals like gerbils 
and mice, due to their limited blood volume. In our expe-
rience, two blood samples (0.08ml per time) can be taken 
in mice using a capillary tube without affecting the survival 
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rate and ischemic outcome. The first sample could be tak-
en 10 minutes after ventilation and before ischemia; the 
second sample can usually be taken right after ischemia 
has ended. The first sample is preferably used to determine 
whether the ventilator is set properly because physiological 
parameters may change significantly in the post ischemia 
period (Bottiger et al 1999).  

12. BLOOD PRESSURE 

GUIDANCE 

Monitoring blood pressure during experiments is needed 
because blood pressure fluctuation affects stroke out-
comes. Blood pressure can be monitored by non-invasive 
and invasive methods. Use non-invasive methods for expe-
riments that cause minimal blood pressure fluctuation and 
require a neurological evaluation. Use invasive methods for 
experiments that require constant blood pressure monitor-
ing. Blood pressure fluctuation due to cerebral ischemia is 
usually not corrected during the experiment, although it can 
be used as a guide to anesthetic depth and the concentra-
tion of inspired anesthetic gas can be adjusted if appropri-
ate. 

SUPPORTING DISCUSSION 

In stroke models blood pressure can fluctuate due to anes-
thetic depth and changes in animal body temperature. In 
addition, during the ischemic period, blood pressure may 
be elevated due to the systemic response in attempting to 
maintain a normal brain perfusion pressure. The change of 
blood pressure affects regional cerebral blood flow and 
hence stroke outcome (Drummond et al 2000; Kawaguchi 
et al 2004) and clinical trials (Cole et al 1990; Rordorf et al 
1997; Wise 1970; Zhu and Auer 1995). Therefore, blood 
pressure should be monitored during experiments, espe-
cially when a significant fluctuation of blood pressure is 
expected. 

Non-invasive blood pressure monitors are equipped with 
tail-cuff devices for artery occlusion and oscillometric pulse 
detectors for readings. Because of the limited accuracy and 
the relatively long interval (in minutes) between two se-
quential measurements, this method is not suitable for ex-
periments that need constant blood pressure monitoring.  

Invasive blood pressure monitoring provides constant read-
ings throughout the experiment. A disadvantage of invasive 
blood pressure monitoring, however, is the need to estab-
lish an arterial line to connect to a pressure transducer. 
Additionally, when cannulation of the femoral artery is uti-
lized, the cannulating process and the wound associated 
with the arterial line may interfere with subsequent neuro-
logical function evaluation because of pain, impaired blood 

flow and potential nerve injury in the affected limb (Zlotnik 
et al 2008). However, if the arterial line used for blood 
sampling is also used for blood pressure monitoring the 
problems are minimized. 

Blood pressure is a sensitive indicator for assessing anes-
thetic depth, and is also an indicator for ventilation efficien-
cy. Anesthetic dose and ventilation can be modified accor-
dingly before the systemic blood gas changes occur. With 
the exception of experiments specifically designed for stud-
ying the effects of blood pressure on brain injury, blood 
pressure manipulation is usually not suggested when the 
blood pressure fluctuation is a result of an ischemic insult. 
In addition, the blood pressure information obtained during 
experiments may serve as evidence for exclusion or inclu-
sion of animals for the final analyses.  

13. THE IMPORTANCE OF A PILOT 
STUDY 

GUIDANCE 

A pilot study should be performed before the implementa-
tion of a preclinical stroke trial. Stroke model success rate, 
mortality rate, outcome variation, and sample size should 
be determined through the pilot study.  

SUPPORTING DISCUSSION 

Although information regarding the suture size, coating 
length, insertion length, and related surgical procedures is 
available in the literature, these parameters may not be 
optimal for your own experiment. In addition, the intralu-
minal stroke model demands delicate surgical skill; inexpe-
rienced surgeons need a period of time to command the 
necessary skills for producing acceptably consistent re-
sults, which is referred to as the “surgeon’s learning curve” 
(Renzulli and Laffer 2005). For these modeling reasons, a 
pilot study is needed to find out the optimal parameters for 
the MCAO suture and the lab settings for any new study. 
The pilot study will also be helpful for study design because 
it may provide the closest information for the expected in-
farct variation, success rate, and mortality rate. 

14. IMPLEMENTATION OF THE PREC-
LINICAL STROKE TRIAL 

A. ADHERE TO “GOOD LABORATORY 
PRACTICE” 

The implementation of a preclinical stroke trial should be 
conducted with high standards so that experimental bias 
can be minimized. Some journals have set “Good Labora-
tory Practice” standards for publishing preclinical trials, and 
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only studies fulfilling these standards will be accepted for 
publication in these journals. As stated in “Good Laboratory 
Practice” (Macleod et al 2009a; Macleod et al 2009b; Mac-
leod et al 2009c), a preclinical stroke trial should be con-
ducted with a clear methodology which includes at least the 
following items,: 

• Detailed information on animals used; 
• Sample Size Calculation; 
• Inclusion and Exclusion Criteria; 
• Randomization; 
• Allocation Concealment; 
• Reporting of Animals Excluded From Analysis; 
• Blinded Assessment of Outcome; 
• Reporting Potential Conflicts of Interest and Study 

Funding. 

B. USE APPROPRIATE STATISTICAL 
METHODS FOR DATA ANALYSES 

It is very important to use the correct statistical method for 
data analyses. Scaled data (such as neurological evalua-
tion and semi-quantitative data) and categorical data (such 
as mortality rates) should be treated with caution because 
incorrect statistical methods may lead to invalid conclu-
sions. As discussed in the Functional Evaluation section, 
scaled neurological scores may not always conform to a 
normal distribution and non-parametric statistical analyses 
should be used if the data can’t pass a normality test. For 
example, one should use a Mann-Whitney U-test (Estevez 
and Phillis 1997) for two group comparison and a Kruskal-
Wallis analysis of ranks (Meden et al 2002; Onal et al 
1997) for multiple group comparison. The mortality rate is a 
type of categorical data; therefore, its analysis should use 
the Chi-Square test (Lu et al 2009), not Student’s t-test 
(Tang et al 2005). 

15. FACTORS BEYOND SCIENCE 

A. THE NEED FOR SOPS FOR STROKE 
MODELS 

Stroke model procedures, especially those steps that influ-
ence model quality, have not yet been standardized. Inves-
tigators in each laboratory implement the stroke model with 
their own lab-settings. In addition, many models have been 
conducted using suboptimal procedures. This situation 
makes the results less comparable between laboratories. 
Standard operational procedures (SOP) for stroke models, 
if available, may help to improve inter-lab comparability and 
reduce outcome variations. Relevant organizations, such 
as the Society for Experimental Stroke (SFES), National 
Institutes of Health (NIH), National Stroke Association, 
American Stroke Association, and International Society for 
Cerebral Blood Flow and Metabolism (ISCBFM) may take a 

leadership role in promoting development of an SOP for 
stroke models. 

B. TECHNICAL CHALLENGES IN 
STROKE MODELS 

Some variations in stroke model outcomes are due to tech-
nical difficulties in stroke model procedures. The following 
technical challenges comprise a wishlist for the improve-
ment of stroke model quality: 

• Non-invasive blood pressure monitor with constant 
reading. 

• Minimally invasive remote brain temperature moni-
toring. 

• Warm chamber equipped with PID temperature 
controller and in vivo feedback. 

• Remote/in vivo blood gas analyser, glucose moni-
tor. 

• Light weight microclips for MCAO. 
• Micromanipulator for applying microclips, bipolar 

coagulator on MCA. 
• Uniformly shaped and lysing-controllable emboli 

for embolic MCAO model. 
• Optimized surgical tools for MCAO models. 
• Method for in vivo detection of cerebral arterial 

structure variation. 
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