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Patients with moderate-to-severe psoriasis frequently require treatment 
with systemic or biologic therapies, but considerable interpatient variability 
is observed in both clinical responsiveness and toxicity relating to these 
agents. Thus, identifying patients with a greater risk of treatment toxicity or 
nonresponse prior to treatment initiation would allow targeting of therapies 
more precisely and safely to individual patients and minimize unnecessary 
expenditure. The discovery of predictive markers of treatment response would 
be a useful tool in the development of individually tailored treatment. The 
role of pharmacogenomics is becoming increasingly important as healthcare 
moves towards the ultimate goal of personalized medicine. This article 
reviews the pharmacogenomics of psoriasis treatments to date and explores 
the potential of this growing research field to provide safer, more effective 
psoriasis treatment. In particular, we describe pharmacogenomic studies 
of methotrexate, cyclosporine, TNF-a inhibitors, efalizumab, alefacept and 
narrowband-UVB phototherapy. As psoriasis is a complex polygenic disorder 
with environmental and clinical influences at play, the combination of both 
molecular and clinical profiling is necessary to achieve optimal personalized 
management. To this end, we propose the development of models to predict 
treatment response by combining pharmacogenomic approaches with 
comprehensive clinical characterization. 
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Psoriasis is a chronic inflammatory polygenic skin disease that affects 1.5–3% of 
the population and typically follows a relapsing and remitting course [1]. The dis-
ease is associated with significant psychosocial disability and causes a reduction in 
health-related quality-of-life (HRQoL) comparable with other chronic diseases such 
as cancer, diabetes and depression [2,3]. Numerous studies have shown an increased 
incidence of cardiovascular events, obesity and metabolic syndrome in patients 
with moderate-to-severe psoriasis, suggesting that control of inflammation may be 
important for the reduction of cardiovascular morbidity [4–6]. Systemic and biologic 
treatments used for the treatment of moderate-to-severe psoriasis show significant 
variability in efficacy, and are associated with varying degrees of toxicity and cost. 
As a result, there is a great need for biomarkers to predict treatment outcomes and 
individualize care for psoriasis patients, particularly for drugs with significant side 
effects or a low rate of response. This would allow the identification of patients 
less likely to respond to particular treatments and those at increased risk of adverse 
drug reactions, reducing unnecessary exposure to treatment toxicity and result-
ing in significant health-related savings. The characterization of psoriasis patients 
according to common molecular mechanisms rather than by clinical phenotype 
may also allow the targeting of more selective therapeutic agents to genetically 
distinct groups of patients.
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While the pathogenesis of psoriasis is not fully 
understood, a complex interplay between genetic and 
environmental influences with upregulation of both 
the innate and specific immune responses appears to 
be paramount [1]. A genetic predisposition is supported 
by twin studies, family studies, a strong correlation 
with human leukocyte antigens (HLAs) and, more 
recently, data emerging from genome-wide association 
scans [7–13]. Psoriasis patients show significant genetic 
diversity, however, and although the HLA-Cw*6 allele 
confers the most significant and consistently demon-
strated risk for the development of psoriasis (p < 10-100), 
in a recent genome-wide association scan, over half of 
psoriasis patients do not carry this gene [7–13]. There 
has been little research into the impact of this genetic 
heterogeneity on treatment response. There is also sig-
nificant variation in the clinical presentation of pso-
riasis [14]. Chronic plaque psoriasis is generally divided 
into what are considered to be two genetically distinct 
types of disease, type 1 and type 2 psoriasis. The former 
have an earlier disease onset (before 40 years of age), 
more severe disease, a higher frequency of HLA-Cw*6 
positivity, and are more likely to have a positive family 
history. Those with type 2 disease develop psoriasis 
after the age of 40 years and are less likely to carry 
the HLA-Cw*6 allele or to have a positive family his-
tory. Psoriasis lesions also vary in size, thickness and 
distribution and up to 30% of patients may develop an 
associated arthropathy [15]. Palmoplantar pustulosis is 
a less common, distinct clinical variant characterized 
by sterile pustules of the palms and soles [16]. Genetic 
analyses distinguish patients with palmoplantar pus-
tulosis from those with chronic plaque psoriasis [17]. 
In addition, the drugs currently used to treat chronic 
plaque psoriasis frequently show less efficacy in this 
variant, supporting the suggestion that palmoplantar 
pustulosis is a separate disease entity with a distinct 
immunopathogenic basis [14].

Identification of pharmacogenomic markers
The International Conference on Harmonisation (ICH) 
E15 definitions for genomic biomarkers, pharmaco-
genomics, pharmacogenetics, genomic data and sample 
coding categories defines pharmaco genomics as the 
study of variations of DNA and RNA characteristics 
as related to drug response. Pharmacogenetics is the 
study of the relationship between individual gene vari-
ation and drug response [18]. A polymorphism of a gene 
occurs when the variant allele occurs in 1% of the nor-
mal population or more [19]. The most frequent type 
of polymorphism is a single nucleotide polymorphism 
(SNP), which results from a one-nucleotide alteration 
in the sequence of the gene. Variation in genes encod-
ing drug-metabolizing enzymes, transporters and drug 

targets may account for up to 95% of interpatient 
variation in treatment response, although it is gener-
ally to the order of 10–35% [20,21]. The most widely 
used example of pharmacogenetic testing in routine 
dermatology practice at present is the determination 
of thiopurine methyltransferase (TPMT) status prior 
to azathioprine administration [20,22]. Three loss-of-
function allelic variants of this enzyme can signifi-
cantly impair enzyme activity resulting in potentially 
critical bone marrow suppression after the initiation of 
azathioprine treatment. The use of pharmacogenetic 
markers and transcriptional profiling is now also being 
used to direct immunotherapy and chemotherapy in 
melanoma treatment [23]. To date, the most commonly 
used pharmacogenetic approach to assess variability 
in the efficacy and toxicity of psoriasis treatments has 
used a candidate gene approach, with evaluation of 
SNPs present in drug-metabolizing enzymes, drug 
transporters and psoriasis susceptibility genes.

Pharmacogenomics uses a whole-genome applica-
tion of pharmacogenetics to examine the influence of 
genetic variation on drug response by correlating gene 
expression with the efficacy or toxicity of the drug. 
Response to psoriasis treatment is not constant over 
time, with patients frequently losing response to treat-
ment over time or failing to respond to a second course 
of a treatment that was previously successful. This may 
be due to tachyphylaxis (a decrease in response to the 
drug with increasing exposure), development of anti-
bodies to the drug or unknown antigenic factors. Using 
pharmacogenetic markers such as SNPs to predict treat-
ment response over time does not allow for this intra-
individual variability in response to treatments. The 
ana lysis of transcriptional profiles of the skin or blood 
using RNA microarray ana lysis or RNA sequencing 
provides a means to investigate the molecular pathways 
of immune-mediated conditions on a genome-wide 
scale and has the potential to play a significant role in 
the discovery of functionally relevant biomarkers of 
response to psoriasis treatment [24,25]. Comparison of 
the differential genetic expression between respond-
ers and nonresponders to individual drugs may iden-
tify baseline immunogenetic signatures that predict 
treatment response. Assessment of changes in genetic 
expression during treatment may give further insight 
into molecular mechanisms underlying the variable effi-
cacy of these drugs and identify the immunogenetic 
pathways that lead to disease clearance. This approach 
may also facilitate the identification of more selective 
therapeutic targets in the future. 

Changes in the transcriptome, including alterations 
in levels of noncoding RNAs (including miRNAs) 
may lead to altered epigenetic modifications in pso-
riasis [26]. These include CpG methylation status or 
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histone modifications. Hence, one might also expect 
that these would be correlated with the variability in 
response to psoriasis treatments over time. Studies 
of this type in psoriasis, however, are currently lack-
ing. The study of small-molecule metabolite profiles, 
or ‘metabolomics’, allows the ana lysis and compari-
son of biochemical profiles in patients with varying 
response to treatment [27,28]. This may allow prediction 
of response to treatment at an early stage by showing 
specific profiles in patients who are responding dif-
ferently to the drug in question. By using pharmaco-
genomic approaches such as pharmacogenetics, tran-
scriptional profiling and epigenetics in combination 
with complementary techniques such as proteomics, 
flow cytometry ana lysis and metabolomics, we have 
a growing armentarium to facilitate global ana lysis 
of treatment response and to build predictive models 
using biostatistical methods. 

 ■ Methotrexate
Methotrexate has been the first-line systemic agent for 
psoriasis for over 50 years [29]; however, its mechanism 
of action remains to be fully elucidated. Its anti-inflam-
matory and immunodulatory effects are thought to be 
mediated by inhibition of the purine pathway. The use 
of methotrexate as a treatment for psoriasis is limited 
by unpredictable response and toxicity. A 75% reduc-
tion in the Psoriasis Area and Severity Index (PASI-75) 
from baseline, is conventionally used to define a sig-
nificant response in clinical trials of psoriasis treat-
ment [30]. Approximately half the patients treated with 
methotrexate do not achieve a PASI-75 response by 
week 16 [31,32], while up to 30% experience adverse 
effects that necessitate discontinuation of therapy, 
including gastrointestinal side effects, bone marrow 
suppression, hepatotoxicity, pneumonitis, neuropathy 
and alopecia [31–33].

To date, the largest pharmacogenetic studies in pso-
riasis have evaluated the effect of SNPs on treatment 
response to methotrexate [34–36]. A cohort of 374 pso-
riasis patients currently or previously treated with meth-
otrexate were recruited retrospectively, and classified as 
responders or nonresponders based on available data. 
The presence or absence of treatment toxicity was also 
recorded. The study used a haplotype-tagging method 
to assess variation in ten genes relevant to metho-
trexate metabolism. SNPs in two methotrexate efflux 
transporter genes, ATP-binding cassette, subfamily C, 
member 1 (ABCC1) and ATP-binding cassette, sub-
family G, member 2 (ABCG2), were associated with 
both efficacy and toxicity of methotrexate. Two SNPs, 
rs35592 (intron 9, ABCC1) and rs6532049 (intron 1, 
ABCG2), were significantly associated with efficacy 
(c2 test for trend: p = 0.008 and 0.0003, respectively), 

giving odds ratios of 2.2 (95% CI: 1.2, 4.1; p = 0.004) 
and 2.3 (95% CI: 1.3, 4.2; p = 0.002) for responders 
to methotrexate, respectively. Only rs6532049 remained 
significant (empiric p-value 2 [EMP2] = 0.04) after cor-
rection for multiple markers that were assessed. Five 
SNPs in ABCC1 were strongly associated with treatment 
toxicity. Interestingly, these five SNPs had a significant 
degree of linkage disequilibrium, suggesting they may 
reside on a haplotype with a common marker driving 
this association. No SNPs in the other eight genes that 
were studied had associations that remained significant 
following correction for the markers that were assessed.

A smaller study (n = 203), conducted by Campalani 
et al. that incorporated some of patients from the previ-
ously described study, found an association between an 
SNP in the reduced folate carrier, a transporter involved 
in intracellular folate transportation, and methotrexate-
induced toxicity [36]. Polymorphisms of the promoter 
enhancer region of the thymidylate synthase (TYMS) 
gene were also examined, including two or three 28 
base pair (bp) tandem repeat sequences (2R and 3R, 
respectively) and a G>C SNP in the second repeat of the 
3R allele [37]. The 3R allele was significantly (p = 0.029) 
more frequent in patients who did not respond to meth-
otrexate (64%) than in responders (50%), but frequency 
of the 3R/3R variant homozygous genotype did not vary 
significantly between these groups. 

Although these pharmacogenetic studies of metho-
trexate treatment in psoriasis suggest that SNPs may 
play a role in the variability its efficacy and toxicity, 
there are significant limitations in studies to date. First, 
the data were collected in a retrospective manner, which 
did not allow reproducible or objective collection of phe-
notypic information, and second, although these were 
among some of the largest pharmacogenetic studies 
performed to date, the power of the studies to detect 
individual adverse events was limited. 

No studies to date have used gene expression pro-
filing to assess variability in methotrexate efficacy 
or toxicity in psoriasis. Transcriptional profiling in 
human chondrocytes and colon cancer cells has been 
used to assess the response of rheumatoid arthritis 
and colon cancer to methotrexate, respectively [38,39]. 
Pretreatment cytokine profiles of PBMCs have been 
shown to characterize a subset of rheumatoid arthritis 
patients who are more likely to respond to methotrexate 
treatment, but this has not been studied in psoriasis 
patients [40].

 ■ Cyclosporine
Cyclosporine is a calcineurin antagonist that has been 
successfully utilized for the treatment of moderate-
to-severe psoriasis and other dermatoses since the 
1980s [41,42]. At a dose of 3 mg/kg/day, cyclosporine 
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rapidly produces a PASI-75 response in up to 70% of 
patients, with increased response rates seen at higher 
doses [42]. Concern regarding its adverse-effect pro-
file, however, has limited its use in dermatology. In 
particular, cyclosporine can cause chronic nephro-
toxicity, hypertension, hyperlipidemia and neurologic 
adverse effects [43]. Moreover, cyclosporine has a nar-
row therapeutic index, with significant variability in its 
pharma cokinetic profile and poor correlation between 
its serum concentration and efficacy in psoriasis [43].

Pharmacogenetic studies of cyclosporine in psoriasis 
patients are lacking. Transplantation research has pro-
vided much of our knowledge regarding the effect of 
genetic polymorphisms on variation in the pharmaco-
kinetics of cyclosporine. The oral bioavailability and 
systemic clearance of cyclosporine are controlled by 
the cytochrome P450 (CYP) isoenzymes CYP3A4 and 
CYP3A5, and by the efflux P-glycoprotein (P-gp) pump, 
a transmembrane transporter expressed in the gastro-
intestinal tract and liver that limits intestinal absorption 
and facilitates biliary excretion of lipophilic drugs and is 
encoded by the gene ABCB1 (ATP-binding cassette B1; 
also known as multi drug resistance-1 [MDR1]) [44–60]. 
Many SNPs in the CYP3A4, CYP3A5 and ABCB1 
genes have been identified and are thought, in part, to 
account for the variability in the pharmacokinetics of 
cyclosporine. There is significant ethnic variation in the 
prevalence of these  polymorphisms [44,45].

When expressed, CYP3A5 may represent up to 50% 
of the total CYP3A content [46]. In one study, healthy 
volunteers carrying the CYP3A5 6986A>G wild-type 
allele (CYP3A5*3C) showed a lower area under the 
concentration-time curve (AUC) and higher clearance 
of cyclosporine compared with those homozygous for 
the variant allele [47]. Aside from one isolated study 
that showed lower dose-corrected cyclosporine levels in 
6986A carriers [48], other studies have failed to demon-
strate any relationship between cyclosporine pharmaco-
kinetics and CYP3A5 polymorphisms [49–51]. In another 
study of the pharmacokinetics of cyclosporine in 
healthy subjects, patients who were homozygous for the 
CYP3A4*18B allele (characterized by a G>A substitu-
tion at position 82266) showed significantly higher oral 
clearance and a lower AUC of cyclosporine compared 
with those who were homozygous for the wild-type 
CYP3A4 allele [52]. In a study of 103 renal transplant 
patients, lower serum cyclosporine concentrations were 
also seen in patients who were homozygous for the 
CYP3A4*18B allele [53]. 

Findings on the influence of SNPs of ABCB1 on 
the pharmacokinetics of cyclosporine have also been 
conflicting. In a study of 106 renal transplant recipi-
ents, there was a small but significant decrease in the 
dose-corrected AUC in carriers of the ABCB1 1236C>T 

wild-type allele [51]. Patients who were homozygous for 
the variant T allele of the ABCB1 3435C>T polymor-
phism had higher dose-corrected cyclosporine levels and 
required only 50% of the dose required by wild-type 
patients in a study of liver transplant recipients [54], 
but again this was refuted in two other studies in renal 
transplant patients [55,56]. Fanta et al. reported 1.5-fold 
increased oral bioavailability of cyclosporine in pediatric 
renal transplant patients over the age of 8 years with 
the variant 1236T and 2677T alleles, suggesting that 
the effect of ABCB1 polymorphisms on cyclosporine 
pharmacokinetics may be age-related [57]. 

Conflicting reports also exist regarding the impact 
of SNPs on cyclosporine-induced nephrotoxicty. In a 
study of cyclosporine-treated renal transplant patients, a 
lack of cyclosporine-induced upregulation of renal P-gp 
expression was associated with nephrotoxicity, suggest-
ing that the ABCB1 genotype may be a risk factor [58]. 
Donor kidneys bearing the homozygous variant ABCB1 
3435 TT genotype were associated with a higher inci-
dence of nephrotoxicity in transplant recipients [59]. 
Surprisingly, however, in a study of liver transplant 
patients, homozygosity for the ABCB1 2677T (S893) 
allele, which is strongly linked to the 3455TT geno-
type, was associated with reduced risk of chronic renal 
 dysfunction post-transplantation [60].

A study examining genetic susceptibility to 
cyclosporine-induced gingival overgrowth in 52 renal 
transplant patients suggested that the presence of the 
HLA-DR1 allele had a protective role against this adverse 
effect [61]. Of the 26 patients with gingival hypertrophy, 
one was positive for the HLA-DR1 allele, compared with 
nine of the 26 without gingival hypertrophy. Although 
this was statistically significant (p < 0.001), the small 
numbers in each group and lack of validation in further 
studies makes routine use of this test in clinical practice 
for psoriasis patients unlikely.

There have been two studies of the effect of 
cyclosporine treatment on gene expression in mod-
erate-to-severe psoriasis using RNA microarray ana-
lysis [24,25]. The first study analyzed the effect of 
cyclosporine treatment on genetic expression in the 
blood and skin of 11 responding patients using RNA 
microarray ana lysis and real-time PCR. Microarray 
ana lysis was performed in the blood of four respond-
ing patients at baseline and on day 14 of treatment, 
and in the lesional and nonlesional skin of nine and 
five patients, respectively, at baseline and at day 14 in 
eight patients. Cyclosporine downregulated the expres-
sion of 220 genes by at least 1.5-fold in skin, the vast 
majority of which were associated with proinflamma-
tory cells, keratinocytes and fibroblasts. By contrast, 
there were no changes in genetic expression in periph-
eral blood at day 14. When expression of genes in the 
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skin was correlated with the overall clinical score (using 
epidermal thickness, PASI and K16 expression), IL-17 
expression correlated best with activity at day 14, while 
inducible nitric oxide synthase (iNOS)  correlated best 
with long-term response. 

The second study examined the alteration of 
expression levels of genes that were upregulated in 
the skin of psoriasis patients following treatment with 
cyclosporine [25]. Microarray profiling was used to ana-
lyze genetic expression in lesional and nonlesional skin 
from eight patients compared with normal skin and 
showed 159 differentially expressed genes. Evaluation 
of the effect of cyclosporine treatment on the expres-
sion of these 159 genes in the skin of three psoriasis 
patients (two responding, one nonresponding), showed 
upregulation of genes encoding S100A12, ID4, MTX1 
and HBP17 (FGFBP1) within 1 week of treatment, 
preceding clinical improvement in responders only.

 ■ Acitretin
Acitretin, a vitamin A derivative, has been used to treat 
psoriasis since the early 1980s. The mechanism of action 
of oral retinoids in psoriasis is not fully understood, but 
they are known to decrease epidermal proliferation and 
have anti-inflammatory properties. As a monotherapy, 
acitretin is less effective than other systemic agents with 
approximately 25% of patients achieving a PASI-75 
response [62]. Higher doses give better responses, but 
are limited by toxicity factors, especially  mucocutaneous 
adverse effects.

Polymorphisms of VEGF are associated with an 
increased susceptibility to psoriasis [63–65]. The VEGF 
gene is expressed on chromosome 6, close to PSORS1. 
The VEGF-460C>T polymorphism has been shown 
to play a role in predicting response or nonresponse of 
psoriasis to acitretin [66]. This polymorphism is asso-
ciated with early-onset psoriasis and is situated close to 
the functional activator site through which retinoids 
block VEGF production.

Another study evaluated polymorphisms of the apo-
lipoprotein E gene (APOE) as predictors of response to 
acitretin [67]. Although the frequency of the APOE e4 
allele (+3937C/+4075C) was higher in patients with 
chronic plaque and guttate psoriasis than in controls, 
there was no significant difference in the frequency 
of alleles in acitretin responders and nonresponders.

TNF-a inhibitors
Anti-TNF-a therapies have revolutionized the treat-
ment of psoriasis and psoriatic arthritis. However, 
TNF inhibitors are expensive and are associated with 
potentially serious adverse effects. While they are very 
effective, the response to treatment is variable, and 
20 to 50% of patients achieve an inadequate response 

or lose response over time [68–71]. Likewise, they are 
expensive and associated with side effects, occasionally 
serious. Infliximab and adalimumab are monoclonal 
antibodies to TNF-a, while etanercept is a recom-
binant human TNF-a receptor fusion protein [72]. 
As there is little metabolism of biologic agents, drug 
pharmacodynamics are likely to play a greater role 
than pharmacokinetics in the variation in treatment 
response observed with these agents. Pharmacogenetic 
studies of anti-TNF treatments, however, are lacking.

Functional polymorphisms in the promoter region of 
the TNF gene at G>A238, G>A308 and -857 influence 
the binding of transcription factors and TNF-a pro-
duction in psoriasis [73]. Many studies have examined 
polymorphisms associated with this gene as predictors 
of response to anti-TNF treatments for rheumatoid 
arthritis and have produced conflicting results [74–82]. 
One preliminary study has examined polymorphisms 
in the TNF promoter region in 220 psoriasis patients 
treated with etanercept and 29 patients treated with 
adalimumab [83]. The data were analyzed for an allelic 
association between drug response and genotypes for 
four SNPs in the promoter region of TNF. There was 
a moderate association between adalimumab respond-
ers and the -1031T/C polymorphism (OR = 4.43; 
p = 0.04). This study may be of limited benefit, how-
ever, as the assessment of response was subjectively 
determined by the patients using a visual analog scale.

Pharmacogenetic studies of the HLA-Cw*6 allele, 
the most significant psoriasis susceptibility gene, have 
not shown an association with treatment response 
to TNF -a inhibitors. In a study of patients treated 
with etanercept (n = 78) or adalimumab (n = 50), 
the presence of the HLA-Cw*0602 allele did not 
predict response to etanercept, although there was a 
non significant trend suggesting that HLA-C*0602-
positive patients were more likely to respond to adali-
mumab (c2 = 2.77; df = 1; p = 0.09) [84]. In a study of 
82 patients treated with etanercept (n = 48) or efali-
zumab (n = 34), the presence of the HLA-Cw*6 allele 
was linked to treatment response to efalizumab but 
not etanercept [85].

A small study comparing the genomic expression pro-
files in the skin of 15 patients responding (n = 11) or not 
responding (n = 4) to etanercept showed suppression of 
IL-17 signaling genes rather than TNF-related genes 
with effective treatment [86]. Gene-expression profil-
ing in lesional and nonlesional skin has been used to 
determine the changes in gene expression following 
3 months of etanercept treatment in patients respond-
ing to treatment [87]. Interestingly, the expression of 
a subset of genes did not return to nonlesional levels 
despite apparent clearance of disease. A ‘residual disease 
genomic profile’ of 248 probe sets was identified that 
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failed to improve by more than 75%. This ‘molecular 
scar’ of psoriasis may explain the tendency of psoriasis 
to recur and provide new therapeutic targets for the 
treatment of psoriasis; however, no psoriasis study has as 
of yet used transcriptional profiling to predict response 
to anti-TNF treatments prior to initiation of therapy.

Genetic profiling of PBMCs before treatment has 
been used to predict response or nonresponse to inflixi-
mab in the treatment of rheumatoid arthritis [88]. The 
combined expression of 20 trancripts classified 16 out of 
20 patients with a sensitivity of 90% and specificity of 
70%. Another study in rheumatoid arthritis showed dif-
ferential expression of 42 genes in PBMCs in responders 
and nonresponders to etanercept after 3 days of treat-
ment [89]. Expression change of seven pairs and ten 
triplets within the 42 genes had a prediction accuracy 
of 89% at day 3. Although these gene sets could not 
predict treatment response before initiation of therapy, 
they predicted treatment response at a very early stage. 

At present, as with rheumatoid arthritis, there are no 
good predictors of treatment response to TNF inhibi-
tors in psoriasis, a class of biologic agents important 
for the treatment of severe psoriasis. TNF-induced 
protein (TNFAIP)3 and TNFAIP3-interacting pro-
tein (TNIP)1 are psoriasis susceptibility loci whose 
gene products work downstream of TNF [11]. These 
polymorphisms should be investigated as potential 
pharmacogenetic markers of treatment response to 
TNF inhibitors.

 ■ Alefacept
Alefacept, a fully human fusion protein consisting of 
the extracellular portion of lymphocyte-function-asso-
ciated antigen type 3 and the Fc domain of IgG1, was 
the first biologic therapy approved for use in  psoriasis 
in 2003 [90]. It binds to CD2 on T-lymphocytes and 
natural killer cells to inhibit secondary signaling and 
induce T-cell apoptosis. Although a PASI-75 response 
is achieved in less than 25% of patients by week 
14, alefacept produces a significant and prolonged 
remission in a small subset of patients for a median 
duration of 7–8 months following a single 12-week 
course, a feature seldom seen with other biologic or 
systemic agents [90,91], making it an ideal candidate for 
 pharmacogenomic studies.

In a study by Haider et al., responders and non-
responders to alefacept had distinct signatures of gene 
expression [92]. Alefacept downregulated several genes 
related to T-cell or natural killer cell signaling at 6 h 
post-treatment in responders, including CD3D, CD2, 
CD8A, IL-2-inducible T-cell kinase (ITK ), and KLR-
subfamily C, member 3 (KLRC3), while nonresponders 
had increased expression of Toll-like receptor-5 (TLR5) 
and spleen tyrosine kinase (SYK ). The gene expression 

of forkhead box P3 (FOXP3), a known marker of regu-
latory T cells, was increased in peripheral blood mono-
nuclear cells (PBMCs) of responders only. At baseline, 
prior to initiation of treatment, 199 genes were dif-
ferentially expressed in the pretreatment blood of 
responders compared with nonresponders. Genes that 
were overexpressed in nonresponders included T-cell 
activation genes such as CD69, integrin-a6 (ITGA6 ) 
and CD3D, while the expression of CD2, CD8A, 
CD33, TLR5, and myeloid differentiation primary 
response gene 88 (MYD88) was higher in responders. 
Alefacept also decreased circulating CD3+, CD4+ and 
CD8+ T cells more significantly in responders than 
in nonresponders. These combined parameters would 
allow categorization of responders and nonrespond-
ers before treatment or at an early timepoint after 
 commencing treatment.

A study of 20 patients using quantitative PCR to 
examine genetic markers of treatment response to ale-
facept showed a 2.4-fold upregulation of TOAG1 in the 
PBMCs of responding patients by week 2 and a 5.5-fold 
upregulation of the receptor for hyaluronic acid medi-
ated migration (RHAMM; also known as HMMR) in 
the PBMCs of nonresponding patients by week 3, before 
clinical improvement (mean week 9) was seen [93]. At 
week 2, a cut-off value of 115% TOAG1 expression com-
pared with 100% before therapy had high sensitivity 
(0.889) and specificity for predicting response, while 
similarly, at week 3 a cut-off value of 142% RHAMM 
expression compared with 100% before therapy also 
predicted nonresponse with high sensitivity (0.7) and 
specificity (1.0). A ratio of TOAG1/RHAMM gave 
enhanced discrimination between responders and non-
responders at any timepoint during treatment, with a 
cut-off of 1.36 predicting response with a sensitivity of 
0.889 and a specificity of 0.909.

A further study used a genomic classifier to predict 
histological response to alefacept prior to treatment ini-
tiation [94]. Microarray data from PBMCs of 16 patients 
were analyzed using the ‘nearest shrunken centroid’ 
method of discriminant ana lysis to produce a disease 
response classifier of 23 genes that accurately predicted 
response to alefacept with a 12.3% error rate (S-F). 
Although small, this is the first study in psoriasis to use 
a treatment response classifier based on gene expression 
of PBMCS collected prior to treatment initiation and 
serves as a paradigm for future larger studies. 

 ■ Efalizumab
Efalizumab, an anti-CD11a monoclonal antibody, has 
now been withdrawn from the market following four 
reported cases of fatal progressive multifocal leuko-
encephalopathy (PML) [95]. This drug achieved a 
marked and sustained improvement in approximately 
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25–30% of psoriasis patients, particularly in those with 
palmoplantar disease [96]. As with alafecept, it would 
have been very valuable to identify this patient subgroup 
using pharmacogenomic markers. As described previ-
ously, the presence of the HLA-Cw*6 allele was asso-
ciated with response to efalizumab [85]. Moreover, those 
negative for the allele were more likely to experience 
a rebound flare after discontinuation, suggesting that 
this single pharmacogenetic marker could predict both 
treatment response and treatment toxicity. Another 
smaller study also showed an association between 
the presence of the HLA-Cw*6 allele and response to 
efalizumab [97,98]. In a larger study to identify genetic 
markers of treatment response to efalizumab, however, 
whole-genome scanning of a 542-patient subset from 
a multicenter, open-label, Phase IIIb/IV study failed to 
identify HLA-Cw*0602 as being statistically associated 
with treatment response to efalizumab [99]. At present, 
studies are assessing gene-expression profiles of previ-
ously stored PBMCs of patients treated with efalizumab 
to identify predictive signatures of treatment response 
and of paradoxical disease flaring. The characterization 
of dysregulated immunogenetic pathways central to the 
development of PML in affected individuals may also 
allow identification of markers that predict suscepti-
bility to this fatal infection with treatments such as 
efalizumab, rituximab and natalizumab (Tysabri). 

Anti-IL-12/-23 antibodies
Antibodies to the common p40 subunit of IL-12 and 
IL-23 have shown significant efficacy in the treatment of 
chronic plaque psoriasis with maintenance of response 
in the vast majority of patients [100,101]. Genome-wide 
association scans have shown genetic polymorphisms of 
the IL-23 receptor (IL-23R), IL-23A and IL-12B to be 
significantly associated with psoriasis [11,102–105]. There 
is overexpression of IL-12 and IL-23 in lesional psoriatic 
skin [106–108]. Patients with the IL-12RB-associated risk 
haplotype show increased IL-23 and decreased IL-12 
expression and secretion, providing a biologically plausi-
ble mechanism for the increased risk of psoriasis observed 
in these patients [109]. These poly morphisms may also 
influence response to  anti-IL-12p40  treatments, but this 
has yet to be investigated.

Phototherapy
Narrowband UVB (NB-UVB) is very effective for the 
treatment of psoriasis, clearing up to 80% of patients 
using a three-times weekly regimen [110]. Attendance 
for phototherapy three times a week, however, is a sig-
nificant time commitment in busy modern day living 
and leads to work-related difficulties. The identification 
of predictors of response to NB-UVB would allow bet-
ter targeting of therapy to those psoriasis patients who 

would benefit most. There is considerable variability in 
the number of exposures of NB-UVB required to clear 
psoriasis and in the duration of remission. Studies have 
shown that NB-UVB affects vitamin D status while 
clearing psoriasis [111,112], which could partly explain its 
beneficial effect. Vitamin D3 exerts the majority of its 
effects by binding to the vitamin D receptor (VDR). In 
a prospective study of 119 patients with chronic plaque 
psoriasis treated with NB-UVB, the influence of genetic 
polymorphisms of the VDR (Fok1, Apa1, Bsm1, Taq1 
and rs4516035) and clinical variables on the clearance 
rate and remission duration were assessed [113]. The 
Taq 1 VDR polymorphism (rs731236) significantly 
predicted remission duration (p = 0.038). This poly-
morphism results in a silent T to C transition in exon 9 
at the 3´ region of the VDR gene, leading to decreased 
VDR activity [114]. The negative influence of carriage 
of the C allele on remission duration is highlighted by 
shorter remission duration in those homozygous for 
the C allele compared with those homozygous for the 
T allele (p = 0.013) or heterozygous for the C allele 
(p = 0.026). Patients homozygous for the T allele were 
only 48% as likely as those homozygous for the C allele 
to relapse. The only clinical factor influencing remis-
sion duration was the number of exposures (p = 0.0009) 
with a decreased remission duration in those who 
required a greater number of exposures to clear. This 
was the first prospective study to investigate both clini-
cal and genetic parameters as predictors of response to 
psoriasis treatment in tandem and serves as a paradigm 
for future pharmacogenomic studies in psoriasis.

Topical treatments
 ■ Vitamin D analogs

Topical vitamin D analogs are known to improve pso-
riasis. However, the response is not dramatic and a sig-
nificant proportion of patients show minimal improve-
ment. This differential responsiveness was evaluated by 
Chen et al. who showed that clinical response correlated 
with induction of vitamin D receptor (VDR) messenger 
RNA (mRNA) expression in psoriatic plaques, with no 
increase in the receptor mRNA level in nonrespond-
ers [115]. This suggests that response of psoriasis to 
treatment with topical vitamin D

3
 is determined by the 

ability to upregulate transcription. Polymorphisms of 
the VDR gene may influence this transcription. Studies 
of the association of VDR gene polymorphisms and 
response to topical vitamin D analogs, however, have 
shown conflicting results [114,116–120]. In a study by 
Halsall et al. (114 patient)s with the A, F and T alleles 
of the A-1012G, Fok1 and Taq1 VDR polymorphisms, 
respectively, were shown to have a positive response to 
topical calcipotriol. In a study of Turkish familial pso-
riasis, patients homozygous for the Taq1 T allele had a 
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higher rate of nonresponsiveness to calcipotriol treat-
ment [116]. In a Japanese study, the frequency of the Fok1 
F allele was lower in patients who did not respond to 
calcipotriol [117]. There was no association between VDR 
genotype and response to calcipotriol in three other 
studies, most of which had small numbers of patients 
[118–120]. As response to topical vitamin D

3
 analogs is rea-

sonably quick and these drugs are relatively inexpensive 
and nontoxic in comparison with systemic medications, 
the evaluation of pharmacogenetic predictors of response 
in individual patients is neither practical nor necessary 
in clinical practice. Identification of genetic markers that 
account for variability in treatment response may, how-
ever, instruct us further as to the molecular mechanism 
of action of the numerous vitamin D analogs available 
for the treatment of psoriasis.

 ■ Coal tar preparations 
Coal tar has been used for over 100 years in the topi-
cal treatment of psoriasis. Glutathione S-transferase is 
involved in the detoxification of carcinogenic deriva-
tives of coal tar and is encoded by the glutathione 
S-transferase-Mu (GSTM) gene. Approximately half 
of Europeans carry the GSTM1-null allele, which results 
in low or absent activity of this enzyme. Those carry-
ing the GSTM1-null allele showed a twofold increase in 
urinary 1-hydroxypyrene (a biomarker of polyaromatic 
hydrocarbon exposure) compared with those who had 
normal enzymatic activity [121]. Although there are no 
convincing data on an association between topical tar 
treatment and carcinogenicity in humans, there is a 
theoretical risk of higher mutagen exposure in those 
with the null allele.

Conclusion & future perspective
The science of individualizing treatment using molecu-
lar profiling and clinical phenotyping is gaining rapid 
momentum. Psoriasis results from a complex interplay 
between both genetic and environmental factors, and 
although clinical phenotype is likely most strongly 
influenced by genotype, it is also modulated by environ-
mental influences and extraneous factors, including 
smoking status, alcohol intake, body mass index and 
comorbidites. These could affect the transcriptome 
through epigenetic modifications described above. As 
a result, predictive models or algorithms of treatment 
response must combine pharmacogenomic approaches 
with comprehensive clinical characterization for the 
development of truly ‘personalized’ medicine. 

Until now, pharmacogenomic studies in psoriasis 
have been underpowered to produce reliable results and 
the majority have not recorded treatment response or 
toxicities prospectively in an objective and reproducible 
manner. Many of the published studies to date have 

adopted a candidate gene approach, focusing on single 
gene polymorphisms based on existing knowledge of the 
metabolic pathways of psoriasis treatments producing 
conflicting or nonsignificant results for the most part. 
Validation of results in distinct, adequately powered 
patient cohorts is therefore essential before pharmaco-
genomic markers can be used to predict treatment 
response in the clinical setting. 

Psoriasis has been increasingly used as a paradigm for 
autoimmune diseases and for proof-of-principle stud-
ies of targeted biologic therapies due to easy accessibil-
ity to the skin and the ability to objectively measure 
disease severity and treatment response. The ana lysis 
of genetic variation and transcriptional profiling as 
part of large-scale Phase III or IV clinical drug trials 
could facilitate great advances in the field of pharma-
cogenomics of psoriasis and of autoimmune diseases in 
general. Alternatively, genome-wide association studies 
assessing response or toxicity to individual drugs may 
identify predictive markers of treatment response, but 
this would entail large numbers of patients to produce 
meaningful and statistically valid results. This could be 
achieved through the development of collaborations or 
large-scale meta-analyses in well-characterized patient 
populations that are uniformly treated and systemically 
evaluated. The genetic profiling of patients in registries 
for systemic and biologic treatments, which accrue com-
prehensive demographic and phenotypic information 
and prospectively record treatment response and tox-
icities over time in a standardized fashion could play 
a valuable role in advancing the field of pharmacog-
enomics of psoriasis. Data-modeling techniques could 
be employed to integrate longitudinal data collected 
from these patients, such as genetic polymorphisms, 
gene-expression profiling, epigenetic, proteomic and 
metabolomic studies, and flow cytometry ana lysis in 
association with comprehensive clinical phenotyping to 
construct models predictive of treatment response with 
more far-reaching applicability.
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