Research Article

Transforming growth factor β 1 expression in uterine leiomyomas and adjacent myometrium

Antigone Sourla, Ioanna Gaka, Peter Lembessis, Stelios Michalas, George Creatsas & Michael Koutsilieris[†] MD, PhD

[†]Author for correspondence Department of Experimental Physiology, Medical School, University of Athens, Goudi 115 27, Athens, Greece. Tel: +30 210 746 2597 Fax: +30 210 771 1222 mkouts@medscape.com

 $\label{eq:keywords: leiomyomas, lutenizing-hormone-releasing hormone analog, transforming growth factor \beta1$

Objective: To analyze the expression of transforming growth factor (TGF) β 1 in human uterine leiomyomas and adjacent myometrium obtained at hysterectomy of women at mid/late follicular phase (n = 15), at mid/late luteal phase (n = 12) and after sex steroid ablation therapy. Materials and methods: Sex steroid ablation therapy was carried out using luteinizing-hormone-releasing hormone analog (triptorelin 3.75 mg intramuscularly every 28 days for at least 3 months; n = 10) and postmenopause (n = 8). The expression of TGF β 1 mRNA was analyzed by northern blots and *in situ* hybridization analysis while the immunohistochemical analysis assessed TGF β 1 expression at protein levels. In addition, we tested the time- and dose-dependent effects of TGF β 1 (0.5– 50 ng/ml; final concentration; 24 and 48 h) on the proliferation (cell number; trypan blue exclusion) of KW smooth muscle-like myometrial cells in vitro. Results: Our data demonstrated that TGF β 1 (mRNA and protein) expression was higher in leiomyomas at mid/late follicular phase compared with those at luteal phase and to adjacent myometrium at either phases of the menstrual cycle. However, TGFβ1 expression (mRNA and protein) did not differ significantly among leiomyomas at luteal phase, leiomyomas after luteinizing-hormone-releasing hormone analog therapy, myometrium at follicular phase, myometrium at luteal phase and myometrium postmenopause. Conclusion: We conclude that TGFβ1 may be an important autocrine/paracrine factor in human leiomyomas particularly during the mid/late follicular phase.

Uterine leiomyoma is the most common neoplasia in women. It is estimated that 20 to 30% of all women will eventually develop a uterine leiomyoma. This may have a negative impact on women's fertility as it represents the most common cause of hysterectomy of women during the reproductive years [1]. Uterine leiomyomas are rarely diagnosed before puberty as they increase in size during pregnancy and decrease in size after the menopause. Consequently, it has been suggested early on that sex steroid hormones may participate in the pathophysiology of the disease [2,3]. In addition, numerous studies have strongly supported the notion that uterine-derived growth factors can act as local mediators of sex steroid hormone action on uterine tissues as well as on other sex steroid target tissues [3–6]. As a result, a long list of growth factors have been investigated for possible causative implications in the pathophysiology of leiomyomas over the last 30 years [4-8]. Indeed, the transforming growth factor (TGF)β1-3 family and type I-III TGFB receptor(.R)s have been the focus of intense investigation [9,10]. The exogenous administration of TGFB1 has demonstrated that it exerts pivotal actions on myometrium smooth muscle cells in vitro, acting at

different concentrations either as inhibitors or stimulators, depending on the presence or absence of other local growth factors [11]. However, studies focusing on TGFB1 expression have presented contradictory data, suggesting that TGF β 1 mRNA expression is either similar between leiomyomas and adjacent myometrium at all phases of the menstrual cycle [12] or higher (20%) in human adjacent myometrium when compared with leiomyomas [11]. Interestingly, the latter study reported that the TGFB1 bioactivity is remarkably increased (by 40%) in human myometrium at early/mid luteal phase (LP), possibly as a result of the regulatory or hormonal influences at this particular phase on pH and serine protease activity [11]. However, other investigators have documented that leiomyomas overproduce TGFB1 and TGFB.R when compared with myometrium [13-17]. In addition, sex steroid ablation therapy using luteinizing-hormone-releasing hormone analog (LHRH-A) was shown to downregulate TGF^β1 expression in human leiomyomas [13,15,17].

Herein we have investigated the effects of exogenous administration of TGF β 1 (1–25 ng/ml) on KW smooth muscle cell-like myometrial cells *in vitro* and analyzed TGF β 1 expression in human leiomyomas and adjacent myometrium of premenopausal women. Uterine tissues were selected at mid/late follicular phase (FP) and mid/late LP, as established by menstrual history and confirmed by histopathologic evaluation of the endometrium after hysterectomy. In addition, TGF β 1 expression was assessed in leiomyomas of women receiving LHRH-A (triptorelin; for at least 3 months) and of women postmenopause (for at least 3 years of the menopause).

Material & methods Cell culture

KW smooth muscle-like myometrial cells have been previously characterized in our laboratory [18,19]. This cell line was grown in 75 cm² culture flasks using Dulbecco's modified Eagle's medium (DMEM)F/12 (Gibco BRL) containing 5% fetal bovine serum (FBS). KW cells were plated at a cell density of 2.5×10^4 cells in 24-well plates and grown with DMEM/F-12 containing 5% FBS. Cells were then exposed to TGFβ1 in a dose-dependent (1–25 ng/ml) and time-dependent manner (24 and 48 h). The number of KW cells was counted on a hematocytometer and their viability was determined by trypan blue exclusion assay [19].

Tissue biopsies

The uterine biopsies were obtained during hysterectomy of women who had previously signed an informed consent pre-approved by the local Ethics Committee. The phase of the reproductive cycle was calculated by the women's menstrual history (mid/late FP: 10–14 days; mid/late LP: 24–28 days) and confirmed by pathology evaluation of the endometrium after hysterectomy. Tissue biopsies of leiomyomas and adjacent myometrium selected to be in:

- Mid/late FP (n = 15; increasing estrogen levels/absent progesterone)
- Mid/late LP (n = 12; increased estrogen/progesterone levels
- greater than 3 months after sex steroid ablation therapy (L_{LHRH-A}; minimal levels of sex steroids), using a LHRH-A; triptorelin 3.75 mg, every 28 days
- Postmenopause (Mn; minimal levels of sex steroids). Tissues were collected at surgery and kept frozen (-80°C) until their use

TGF β 1 expression

Northern blots and *in situ* hybridization analysis were employed to assess TGF β 1 mRNA expression

while immunohistochemistry was used to assess TGF β 1 expression at the protein level.

Northern analysis

Uterine tissues were homogenized and extracted with phenol/chloroform. The RNA was precipitated in 80% ethanol [20-22], and its concentration was determined spectrophotometrically at 260 and 280 nm. 10 µg poly-A mRNA was isolated in chromatography columns of oligo-dT cellulose, subjected to electrophoresis in 1.2% agarose gel and transferred onto Hybond NTM (Amersham) membrane. These membranes were pre-exposed and exposed in hybridization conditions prior to transfer. Blots were exposed to ³²P-labeled human TGFB1 and Glyseraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA. TGF β_1 cDNA probe detected a 2.6 kB TGF β_1 mRNA in human tissues. Human GAPDH/TGFB1 cDNAs were obtained by American Type Culture Collection (ATCC). Autoradiogramms were visualized on KODAK X-Omat RP films with Cronax lightning screens. The shadow density on films was analyzed with LKB 2222-020 Ultrascan XL laser densitometer. The basic expression of GAPDH (obtained from ATCC) was used as an internal marker. This probe traces a zone at 1.2 kB representing the expected size of GAPDH mRNA. Thus, the expression of TGFB1 mRNA versus GAPDH mRNA was calculated for each sample (signal density) and the ratio of $TGF\beta1$ mRNA:GAPDH mRNA was used for our calculations and the statistical analysis of the results [21,22].

In situ hybridization

The leiomyomas and myometrial tissues were initially kept at -80°C and were then embedded in Optimal Cutting Temperature (OCT) compound and mounted onto a cryostat. Serial sections were cut (8 mm thick) at -20°C, collected on poly-L-lysine coated slides, fixed for 20 min in 4% paraformaldevde (w/v) in 0.1 M phosphate buffer at 4°C and then washed in 0.1 M phosphate buffer for 20 min (4 times × 5 min each). Prior to hybridization, the sections were washed in 2 × SSC (0.3 sodium chloride and 0.03 sodium citrate) and then in a $2 \times SSC$ solution containing 0.1% Triton X-100 for 10 and 10 min respectively. Prehybridization was performed in a buffer solution containing 50% formamide $5 \times SSPE$ (v/v) $(20 \times SSPE =$ 0.18 M NaCl and 10 mm NaH₂PO₄), 1 mM ethylenediaminetetraacetic acid (EDTA) (pH

ATCC: American Type Culture Collection; GADPH: Glyseraldehyde-3-phosphate

dehydrogenase; L: Leiomyomas; M: Myometrium.

7.4), 0.1% SDS, 0.1% (w/v) polyvinylpyrrolidone, 200 µg/ml denatured salmon testis DNA, 2 mg/ml poly(AMP), 4% (w/v) dextran sulfate and 10 mM DTT at RT for 2 h [20,21]. Concentration of 2 million counts of ³⁵Slabeled human TGF β_1 probe was used. The radiolabeled TGF β_1 cDNA probe was diluted in the prehybridization buffer and applied to each section. Hybridization was performed at 39°C for 16 h. After hybridization, the slides were washed at 20°C in

- $2 \times SSC$ solution for 90 min at RT
- 1 × SSC solution for 90 min at RT
- 0.5 × SSC solution for 60 min at RT, 0.5 × SSC for 60 min in 37°C and 0.5× SSC for 60 min at RT

The slides were rinsed with ascending concentrations of ethanol (70, 90 and 100%), air dried and exposed to Kodak film for 14 days. The sections were coated with Kodak NTB-2 liquid photographic emulsion diluted 1:1 with distilled water at 45°C and stored in darkness at 4°C. After 28 days of exposure, the negative controls were developed and stained with H and E. The slides used as negative controls (RNAse) were pretreated with RNAse A (10 µg/ml) and RNAse T (100.000 units/ml) in 2 × SSC for 45 min at 37°C. Leiomyomal, myometrial and RNAsed slides (negative controls) were exposed to the

PhosphorImager, using the ImageQuant program.

Table 1. The effects of the TGF eta 1 on the proliferation of KW smooth muscle-like cells.		
Number of living KW cells as assessed by trypan blue exclusion (% above control).		
ng/ml	24 h	48 h
0.5	-4	+1.0
1.0	+2	-2.0
10.0	-5	-15.5 [§]
25.0	-18 [§]	-25.0 [§]
50.0	-23 [§]	-32.5 [§]

p < 0.05; control cell count = 55.325 ± 956 cells (X ± SE).

TGF: Transforming growth factor.

Figure 3. Comparative analysis of the TGF β 1 mRNA expression as detected by the *in situ* hybridization in leiomyomas and adjacent myometrium of women in mid/late FP and mid/late LP of the menstrual cycle.

In addition, we present the analysis of TGF β 1 mRNA expression in leiomyomas after luteinizing-hormone-releasing hormone analog (L_{LHRH-A}) and myometrium post-menopause (Mm). TGF β 1 mRNA expression was significantly higher in leiomyomas (L) at mid/latefollicular phase (FP) than every other tissue tested. Statistical analysis was performed by the paired t-test and unpaired t-test, when appropriate, while nonparametric analysis, such as Wilcoxon's rank sum test, Mann–Whitney test and Kolmogorov–Smirnov test was used to confirm the data of the unpaired t-test.

LI: Mid/late follicular phase; LII: Mid/late luteal phase; L_{LHRH-A}:Luteinizing-hormone-releasing hormone analog; LP: Luteal phase; MI: Mid/late follicular phase; MII: Mid/late luteal phase.

same X-ray film. The intensity of the signals was analyzed using v3.0 (Molecular Dynamics). Signal intensity (absorbance/mm²) was evaluated by subtracting the respective RNAse signal for each individual signal measurement in leiomyomas and myometrium tissues. The results were expressed as a ratio of the leiomyomas:myometrium signal intensity in tissues from each hysterectomy, based on the mean data of three different experiments on each tissue [19,20,23].

Immunohistochemistry

Uterine tissues were fixed using 10% buffered formalin for 48 h and fixed in paraffin blocks. Consecutive sections were cut with microtome using slides coated with poly-L-lysine. The slides, after deparafinization and rehydration in descending concentrations of ethanol, were washed in 95°C for 5 min in a solution of 10 mM of sodium citrate, pH 6.0, then in distilled water (three times for 2 min each). They were then incubated for 5 min and washed in PBS (twice for 5 min each). For the immunohistochemistry we used a TGF β 1 bovine polyclonal antibody (Santa Crouz) at a dilution of 1/25 using as a tracing system the ImmunoCrouzTM Staining System (Santa Crouz) with 3.3/diaminobenzidine (DAB) as a chromogen [19,20,24].

Statistical analysis

We used paired and unpaired t-test and nonparametrical methods (such as Wilcoxon's rank sum test, Mann–Whitney test and Kolmogorov–Smirnov test) for additional verification of the t-test results (p < 0.05).

Results

The effects of TGF β 1 on the cell count

Exogenous administration of increasing concentrations of TGF β 1 showed that it exerted a dosedependent (0.5 up to 50 ng/ml) and timedependent (24 and 48 h) inhibitory effect on the proliferation of KW cells in cultures containing 5% fetal bovine serum (Table 1).

TGF β 1 mRNA expression in leiomyomas & adjacent myometrium

Northern analysis revealed that TGF β 1 and GAPDH cDNA probes depicted the expected 2.6 and 1.2 Kb bands, which correspond to TGF β 1 and GAPDH mRNAs, respectively (Figure 1).

In situ hybridization analysis revealed that radiography signals which correspond to TGF β 1 mRNA were detected around smooth muscle cells and vascular endothelial cells in leiomyomas and adjacent myometrium, documenting that smooth muscle cells did in fact express TGF β 1 (Figure 2).

Comparative analysis showed that *in situ* hybridization signals corresponding to the TGF β 1 mRNA expression were significantly more intense in leiomyomas at mid/late FP (LI) than that of leiomyomas at mid/late FP (LI), of adjacent myometrium at mid/late FP (MI) and myometrium at mid/late LP (MII) (LI > LII; LI > MI; and LI > MII [p < 0.001]) (Figure 3). However, comparative analysis of TGF β 1 expression showed that the intensity of *in situ* hybridization signals did not differ significantly among leiomyomas at LP (LII) and adjacent myometrium at either phases of the menstrual cycle (MI & MII) (LII vs MI; LII vs MII; MI vs MII [p > 0.05]) (Figure 3).

In addition, TGF β 1 mRNA expression of leiomyomas at FP (LI) was higher than that of leiomyomas after LHRH-A therapy (L_{LHRH-A}) and myometrium postmenopause (Mm) (LI > LLHRH-A and LI > Mm; [p < 0.001]). However, leiomyomas at LP (LII), leiomyomas

Figure 4. Comparative analysis of TGFβ1 mRNA expression as detected by northern blots in leiomyomas and adjacent myometrium of women in mid/late FP and mid/late LP of the menstrual cycle.

In addition, we present the analysis of TGF β 1 mRNA expression in leiomyomas after luteinizing-hormone releasing-hormone analog and myometrium postmenopause (Mm). TGF β 1 mRNA expression was significantly higher in leiomyomas (L) at mid/late folliculr phase (FP) than every other tissue tested. Statistical analysis was performed by the paired t-test and unpaired t-test, when appropriate, while nonparametric analysis, such as Wilcoxon's rank sum test, Mann–Whitney test and Kolmogorov–Smirnov test was used to confirm the analysis of the unpaired t-test.

LI: Mid/late follicular phase; LII: Mid/late luteal phase; L_{LHRH-A}: Luteinizinghormone-releasing hormone analog; LP: Luteal phase; MI: Mid/late follicular phase; MII:Mid/late luteal phase.

> after LHRH-A therapy, myometrium postmenopause and adjacent myometrium at either phases of the menstrual cycle contained similar TGF β 1 mRNA expression (LII vs L_{LHRH-A} vs Mn vs MI vs MII; [p > 0.05]) (Figure 3).

> Northern blots confirmed *in situ* hybridization analysis, regarding the pattern of TGF β 1 mRNA expression in leiomyomas and adjacent myometrium during the menstrual cycle, after LHRH-A treatment and post-menopause (LI > LII [p < 0.05]; LI > MI; [p < 0.001]; LI > L_{LHRH-A} [p < 0.001]) and (LII vs L_{LHRH-A} vs MII vs MI vs Mn; p > 0.05) (Figure 4).

Immunocytochemical detection of the TGF β 1 expression

Semiquantitative analysis documented that TGF β 1 expression was increased in leiomyomas at mid/late FP as compared with leiomyomas at LP and myometrium at either FP and LP as well as to leiomyomas after LHRH-A. Similarly, TGF β 1 expression did not differ among biopsies

of myometrium at any phase of the menstrual cycle and postmenopause (Figures 5 & 6).

Discussion

The identity of molecular mechanisms that account for the myometrium cellular transformations, leading to the pathogenesis of leiomyomas are currently unknown. However, it is clear that ovarian steroids are essential for the evolution of leiomyomas thereafter [4]. Differential expression of bioactive molecules during the menstrual cycle, such as growth factors, have been considered to play a key role in leiomyomas growth, mediating sex steroid hormone actions on smooth muscle cells [4–7].

Recently, microarray analysis has identified several differentially expressed genes, including those of TGF β 1, TGF β .R and their intracellular signaling pathways (Smads), which can mediate, at least in part, the altered cell biology of leiomyomas [25]. In addition, several studies have detected that TGF β 1 mRNA expression in uterine leiomyomas is increased as compared to adjacent myometrium and that sex steroid hormone ablation therapy, using LHRH-A, decreases TGF β 1 and TGF β .R expression [13,15,17].

Since uterine tissues are composed of various cell types and fibrous components (especially leiomyomas/fibromas) and contain blood vessels known to express (vascular endothelial cells) TGF β 1, we have used *in situ* hybridization and immunohistochemical analysis to confirm that TGFB1 is expressed at transcription and protein level by the smooth muscle cells of myometrium and leiomyomas. In addition, we used Northern analysis to confirm the in situ hybridization data in uterine tissues. Our data documented that leiomyomas contain higher TGF β 1 expression during the mid/late FL as compared with all myometrium and leiomyomas tissues tested in this study. These data have confirmed previous reports, which have reported higher TGFB1 expression in uterine leiomyomas as compared with adjacent myometrium [13,15,17]. However, our data suggested that leiomyomas contained comparable TGFB1 expression with the adjacent myometrium at mid/late LP. In addition, our data suggested that the TGFB1 expression of adjacent myometrium is not significantly influenced by the profile of sex steroid hormones at mid/late FP (increasing estrogen levels/absent progesterone), at mid/late LP (increased estrogen/progesterone levels), and postmenopause (minimal sex steroid hormone activity). Moreover, TGFB1 expression of leiomyomas was unaffected by the sex steroid hormone profile,

Figure 5. Immunochemical detection of TGFB1 expression in the smooth muscle cells

as leiomyomas at mid/late LP (increased estrogen/progesterone activity) and after LHRH-A therapy (minimal sex steroid hormone activity) contained similar TGF β 1 expression.

the other tissues.

Previously, LHRH-A therapy was shown to alter Smads expression in human leiomyomas and myometrial tissues, thereby interrupting TGFB.R signaling in these tissues [25]. Molecular studies targeting TGFB1 activity showed that LHRH-A therapy resulted in selective regulation (differential regulation) of Smads in human uterine leiomyomas. Interestingly, the level of activated (phosphorylated) Smad-3, which was previously elevated in leiomyomas, was reduced by LHRH-A therapy [25]. These data have stressed the importance of TGFB1 signaling-activity in the pathophysiology of uterine leiomyomas and the role of reduced Smad-3 activation as tissue-specific response to LHRH-A therapy.

However, since the uterine tissues contained specific LHRH.R, which mediates direct LHRH-A.R actions on leiomyomas, the guestion is whether the molecular changes in leiomyomas are caused by the reduction of sex steroid hormones and its direct or indirect molecular consequences, by the direct action of LHRH-A signaling pathway, or synergy of both these molecular events. Indeed, the LHRH-A signaling pathway can directly alter Smad-7 activity, an inhibitory Smad, which antagonizes TGFB1 action on myometrial tissues via its interaction with TGFB.R, thereby preventing the receptor-mediated activation of Smad-3 [26]. In addition, TGF β 1 signaling can activate other intracellular signal transduction pathways, including MAPK/ERK, which in turn can interact with sex steroid hormone signal transduction pathways and the LHRH-A signaling pathway at different levels [27-33]. Therefore, it is fair to conclude that complex molecular events, which implicate direct and indirect (cross talking) of various signal transduction pathways (generated by sex steroid ablation therapy plus LHRH.R signaling) mediate the clinical response of leiomyomas to LHRH-A therapy.

In concert with the above, microarray analysis documented that the expression profile of many

mid/late follicular phase (A) as compared with leiomyomas after luteinizing-hormone releasing-hormone (LHRH-A) therapy (B), and to myometrium of women postmenopause (C). D: The negative control of the immunohistochemical detection (without anti-TGFβ1 antibody).

altered genes in human uterine leiomyomas, including TGF β 1, TGF β .R and Smad-3 overexpression, becomes similar to that of adjacent myometrium after LHRH-A therapy [25]. Consequently, our data concur with these findings since we detect similar TGF β 1 expression in leiomyomas as in the adjacent myometrium after LHRH-A therapy.

It is noteworthy that our data showed that the TGF β 1 expression did not differ significantly among myometrium at mid/late FP (increasing estrogen levels/absence of progesterone), myometrium at mid/late FP (increased estrogen/progesterone levels), myometrium postmenopause (minimal sex steroid hormone levels), suggesting that sex steroid ablation does not influence significantly TGF β 1 expression in normal myometrium. However, we should point out that hormonal influences can change pH and protease activity and consequently can affect indirectly the bioactivity of TGF β 1 locally [11]. In addition, diverse expression of other bioregulators among leiomyomas, such as plasminogen activator inhibitor (PAI)-1 and CUTL1, which can be caused by loss of the heterozygosity-reduced expression and chromosomal deletion contributes to diverse biology and clinical response of leiomyomas to LHRH-A therapy [20,23]. Therefore, the enhanced TGF β 1 expression in leiomyomas at mid/late FP is possibly attributed to complex tissue-specific interactions, regulating leiomyoma growth. These interactions may play a significant role in the pathophysiology of leiomyomas especially during this particular phase of the menstrual cycle.

Since under our cell culture conditions TGF β 1 (0.5 up to 50 ng/ml; final concentration) inhibited the growth of KW smooth muscle-like myometrial cells, we can assume that overexpression of TGF β 1 represents possibly a self attenuating tissue-specific response of leiomyomas to the unopposed (absence of progesterone) and progressively increasing concentration of estrogens (proliferative activity), occurring at mid/late FP of the menstrual cycle.

Highlights

- Transforming growth factor (TGF)β expression is higher in leiomyomas at mid/late follicular phase compared with those at luteal phase, and to adjacent myometrium at either phase of the menstrual cycle.
- As TGFβ inhibited the growth of KW smooth muscle-like myometrial cells, we assume that its overexpression represents a self-attenuating tissue-specific response of leiomyomas to the unopposed and progressively increasing concentration of estrogens, occurring at mid/late folliular phase of the menstrual cycle.

Bibliography

- Buttram VC. Uterine leiomyomata-aetiology, symptomatology and management. *Prog. Clin. Biol. Res.* 225, 275–296 (1986).
- Crammer DW. Epidemiology of myomas. Semin. Reprod. Endocrinol. 10, 320–324 (1992).
- Biro JC. Estrogen-induced proteins: a new class of regulator substances. *Med. Hypotheses* 19, 199–228 (1986).
- Koutsilieris M. Pathophysiology of uterine leiomyomas. *Biochem. Cell Biol.* 70, 273– 278 (1992).
- Andersen J. Growth factors and cytokines in uterine leiomyomas. *Semin. Reprod. Endocrinol.* 14, 269–282 (1996).
- Matsuo H, Kurachi O, Shimomura Y *et al.* Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. *Oncology* 57, 49–58 (1999).
- Giudice LC, Irwin JC, Dsupin BA et al. Insulin-like growth factor (IGF), IGFbinding proteins (IGFBPs), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. *Hum. Reprod.* 8, 1796–806 (1993).
- Ibrahim S, Aydin A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. *Fertil. Steril.* 78, (2002).
- Byung-Seok L, Romana AN. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-β3 (TGFβ3) and altered responses to the antiproeiferative effects of TGFβ. J. Clin. Endocrinol. Metab. 86, 913–920 (2001).
- Chegini N, Ma C, Tang XM *et al.* Effects of GnRH analogues, 'add-back' steroid therapy, antistrogen and antiprogestins on leiomyoma and myometrial smooth muscle cell growth and transforming growth factor-β expression. *Mol. Hum. Reprod.* 8, 1071–1078 (2002).
- Aydin A, Ibrahim S. Expression, menstrual cycle-dependent activation and bimodal mitogenic effect of transforming growth factor-β1 in human myometrium and leiomyoma. *Am. J. Obstet. Gynecol.* 188, 76– 83 (2002).
- Vollenhoven BJ, Herington AC, Healy DL. Epidermal growth factor and transforming growth factor-β in uterine fibroids and myometrium. *Gynecol. Obstet. Invest.* 40, 120–124 (1995).
- Dou Q, Zhao Y, Tarnuzzer RW *et al.* Suppression of TGF-βs and TGF-βs receptors mRNA and protein expression in leiomyomata in women receiving gonaditropin releasing hormone agonist therapy. *J. Clin. Endocrinol. Metab.* 81, 3222–3230 (1996).

- Tang XM, Dou Q, Zhao Y *et al.* The expression of transforming growth factor-βs and TGF-β receptor mRNA and protein and the effect of TGF-βs on human myometrial smooth muscle cells *in vitro*. *Mol. Hum. Reprod.* 3, 233–240 (1997).
- Chegini N, Tang XM, Ma C. Regulation of transforming growth factor-β1 expression by granulocyte macrophage-colony-stimulating factor in leiomyoma and myometrial smooth muscle cells. *J. Clin. Endocrinol. Metab.* 84, 4138–4143 (1999).
- Arici A, Sozen I. Transforming growth factor-β3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. *Fertil. Steril.* 73, 1006–1011 (2000).
- Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-β3 (TGFβ3) and altered responses to the antiproliferative effects of TGFβ. *J. Clin. Endocrinol. Metab.* 86, 913–920 (2001).
- Sourla A, Reyes-Moreno C, Koutsilieris M. Characterization of KW smooth muscle-like human myometrial cells. *Anticancer Res.* 14, 1887–1892 (1994).
- Sourla A, Koutsilieris M. Purification and partial sequencing of the major mitogen for KW human uterine smooth muscle-like cells in leiomyoma extracts. *J. Clin. Invest.* 96, 751–758 (1995).
- Sourla A, Polychronakos C, Zeng WR *et al.* Plasminogen activator inhibitor 1 messenger RNA expression molecular evidence for del(7)(q22) in uterine leiomyomas. *Cancer Res.* 56, 3123–3128 (1996).
- Boulanger J, Reyes-Moreno C, Koutsilieris M. Mediation of glucocorticoid receptor function by the activation of transforming growth factor β 1 in MG-63 human osteosarcoma. *Int. J. Cancer.* 61, 692–697 (1995).
- Reyes-Moreno C, Frenette G, Boulanger J et al. Mediation of glucocorticoid receptor function by transforming factor β I expression in human PC-3 prostate cancer cells. *Prostate* 26, 260–269 (1995).
- Zeng WR, Scherer SW, Koutsilieris M et al. Loss of heterozygosity and reduced expression of the CUTL1 in uterine leiomyomas. Oncogene 14, 2355–2365 (1997).
- Darlene D, Hong H, Joseph KH. Immunohistochemical localization of growth factors and their receptors in uterine leiomyomas and matched myometrium. *Environ. Health Persp.* 108, 795–802 (2000).
- 25. Nasser C, Xiaoping L, Li D *et al.* The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin-

releasing hormone analogue therapy. *Mol. Cell Endocrinol.* 209, 9–6 (2003).

- Mori Y, Chen SJ, Varga J. Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-β. *Exp. Cell Res.* 258, 374–383 (2000).
- Pouliot E, Labrie C. Expression profile of agonistic Smads in human breast cancer cells: absence of regulation by estrogens. *Int. J. Cancer* 81, 98–103 (1999).
- Mulder KM. Role of Ras and MAPKs in TGF-β signaling. *Cytokine Growth Factor Rev.* 11, 23–35 (2000).
- Everst HM, Hislop JN, Harding T et al. Signaling and antiproliferative effects mediated by GnRH receptors after expression in breast cancer cells using recombinant adenovirus. Endocrinology 142, 4663–4672 (2001).
- Grundker C, Schlotawa L, Viereck V *et al.* Protein kinase C-independent stimulation of activator protein-1 and c-Jun N-terminal kinase activity in human endometrial cancer cells by the LHRH agonist triptorelin. *Eur. J. Endocrinol.* 145, 651–658 (2001).
- Tsibris JC, Segars J, Coppola D *et al.* Insights from gene arrays on the development and growth regulation of uterine leiomyomata. *Fertil. Steril.* 78, 114–121 (2002).
- Wu L, Wu Y, Gathings B *et al.* Smad4 as a transcription corepressor for estrogen receptor α. *J. Biol. Chem.* 278, 15192–15200 (2003).
- Zimmerman CM, Padgett RW. Tranforming growth factor β signaling mediators and modulators. *Gene* 249, 17–30 (2000).

Affiliations

- Antigone Sourla, Ioanna Gaka & Peter Lembessis Department of Experimental Physiology, Medical School, University of Athens, Goudi-Athens 115 27, Greece
- Stelios Michalas Department of Obstetrics & Gynaecology, Medical School, University of Athens, Goudi-Athens 115 27, Greece.
- George Creatsas Department of Obstetrics & Gynaecology, Medical School, University of Athens, Goudi-Athens 115 27, Greece.
- Michael Koutsilieris Department of Experimental Physiology, Medical School, University of Athens, Goudi 115 27, Athens, Greece. Tel: 30 210 746 2597 Fax: 30 210 771 1222 mkouts@medscape.com