
J Exp Stroke Transl Med (2010) 3(1): 72-89 
Society for Experimental Stroke (www.s4es.org) 

 

---------------------------------------------------------- 
* Correspondence should be sent to:  
Donald J. DeGracia, Ph.D., Department of Physiology, Wayne State University, 4116 Scott Hall, 540 East Canfield Ave., Detroit, MI 48201, 
U.S.A.; Phone 313-577-6745; Fax 313-577-5494; E-mail: ddegraci@med.wayne.edu  
Copyright  2010 SFES 1939-067X/10 

- 72 - 

Towards a dynamical network view of brain ischemia and reperfusion.  
Part II: a post-ischemic neuronal state space 
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Abstract  

The general failure of neuroprotectants in clinical trials of ischemic stroke points to the possibility of a fundamen-
tal blind spot in the current conception of ischemic brain injury, the “ischemic cascade”.  This is the second in a 
series of four papers whose purpose is to work towards a revision of the concept of brain ischemia by applying 
network concepts to develop a bistable model of brain ischemia.  We here build the bistable network model of 
brain ischemia.  The central concept is that of a post-ischemic state space.  Ischemia, as a quantitative pertur-
bation, is envisioned to push the brain through a series of four phenotypes as a function of the amount of 
ischemia:  the homeostatic, preconditioned, delayed neuronal death and necrotic phenotypes.  The phenotypes 
are meta-stable attractors in the landscape of the post-ischemic state space.  The sequence of the phenotypes 
derives from the mutual antagonism between damage mechanisms and stress responses, each conceived as 
aggregate ensemble variables.  The competition between damage mechanisms and stress responses is posited 
to have the form of a bistability.   Application of bistability to brain ischemia is grounded in the incontrovertible 
fact that post-ischemic neurons face the mutually exclusive decision to either live or die. 
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Abbreviations 

3D three dimensional 
CBF cerebral blood flow 
CD the attractor for cell death 
CGI complete global ischemia  
D delayed neuronal death region of post-

ischemic state space 
DM effective total ischemia-induced dam-

age  
DND delayed neuronal death   
H homeostatic region of post-ischemic 

state space 
I the amount of ischemia 
IS the amount of ischemia at the separatrix 
N necrotic region of post-ischemic state 

space 
P preconditioning region of post-ischemic 

state space 
S the attractor for the steady-state pheno-

type of a neuron 
SR effective total ischemia-induced stress 

response capacity 
TD threshold of delayed neuronal death  
TF transcription factor 
TN threshold of necrosis 
TP threshold of preconditioning  
3D three dimensional 
CBF cerebral blood flow 

 

1. Why “towards” a dynamical network view of 
brain ischemia and reperfusion? 

We titled this series of papers “Towards…” for a good 
reason: we do not here present a formal network 
model of brain ischemia and reperfusion.  A formal 
network model would consist of a set of equations, 
the answer to which is the state space.   Instead, we 
discuss considerations that can move us toward con-
structing such a formal network.  We in fact work 
backwards, discussing what the state space of the 
post-ischemic brain should look like based on our 
empirical understanding of outcomes after brain 
ischemia.  We then go under the hood of this hypo-
thetical post-ischemic state space and show how it 
can be derived from a particular circuit motif, the bist-
able motif.  Bistability results whenever a system fac-
es two mutually exclusive states (Chatterjee et al 
2008).  Post-ischemic cells indeed face a mutually 
exclusive decision: live or die. 

The net result of our present effort is that we end up 
with a faux network model of brain ischemia.  The 
model is faux because there are no network equa-
tions behind it.  However, as we shall see, a post-
ischemic state space is in fact constructed from em-
pirical considerations.  We will discuss the additional 
hurdles required to convert this empirical state space 
to actual network equations.  The present work is a 
necessary step towards discovering such equations 
by laying out the rationale and justifications for con-

http://www.s4es.org/�
mailto:ddegraci@med.wayne.edu�


DEGRACIA, A post-ischemic neuronal state space 
 

- 73 - 
J Exp Stroke Transl Med (2010) 3(1): 72-89 

Society for Experimental Stroke (www.s4es.org) 

structing the state space.  The hope is that by airing 
these considerations in the literature, it will facilitate 
the discovery of the state space equations.  So while 
the resulting model is “faux”, the discussions leading 
up to it are not, and we shall see (mainly in the 3rd 
paper) that the resulting post-ischemic state space 
proves surprisingly useful even at its present stage of 
development.  We begin by providing an overview of 
the ideas and then filling in the details. 

2. Overview 

There are three steps we follow, the cumulative result 
of which is to effectively outline a bistable model of 
brain ischemia.  Step one consists of describing the 
post-ischemic state space as a means to represent 
the phenotypes cells acquire after experiencing spe-
cific amounts of ischemia.  The second step is to ask 
how the state space landscape and associated phe-
notypes are generated.  This will be seen to be due 
to the inherent competition of the damage mechan-
isms and the stress response, each considered as 
aggregate or ensemble variables.  The third step is to 
show how a state space derived from the competition 
between the damage mechanisms and stress res-
ponses is in fact an example of a bistable system.   
These three steps constitute the task of the present 
paper.  However, additional development of the bist-
able model of brain ischemia continues throughout 
the 3rd and 4th papers, elaborating on the basic 
framework presented below. 

3. The post-ischemic state space represents 
ischemia-induced phenotypes 

The essence of a network view of brain ischemia is to 
recognize that increasing amounts of ischemia will 
move the brain through distinct phenotypes.   While 
ischemia is clearly a perturbation to the brain, we 
here think of this perturbation as analogous to, in 
some sense, a force.  While we do not literally mean 
“force” in the technical physics sense, we need to 
metaphorically think of ischemia as “pushing” the 
configuration (or state vector) of a cell into other phe-
notypes. The strength of this “push” is directly propor-
tional to the amount of ischemia, I, as conceptualized 
along the lines presented in the 1st paper. 

For reasons also discussed in the 1st paper we con-
sider only complete global ischemia (CGI) and take 
its intensity (e.g. the amount of ischemia) to be syn-
onymous with its duration.  In this and the subse-
quent two sections we build the post-ischemic state 
space, a landscape consisting of topological features 
(hills and valleys) that represent the possible pheno-
types induced in cells by increasing amounts of 
ischemia, I. 

Our point of departure is the following: Peter Lipton’s 
quote in the 1st paper talked about a threshold of 

ischemia, as does Wieloch’s sandwich model, but our 
present understanding of brain ischemia and reperfu-
sion points to at least three important ischemic thre-
sholds, three specific amounts of ischemia, which, 
upon passing, give rise to three distinct phenotypes 
in the post-ischemic brain. 

The brain’s normal steady state (S).   The first step in 
describing post-ischemic phenotypes is to define our 
baseline, which is the normal brain that has not expe-
rienced ischemia.  To this end, using cellular differen-
tiation as our case study serves a dual purpose.  Be-
low in a subsequent section, it will provide a network 
model of bistability we can emulate and apply to 
ischemia.  Here however it provides for us a model of 
the normal state of brain cells, which we can utilize 
as our baseline.  Each terminally differentiated cell 
type in the brain got there by differentiation.  That is, 
each cell type in the mature brain occupies its own 
stable attractor in the gene network state space of 
the organism.  The attractor of each terminally diffe-
rentiated cell type exists on a landscape containing 
all the cell types coded by that genome; these are the 
epigenetic landscapes first described by CH Wad-
dington (1957).  This attractor provides our baseline 
and we call this baseline the steady-state, S, of the 
terminally differentiated cell.  S is that point in the 
organism’s gene network state space that corres-
ponds to the configuration (i.e. pattern of gene ex-
pression) of the terminally differentiated cell type. 

An advantage of focusing only on CGI is that, unlike 
focal ischemia, the main target of global ischemia is 
the neuron (at least over a meaningful range of 
ischemic intensities).  This allows us to narrow our 
focus specifically to neurons.  However, the following 
logic would be expected to be applicable to the glia, 
vascular and immunological cells that are also altered 
following focal ischemia (discussed in the 4th paper).  
But for our present purposes, S is taken to be that 
point in the genetic state space of an organism that 
represents the attractor of terminally differentiated 
neurons.  After presenting the state space, we dis-
cuss the issue of neuron subtypes. 

The homeostatic state (H).  Now, while S is the low-
est (e.g. most stable) point in the attractor of the neu-
ron phenotype, there is still the rest of the valley.  
Technically, the valley surrounding an attractor point 
is called the basin of attraction.   A basin of attraction 
is defined as the collection of points in the state 
space having the property that, if the system visits a 
basin point, it will inevitably settle back to the attrac-
tor point (Huang 2009).  For our purposes here, we 
consider the basin of attraction surrounding S to 
represent states that are homeostatic responses of 
the neuron to sub-pathological changes in blood flow.   
We thus term the basin of attraction around S the 
homeostatic state, H (Figure 1).  Responses of neu-
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rons in H fall into two classes: (1) points close to S 
represent normal physiological responses (green re-
gion, Figure 1), and (2) points farther away from S 
represent more extreme responses that are supra-

physiological but could be considered sub-
pathological (red region, Figure 1).  We now explain 
the rationale of this distinction. 

Figure 1: The relationship be-
tween the steady-state network 
configuration of a neuron, S, and 
homeostatic displacement into 
its basin of attraction, H.   Here, 
we show a cross-section 
through the “valley”, the attractor 
S and its basin of attraction, 
here called H, of the neuron cell 
type in the gene network state 
space of an organism.  The 
green range of H reflects physio-
logical homeostatic responses; 
the red range represents supra-
physiological responses.  The 
steep slope of the supra-
physiological (red) range of ho-
meostatic variation is meant to 
represent the relative rapidity 
with which a neurons will return 
to steady-state, S, following brief 
application of a small amount of 
complete global ischemia (CGI). 
The black triangle represents 

the amount of CGI associated with this response in neurons.  Note the CGI triangle in this and in subsequent 
figures is not meant to be exact, but approximate insofar as exact values would require defining the species 
and method of inducing CGI.  The marble represents the network configuration and its movement represents 
the trajectory of the configuration in state space. 

 

The first distinction arises because of the relationship 
between blood flow and neuronal function.  It is well-
known that neuron activity and local cerebral blood 
flow (CBF) are intimately related in the process of 
flow-metabolism coupling (Iadecola and Nedergaard 
2007).  Therefore, there is a nontrivial range of blood 
flows which underlie flow-metabolism coupling that 
will produce acute homeostatic changes in neurons.  
Such changes underlie normal neuron function in-
cluding conduction, memory, etc.  Neuronal res-
ponses in the regime indicated by the green region of 
Figure 1 will include genetic changes underlying 
normal neuronal plasticity.   Technically, what this 
implies is that the point S is not really a fixed point, 
but will alter as a function of neuronal plasticity and 
thus form a kind of probabilistic “cloud” (Huang, 
2009).  However, this is a subtlety not essential to our 
arguments and is mentioned only for the sake of 
completeness.  For the purpose of building the post-
ischemic state space, we may make the approxima-
tion that S is a fixed point in the organisms’ genetic 
state space.  Therefore, in terms of acute responses 
to changes in local CBF, we can take the points close 

to S to represent normal physiological responses of a 
neuron. 

However, a neuron can experience homeostatic dis-
ruptions that fall in a gray area between normal and 
pathological.   Application of a small amount of CGI 
to a neuron falls in this gray area.  We know that a 
very short duration of CGI (e.g. < 1 min) is not lethal 
to neurons.   There will however be a momentarily 
displacement of neurons out of their normal energetic 
steady-state (Siesjö and Wieloch 1985).  ATP levels 
will drop, but not to zero, nonetheless triggering cor-
responding acute energy conservation processes in 
the neuron.  These are very short-lived effects, last-
ing only minutes after removal of a very brief CGI 
perturbation, after which time the neuron returns to its 
normal steady state, S. 

In fact, the state we are describing here is what Kirino 
(2002) called “immediate preconditioning”.   This form 
of preconditioning is more predominant in the heart, 
but it is also present in the brain.  The essence of the 
supra-physiological range of the H state is the activa-
tion of acute homeostatic responses that are outside 
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the neuron’s normal response range, but that do not 
involve genetic reprogramming of the neuron into a 
stress response phenotype in response to the 
decrement in blood flow.  Again, such supra-
physiological responses occur when I < 1 min, but 
greater than the normal range of physiological local 
CBF variation. 

With respect to the state space, this implies that there 
is some range around S in the basin that is relatively 
flat and contains the response of a neuron to normal 
homeostatic variation (again, flow-metabolism coupl-
ing that would underlie normal neuronal plasticity).  
However, the second part of the basin where the su-
pra-physiologic homeostatic disruption is represented 
is expected to have a steep slope.  This slope would 
reflect the relatively intense neuronal responses to a 
disruption such as brief CGI, which in turn would in-
duce a rapid return back to steady-state, S, after the 
disruption.  In the case of immediate preconditioning, 
neurons reset to S within < 15 min after the brief CGI 
(Kirino, 2002).  These ideas are illustrated in Figure 1. 

A “time out” on what the state space represents. Fig-
ure 1 is our first example of the marble moving on the 
post-ischemic state space landscape.  We would like 
to clarify what this represents as it will be a recurring 
theme throughout the rest of the presentation.  The 
moving marble is a visual device for depicting 
changes in the state vector of the neuron induced by 
the “force” of ischemia.  In the 1st paper, we used 
examples where a point in the state space corres-
ponded to a specific pattern of gene expression.  
However, in the post-ischemic state space each point 
represents the many responses of a neuron to the 
applied ischemia.  

As stated in the 1st paper these responses fall into 
two classes: damage mechanisms and stress res-
ponses.   The reader may wonder how many damage 
mechanisms and many stress responses can be 
represented merely as a point.  As explained in the 
1st paper, state spaces are multi-dimensional.  A 
point in the state space can have any arbitrary n 
components, each representing the state of one of 
the n nodes of the network.   Thus, in the post-
ischemic state space, each point represents all 
ischemia-induced damage mechanisms and stress 
responses, the entirety of which are taken to be the 
phenotype of the post-ischemic neuron.  At this point, 
we simply introduce this key idea.  We will continue 
to develop this notion into the 3rd paper and ask the 
reader’s patience as the concept is developed.  At 
this point in the discussion, the key idea is that 
movement of the state vector (marble) through the 
state space represents changes in the phenotype of 
the neuron.  On a certain level, this idea is not at all 
unfamiliar.  Mendel (1866) worked in terms of pheno-
types.  The only difference between the classical 

Mendelian view and the network view is that the net-
work view incorporates the idea of dynamic changes 
of phenotypes in real time and applies the concept to 
individual cells. 

The preconditioned phenotype (P). A somewhat 
greater amount of CGI (~2-5 min) is still not lethal to 
neurons, but will push them over the first ischemic 
threshold, which we term the preconditioning thre-
shold, TP.  Theoretically, TP is a specific amount of 
ischemia, a specific value of I.  Exposure to amounts 
of ischemia equal to or greater than TP puts neurons 
into a phenotype identifiably different from those in S 
or H.  Neurons exposed to amounts of ischemia I > 
TP (but below a lethal threshold discussed below), 
can now withstand a subsequent lethal insult which 
neurons in S cannot withstand.  This phenotype is 
what Kirino (2002) referred to as “delayed precondi-
tioning” but we will refer to simply as preconditioning.   
While the field in general focuses on preconditioning 
as a form of neuroprotection, we here use the fact 
only as a marker that passing TP has put the neurons 
into a new phenotype. This phenotype lasts much 
longer than changes induced by H quantities of 
ischemia, but it is still completely reversible, persist-
ing for several days before the neurons revert back to 
their normal steady-state, S (Kirino 2002).  The pre-
conditioned state consists not only of acute compen-
satory changes as found in H, but also longer term 
changes in gene expression and protein synthesis 
that are responsible for its time course of expression 
(Kirino 2002).  Thus, preconditioning is a form of 
temporary genetic reprogramming into a stress re-
sponse phenotype.  It is the genetic reprogramming 
into a stress response phenotype that distinguishes P 
phenotypes from H phenotypes, the latter of which do 
not so genetically reprogram. 

From the point of view of the neuronal state space, 
we envision that the preconditioned phenotype P oc-
cupies a plateau of responses that, on one hand are 
outside the normal basin of attraction (H) of the neu-
rons, but on the other hand extend the basin of at-
traction (Figure 2).  The slope of this plateau is such 
that it does not form a permanently stable attractor 
valley, but instead has a very gently rising slope 
oriented such that the state vector will fall back to S.  
The slope in this case is intended to reflect the much 
slower kinetics of onset and shut-off of the precondi-
tioned phenotype.  However, since the plateau is 
sloped towards S, the neurons will eventually and 
inevitably fall back to S (illustrated by the trajectory of 
the marble in Figure 2).  At some upper limit of CGI 
(a threshold we call TD, discussed in the next section), 
the neurons will no longer experience preconditioning 
as an outcome, setting the extent of this phenotype 
on the scale of CGI.  In terms of state space, we en-
vision the upper amount of ischemia to set a wall (a 
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“quasi-potential” barrier) in the state space, an issue 
discussed further ahead.  Thus, P is a meta-stable, 
reversible phenotypic alteration of the post-ischemic 
neuron.  We are mute for the moment about the ge-
nesis of this and the subsequent phenotypes, return-
ing to that consideration after the post-ischemic neu-
ronal state space has been described. 

The delayed neuronal death phenotype (D). If we 
continue to increase the intensity of CGI past that 
required for preconditioning (e.g. to ~ 10 min), the 
second ischemic threshold is passed and this causes 
the delayed death of specific neuron populations, the 
selectively vulnerable neurons, yet spares resistant 
neurons (Kirino 2000).  We therefore call this thre-
shold amount of ischemia TD, the threshold of de-
layed neuronal death (DND).    Critically however, it is 
less the issue that the cell death is delayed than that 
the cell death occurs after the ischemic perturbation 
has been lifted.  That is, the critical feature of passing 
TD is that the cell death will occur during reperfusion.  
Before discussing the associated state space, let us 
describe the final post-ischemic phenotype. 

(A brief note on abbreviations: DND is delayed neu-
ronal death and refers to the phenomenological death 
of neurons during reperfusion; D is the phenotype in 
the state space; TD is the threshold amount of ische-
mia required to induce DND in a real brain or to move 
the configuration to the D phenotype in state space). 

The necrotic phenotype (N). Finally, if the intensity of 
CGI is further increased (say to ~ 30 min), we pass a 
third ischemic threshold and move into a domain in 
which the ischemia is so intense that the neurons die 
acutely during the ischemia by necrosis (Siesjö and 
Smith 1991).  The minimum amount of ischemia to 
trigger cell death during the ischemia itself is the ne-
crotic threshold, TN, and the phenotype is N, the ne-
crotic phenotype. 

Brief summary of post-ischemic phenotypes.  Before 
continuing, we briefly summarize.  A very small 
amount of CGI will displace a neuron from S and 
cause it to enter the homeostatic state H, which is a 
very rapid and short lived response.  Amounts of 
ischemia from TP to < TD will induce preconditioning 
in a neuron.  Between TD and TN, some neurons, se-
lectively vulnerable neurons, will die during reperfu-
sion (i.e. after the ischemia) and therefore in a de-
layed fashion with respect to the ischemic perturba-
tion.  Finally, if neurons experience amounts of 
ischemia > TN, they will die by necrosis during the 
ischemia. 

Thereby we can see the critical role that the concept 
of the amount of ischemia, I, plays in the present 
thinking.  It is the dependent variable of the model. 

Figure 2: Passing a threshold amount of ischemia, 
TP, causes the neurons to shift into a new pheno-
type, generally called preconditioned.  The hall-
mark of this phenotype is enhanced protection if a 
potentially lethal stimulus ensues while the pheno-
type persists.  Again, a cross section is shown 
through the neuronal state space, this time from 
the middle of the S attractor valley and moving 
outwards in one direction.  The steady state confi-
guration, S, is shown at the bottom of the basin of 
attraction, H.  A new plateau represents the pre-
conditioned phenotype.  This plateau extends for 
an amount of ischemia between the minimum and 
maximum amounts that will induce the precondi-
tioned phenotype.  The marble represents the 
neuronal network configuration.  The trajectory 
(dotted arrows) illustrates both the onset and de-
cay of the preconditioned phenotype.  Because of 
its reversibility, this phenotype is called meta-
stable.   

 

4. The post-ischemic state space and cell death 

We now discuss adding cell death as a feature of the 
post-ischemic state space.  To do so, we introduce 
two critical features into the post-ischemic state 
space. 

First, stated simply, cell death can be envisioned as 
an attractor in the state space. We do not here at-
tempt a detailed justification as this has been pro-
vided by others (Huang and Ingber 2000).  However, 
by way of a brief justification, we note that apoptosis 
is a genetic program.  As such, it is a specific pattern 
of gene expression and therefore occupies an attrac-
tor in the genetic state space of an organism.  Having 
said this, we want to strongly emphasize that this 
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does not mean that we are saying post-ischemic 
neurons die by apoptosis, although many workers 
possess this viewpoint.  In the present work we are 
completely agnostic about the mechanisms of cell 
death from the point of view of individual molecular 
pathways.  However, that apoptosis is a genetic pro-
gram is incontrovertible, and provides the most ob-
vious and ready example of how cell death can be a 
phenotypic outcome of a genetic program and there-
fore an attractor in an organism’s genetic state space.  
Thus, we can depict cell death in the post-ischemic 
state space by the addition of a second attractor to 
the state space (Figure 3).  We will call this point in 
the state space the “cell death” (CD) attractor to be 
as general as possible, and to not insinuate a com-
mitment to any specific molecular pathway of cell 
death. 

The second feature we must introduce is a specific 
amount of ischemia that, for technical reasons to be 
explained ahead, we call IS, the amount of ischemia 
at the separatrix.  IS is the “watershed” point on the 
state space curve. At IS, the cell is at the tipping point 
between survival and death.  As such it serves a 
function similar to Lipton’s and Wieloch’s concept of a 
cell death threshold (discussed in the 1st paper).  
However, for reasons to be elaborated as we pro-
ceed, the concept of IS is fundamentally a more sys-

tematic concept as it is a distinct property of the post-
ischemic state space.  IS functions such that the sign 
of the slope of the state space curve reverses after IS. 

With addition of the attractor CD and the point IS, we 
can now build the D and N phenotypes into the post-
ischemic state space. 

As a first approximation, we model the D phenotype 
to occupy a broad, gently sloped plateau, similar to P.  
Again the slope is used to reflect kinetic considera-
tions, e.g. that cell death or recovery is delayed.   The 
D plateau however, extends over a range of I that 
includes IS.  Thus, the slope of the state space in D 
will reverse at IS.  If the amount of ischemia is to the 
left of IS, then the neuron will gradually fall back to S 
and survive the insult.  This allows us to account for 
ischemia-resistant neurons.   If the amount of ische-
mia puts the neuron to the right of IS, the cell will 
gradually but inevitably fall to the cell death attractor, 
CD.  Thus we account for ischemia-vulnerable neu-
rons. 

Finally, if a neuron experiences an amount of ische-
mia I > TN then the state space configuration moves 
during the ischemia on a trajectory from S directly to 
CD, and acute cell death results during the ischemia. 

http://www.s4es.org/�


DEGRACIA, A post-ischemic neuronal state space 
 

- 78 - 
J Exp Stroke Transl Med (2010) 3(1): 72-89 

Society for Experimental Stroke (www.s4es.org) 

Figure 3:  A cross section through the expected state space of a post-ischemic neuron. Two attractors are 
depicted: the steady-state attractor of a normal neuron (green point, S) and the attractor for cell death (red 
point, CD).  Cell death induced during ischemia occurs if the cell experiences amounts of ischemia > TN.  Be-
tween the thresholds TD and TN, is the range of delayed neuronal death, D.  This range possesses a “wa-
tershed” or tipping point at an amount of ischemia here labeled “ischemia at the separatrix” (IS) that separates 
the bistable outcome of survival from death.  A resistant neuron (depicted by marble M1) will experience I1 < 
IS (green range of D), follow the trajectory back to S and survive the ischemia.  An ischemia-vulnerable neu-
ron will experience I2 > IS (red range of D), follow a trajectory to the attractor CD and die.  The state space 
captures the fact that, depending upon the amount of ischemia, I, (here labeled “CGI”, complete global 
ischemia) the cell death can occur after the ischemia (during reperfusion) in the D phenotype, or during the 
ischemia itself, in the N phenotype.  H is shown by the yellow range and P by the purple range.  The amounts 
of CGI shown as duration are only approximate and not meant to be exact. 

5. How to use the post-ischemic state space 

The whole of our expected post-ischemic state space 
is summarized in Figure 3 which depicts a two di-
mensional cross-section (e.g. a curve) through the 
state space landscape (the 3D state space is de-
scribed later).  The way the state space is intended to 
be understood and utilized is the following.  The neu-
ronal state vector is initially at S, the normal steady-
state.  Application of some specific amount of ische-
mia, I, will displace the state vector to the point on the 
state space corresponding to that amount of ischemia.  
Two arbitrary amounts of ischemia are shown in Fig-
ure 3.  Applying an amount of ischemia I1 to the point 
S “pushes” the state vector from S to the point de-
picted by marble M1.  M1 is in the region of delayed 
neuronal death, D, to the left of IS (e.g. I1 < IS).  After 
the state vector is so moved to that point on D, and 
the ischemia has ended, the state vector (marble) will 
then move (“roll”) leftward along the state space sur-
face until it settles back to the point S.   Hence M1 
represents a neuron that survives the ischemia.  M2 
on the other hand is “pushed” by a greater amount of 
ischemia I2, to the right of IS in region D (e.g. I2 > IS).  
Thereafter, marble M2 will “roll” across the state 
space landscape to attractor CD and die.  M2 there-
fore represents the state vector of an ischemic-
vulnerable neuron.  The rate at which a state vector 
(marble) moves is reflected by the slope of the sur-
face over which it moves. 

One can readily see the obvious analogy between 
the post-ischemic state space and (frictionless) gravi-
ty.  Ischemia, as a “force”, imparts “energy” to the 
state vector (represented by the marble), “kicking” it 
uphill on the state space landscape.  Then, analog-
ous to releasing this energy, the state vector (marble) 
“rolls” back downhill to the lowest point, either S or 
CD.  While this is a useful metaphor, it is technically 
inaccurate because the heights are quasi-potentials, 
not a real potential like gravity (Huang 2009).   But 
the height is nonetheless a measure of the stability of 
the state vector and the analogy is accurate in that 
regard. 

What this model physically represents is how ische-
mia elicits responses, phenotypes, in the post-
ischemic neuron.  But these responses are unstable 
states for the neuron.  To eliminate the instability in 
its phenotype, the neuron will either return back to its 
stable steady-state (S) or it will die (CD).  The choice 
depends on the specific magnitude of ischemia, I, it 
has experienced. 

6. The post-ischemic state space: issues and fea-
tures 

While the above first-pass at a post-ischemic state 
space offers many advantages (which are discussed 
in the 3rd paper), there are also obvious problematic 
issues we here briefly discuss.  We consider: (1) neu-
ronal subtypes, (2) the relationship between the P 
and D phenotypes, (3) cell death during either ische-
mia or during reperfusion, and (4) the question of re-
perfusion-induced damage. 

Neuronal Subtypes.  We built the concept of the state 
space as if it belongs to that of a generic neuron.  
However, this is inaccurate and the issue requires 
clarification.  One may think of a “Valley of the Neu-
rons” in an organism’s genetic state space (Figure 
4A).  This valley will have within it many smaller local 
valleys, each being the attractor of a specific neuron 
type.  We know different subtypes of neurons have 
different relative vulnerabilities to ischemia (Kirino 
2000).  For example, hippocampal CA1 neurons are 
most vulnerable to DND, and brainstem neurons re-
quire considerably more ischemia to induce a compa-
rable response.  Therefore, the post-ischemic state 
space shown in Figure 3 should be thought of as a 
generic template for which the specific state spaces 
of individual neuron populations in individual organ-
isms will need to be constructed.  This is illustrated in 
Figure 4B showing a family of state spaces corres-
ponding to different neurons in an organism after ex-
posure to the same scale of CGI.  Each neuron sub-
type would be expected to display its own characte-
ristic value of IS. 

The relationship between P and D. Next we consider 
the distinction between the P and D ranges of pheno-
types. The main reason we distinguish P and D as 
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separate plateaus is that no cell death occurs on the 
P plateau (e.g. below the TD amount of ischemia), 
whereas cell death is imminent on the D plateau.  
This line of thinking raises important questions that 
have not generally been addressed.  Preconditioning 
is generally not considered in relation to neurons that 
survive amounts of ischemia lethal to other neuron 
types (e.g. the selective vulnerability of CA1 after 10 
min global ischemia vs. cerebral cortical or dentate 
granule cells that survive this insult).   Our model 
makes conceivable the possibility that an ischemia-
resistant neuron to the left of IS in the D range (e.g. 
green range of D in Figure 3) is in fact in a precondi-
tioned state.  Such logic would apply, for example, to 
a dentate granule cell that will survive 10 min of glob-
al ischemia in a rat.  This would then mean there is 
not a wall or boundary between the P and D states 
and any phenotype in the range TP < I < IS would be 
in some gradation of preconditioned states.  The two 
possibilities are shown superimposed in Figure 5.  
This question is important because the form of the P-
D boundary speaks to the form of the equations re-
quired to generate the state space (discussed ahead). 

If there is a P-D boundary, it may represent a proba-
bilistic transition between recovery and cell death.  
The P range could be defined where the probability of 
cell death is strictly 0.  In the D range when I > IS, the 
probability of cell death could be defined as strictly 
1.0.  Then, the range TD < I < IS, constituting the P-D 
boundary, may represent a range of increasing prob-
ability of cell death following some probability function 
P(I). 

While we are in no position to offer firm answers to 
these questions here, the utility of the bistable model 
is in raising these questions in the first place, ques-
tions with clear empirical implications. 

Cell death during either ischemia or during reperfu-
sion.  A critical feature of the state space is that it 
provides a natural classification of post-ischemic cell 
death.  Cell death occurs either during ischemia or 
after the ischemia has been lifted.  While this is well-
known, the ideas presented here formalize this dis-
tinction, providing a systematic means by which to 
classify ischemia-induced cell death, a topic explored 
in the 3rd paper of the series.  In the terminology used 
here, the necrotic phenotype N means cell death dur-
ing ischemia.  The D phenotype refers to any death 
occurring after the ischemia has been lifted, or during 
reperfusion. 

Reperfusion-induced damage.  While the idea of “af-
ter ischemia” is in practice the same as “during reper-
fusion”, the distinction in the present context is impor-
tant.  In the scope of the above ideas it is the amount 
of ischemia, I, and not reperfusion that is the driving 

force of the system and the dependent variable of the 
model.  It is well-established that additional damage 
mechanisms are initiated specifically in response to 
reperfusion (Safar 1986).  However, we do not here 
distinguish between ischemia-induced and reperfu-
sion-induced damage mechanisms.  These are 
lumped together generically as “damage mechan-
isms”. 

While this may appear to be a limit of the current way 
of thinking, the justification for doing so is the follow-
ing.  Reperfusion-induced damage mechanisms are 
not independent of events initiated during ischemia.  
They are in fact a consequence of them.  Consider 
for example lipid peroxidation, a reperfusion-specific 
phenomenon (Chan 1994).  The degree of lipid pe-
roxidation during reperfusion will be a function of the 
amount of suitable substrates produced during 
ischemia by lipolysis and delocalization of heavy 
metals (Traystman et al 1991; White et al 2000).  
Such substrates are not significantly present in a 
normal brain undergoing perfusion.  Thus, it is not so 
much that reperfusion specifically induces its own 
forms of damage.   It is more the case that certain 
forms of ischemic damage are latent during ischemia 
and only manifest during reperfusion due to the addi-
tional substrates provided by the return of blood.  Or 
in other words, damage during reperfusion is just an 
extended form of damage during ischemia.  In fact, 
the same logic holds for stress responses as well.  
Most stress responses manifest during reperfusion, 
but in all cases the driving force is the net set of 
changes induced by ischemia.  Therefore, given the 
causal links between ischemia-initiated events and 
subsequent events during reperfusion, we feel justi-
fied to generically lump both forms of cell damage 
together.  This consideration then leads us to the 
next major topic: the genesis of the phenotypes from 
the competition between damage mechanisms and 
stress responses. 

7. Damage mechanisms and stress responses are 
driven by the amount of ischemia 

Here we discuss the competition, the mutual anta-
gonism, between the stress responses and the dam-
age mechanisms.  The shape of the post-ischemic 
state space landscape, that is, the series of pheno-
types H, P, D and N will be seen to naturally follow 
from this competition. First we approach this competi-
tion from an intuitive perspective and then briefly pro-
vide a more systematic analysis. The present discus-
sion sets the stage for us to consider bistability as the 
underlying circuit motif of the post-ischemic state 
space in the next section. 
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We note that we now begin to transition to a view in 
which the damage mechanisms and stress res-
ponses are seen to be variables in their own right, 
variables that change as a function of I, the amount 
of ischemia.  To this end, we define DM as the total 
effective damage produced by all damage mechan-
ism in response to some amount of ischemia, I.  We 
define SR as the total effective stress response ca-

pacity all of combined stress responses induced in a 
neuron by a given I.  By defining DM and SR in terms 
of totals, we move towards viewing the aggregate or 
net effects of ischemia-induced damaging or protec-
tive responses.  In the 3rd paper we further formalize 
DM and SR.  At this point we work with the qualitative 
definitions just provided. 
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Figure 4: (A) “Valley of the Neurons”. The genomic state space for neurons is expected to make a broad val-
ley within which all specific neuron subtype transcriptomes will occupy their own local attractor states in this 
“valley of the neurons”.  Shown here are a few of the vertebrate neuron types; the actual state space would 
contain the dozens of neuron subtypes typical of a vertebrate nervous system.  Other cell types would inhabit 
their own territories on the landscape. The valley of muscle cells is shown here, another vertebrate cell type 
whose function is intimately linked to electrical conduction. (B). Different classes of neurons (simply labeled 
1-5) will each possess their own state spaces.  It is assumed that the form of the state spaces will be general-
ly similar in terms of the post-ischemic phenotypes, but that the thresholds will differ amongst neuron sub-
types, consistent with the well-established differential ischemic vulnerability of neuronal classes.  The five hy-
pothetical neuron post-ischemic state spaces are shown in order of decreasing resistance to ischemia, as in-
dicated by the decreasing values of IS for each neuron type. 

Intuitive considerations.  Let us first contemplate the 
DM/SR competition intuitively.  It is clear that the in-
tensities of both DM and SR will be a function of the 
amount of ischemia, I.  Both should increases as I 
increases.  However, the increase is obviously not 
unbounded.  When I > TN, cell death ensues, ending 
the competition in favor of total damage, DM.  In con-
trast, for a significant range in the state space, for all 
values of I < IS, the stress responses, SR, win out 
over the total damage, DM, and the cell survives. 
These considerations lead us to hypothesize that the 
genesis of the thresholds reflects significant changes, 
milestone events, in the relative relationship between 
DM and SR.  A likely scenario is as follows (see in 
conjunction with Figure 6).  Note that we now also 
begin to speak of the state space ranges H, P, D and 
N as synonymous with specific ranges of amounts of 
ischemia. 

Figure 5: Two alternate ways to conceive of the 
relationship between the P and D post-ischemic 
phenotypes.  The cyan line recapitulates that 
shown in Figure 3 where P and D (D1 above) are 
distinguishable phenotypes because a barrier is 
presupposed at the TD threshold.  The alternative 
is shown by the dotted line in which the P and D 
(D2) phenotypes are continuous.  Both cases 
would give the same net post-ischemic outcome, 
but each would imply different underlying equa-
tions. 

In H, preexisting stress responses (e.g. not requiring 
transcription and translation) are rapidly activated, 
but I is low, therefore the total damage is relatively 
weak.  That is, in H, SR >> DM.  It seems most prob-

able that what sets the TP threshold is the intracellu-
lar concentration of ATP ([ATP]i).  In the H range, 
[ATP]i does not reach zero.  [ATP]i begins to ap-
proach zero after CGI in a time frame consistent with 
preconditioning amounts of ischemia (e.g. ~ 2 min in 
the gerbil, Mrsulja et al 1986).  After [ATP]i = 0, we 
expect a precipitous rise in total damage, DM, as well 
as a corresponding increase in total stress response 
capacity, SR, to cope.  After TP, the increase in SR is 
reflected in the genetic reprogramming of neurons to 
the P phenotype.  However, cell death never occurs 
during P which leads to the obvious conclusion that 
SR > DM through the entire range of P.  It continues 
that SR > DM upon entering D, and the issue of 
whether the P-D boundary is a continuum or makes a 
discreet break at TD was discussed above (Figure 5). 

Upon entering D, we encounter two new factors.  The 
first involves saturation of the stress responses.  As I 
increases through D, the total damage, DM, will con-
tinue to increase.  However, we expect that total 
stress response capacity, SR, will begin to level off.  
We expect SR to level off because of saturation.  
This is a key point.  Stress responses are, in general, 
enzyme-mediated.  As with any enzyme system, 
stress responses are subject to saturation.  At some 
value of I, the amount of damage produced will defini-
tively exceed the capacity of the induced stress res-
ponses to process the damage, hence saturation.  
On the other hand, many of the DM are not enzyme-
mediated but are non-physiological chemical reac-
tions induced by toxic products formed during ische-
mia.  As such, they are limited only by substrate 
availability (e.g. lipid peroxidation, for example, is not 
enzyme-mediated, and will continue as long as sub-
strates are available).   Thus, we do not expect satu-
ration to be a general property of DM. 

 Second, recall that SR and DM are mutually inhibito-
ry.  Since DM increases across the D range, but SR 
saturates, this would set up a situation where the in-
hibition of SR by DM has a greater and greater effect.  
That is, we expect an acceleration of the inhibition of 
SR by DM through D.  This will cause a decrease in 
the maximum (saturated) amount of SR and cause 
the dip in SR shown at the top end of the D range 
(green curve, Figure 6). 
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In short, once TD is passed, SR will initially level off 
due to saturation, and then decrease because of the 
accelerated inhibition by DM.  At some point in D 
therefore, DM will become greater than SR.  The 
amount of ischemia, I, after which DM > SR is to the 
right of IS.  Or said slightly differently, IS is that 
amount of ischemia where SR = DM (Figure 6, 
dashed black line at IS).  Defining IS as the amount of 

ischemia at which SR = DM in fact provides a formal 
rationalization of why IS is the tipping point between 
cell survival or cell death. 

Finally, when I > TN, the SR are completely over-
whelmed, the DM completely dominate, and the cell 
dies acutely during the ischemia, giving rise to the N 
phenotype. 

Figure 6:  The shape of the post-ischemic state space follows from the competition between the total effec-
tive damage (DM) and the total stress response capacity (SR) induced in neurons by ischemia.  Along the top, 
the relative intensities of DM and SR are depicted as different sized balls weighed on scales.  Below, the 
green and red curves represent the relative intensities of the DM and SR, respectively, as functions f(I) and 
g(I), where I is the amount of ischemia.   Milestone events are associated with each of the ischemic thre-
sholds (see text for details).  The black dotted line is an outline of the cross section through the post-ischemic 
neuronal state space as shown in Figure 3.  The sequence of H, P, D and N can be seen here to naturally fol-
low from the mutual antagonism of the SR and DM.  When SR > DM, the system naturally falls back to the 
steady-state attractor of the neuron, S (green dot).  When DM > SR, then the system falls to the cell death at-
tractor CD (red dot).  SR = DM at IS, the amount of ischemia at the separatrix, which is the tipping point be-
tween survival and death. 

Figure 6 illustrates the above points in two ways.  
First, changes in DM and SR are depicted by scales 
measuring their relative intensities, metaphorically 
depicted as weight.  Second, changes of DM and SR 

are displayed in a more precise fashion as hypotheti-
cal curves that change as a function of the amount of 
ischemia, I.   The curves can be designated as func-
tions f and g such that DM = f(I), and SR = g(I).  The 
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curves f and g in Figure 6 are hypothetical, but none-
theless educated guesses of the relative intensities of 
DM and SR as functions of I, based on the considera-
tions discussed above.  While hypothetical, these 
curves in fact are quite important.  In principle, the 
post-ischemic state space can be derived using the 
equations that would generate the curves f and g as 
input functions.  If real empirical curves of f and g can 
be measured, a formal network model will be possi-
ble. We return to this key issue ahead when discuss-
ing mapping the curves f and g to a bistable state 
space. 

Kinetics verses thermodynamics. The above is intui-
tive and informative as it goes, but there is a more 
systematic way to approach the issue of the relative 
intensities of SR and DM as a function of I.  This in-
volves the general viewpoint that any chemical reac-
tion can be controlled either by kinetic or thermody-
namic factors (Sykes 1986).  Kinetic factors predomi-
nate if the rate of a reaction is very fast: fast reactions 
occur when the energy of activation is low.  If time 
allows, the most stable reaction products will form, 
allowing thermodynamic equilibrium to dominate the 
system.  The most stable reaction products are those 
with the lowest energy (or highest entropy), although 
getting to them may require passing a higher energy 
of activation.  The reader will recall that the fastest 
reaction product is not always the most thermody-
namically stable.  Both kinetic and thermodynamic 
forms of control factor importantly in the sequence H, 
P, D and N.  Kinetic control dominates the beginning 
and end of the sequence, and thermodynamic control 
dominates the middle of the sequence. 

Events in both H and N occur because very fast reac-
tion kinetics are involved.  In H, rapid execution of 
pre-existing homeostatic mechanisms allows the cell 
to quickly re-enter S upon lifting the slight ischemic 
perturbation (e.g. Figure 1).  In N, the cell proceeds 
to the attractor CD because, at high amounts of 
ischemia, the rate of damage massively overwhelms 
the rate at which the cell can cope, e.g. the rate of 
stress response onset.  Thus, in H and N, the relative 
intensities of the DM and SR are set by kinetic factors. 

In P and D, however, events happen over relatively 
much longer time periods.  P takes time both to onset 
and to decay.  This is clearly due to the requisite 
changes in transcription and translation leading to the 
P phenotype, and the eventual decay back to the S 
phenotype.  Similarly in D, it takes time for the cell 
death to occur; hence we call it “delayed”.  Whatever 
the specific constellation of events underlying DND, 
we can infer, on the basis of the relative time frame 
involved, that these involve some type of steady-state 
equilibrium between DM and SR.  It cannot be a true 
thermodynamic equilibrium because the system un-
der consideration, the ischemic brain, is not a closed 

system; hence a steady-state is expected to evolve 
between SR and DM.  When SR > DM (e.g. to the left 
of IS), then the products of the stress responses do-
minate the products of the damage mechanisms by 
some type of steady-state process.  The opposite is 
true on the other side of IS:  damage products will 
dominate over those of the stress responses via 
some type of steady-state process.   Thus, thermo-
dynamic, not kinetic, factors determine the relative 
intensities of the DM and SR in the P and D domains. 

In fact, we can say that, within the scope of our think-
ing, the kinetic-based death in N and the thermody-
namic-based death in D are precisely the causes of 
cell death during ischemia or during reperfusion, re-
spectively.  We here only introduce the notion that 
our model provides an alternative view of cell death 
causality, and return to this critical point in the 3rd pa-
per of this series. 

Summary. To summarize, we have in this section 
explained how the sequence of phenotypes in the 
post-ischemic state space, H, P, D and N, follow di-
rectly from the mutual antagonism between SR and 
DM.  With network thinking, we can understand the 
evolution of the phenotypes and make logical and 
systematic statements about ischemia-induced cell 
death.  In fact we can state in precise terms the 
causes of ischemia-induced cell death. 

This all follows with no reference whatsoever to the 
underlying details, a perhaps surprising situation to 
advocates of the traditional view that the causes of 
cell death are to be found somewhere in the fine de-
tails of the “ischemic cascade”.  On the other hand, 
the view presented here would be impossible to con-
ceive without the detailed understanding of ischemia-
induced damage and stress responses accumulated 
over the past few decades.  As previously stated, the 
network view unifies and envelopes (encompasses) 
our present understanding of brain ischemia. It is a 
generalization and abstraction of decades of detailed 
results. 

The final topic now to consider is how the DM/SR 
competition may be modeled with a bistable circuit to 
produce the post-ischemic state space. 

8. Bistability and the post-ischemic state space 

To do this section justice, we must briefly discuss 
bistability and review additional details of how the 
differentiation examples discussed in the 1st paper 
were modeled as bistable systems. 

Bistability. Bistability is a common form of biological 
regulation and occurs whenever a system faces two 
mutually exclusive outcomes (Craciun et al 2006; 
Chatterjee et al 2008; Pomerening 2008).  Examples 
of biological systems exhibiting bistable behavior in-
clude sonic hedgehog signal transduction (Lai et al 
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2004), determination of cell fate (discussed ahead; 
Huang et al 2007), microbial sporulation (Igoshin et al 
2006), growth factor-induced endocytosis (Zwang 
and Yarden 2009), cell cycling in xenopus oocytes 

(Ingolia 2005), the alternation between REM and 
NREM sleep (Karlsson et al 2004), and apoptosis 
(Wee and Aguda 2006), among many others. 

Figure 7:  Bistable models of differentiation (A and B) and brain ischemia (C). Circuit diagrams are shown 
at the top of each column.  Under these are shown cross sections through the state spaces that derive 
from the equations of the respective circuit diagrams.  Below the cross sections are quasi-potential plots of 
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the entire state space.  (A) The pure bistable circuit produces a saddle-shaped state space, and generates 
only two attractors A and B, controlled by the levels of the variables x and y, respectively.  If x > y, the sys-
tem is attracted to A, and vice versa if y >x.  (B) Addition of positive feedback to x and y alters the bistable 
circuit and changes the shape of the resulting state space, producing a third attractor, C.  C is at a higher 
quasi-potential, than attractors A and B.  (C) Modifications to the bistable circuit to produce the post-
ischemic state space are currently unknown and depicted as red question marks in the circuit diagram.  In 
the cross sectional plot, the relative levels of SR and DM are also unknown as again marked by the red 
question mark.  The relative levels of SR and DM are expected to follow the form shown in Figure 6.  The 
quasi-potential state space plot of the post-ischemic state space shows the H, P, D and N phenotypes are 
controlled by the variables SR and DM.  The state of maximum SR and minimum DM corresponds to the 
attractor S, and the state of minimum SR and maximum DM corresponds to the attractor CD.  Changes in 
SR and DM occur as a function of the amount of ischemia, which would be the dependent variable of the 
input function equations.  Bottom panel: The quasi-potential state spaces for the pure bistable, positive 
feedback-modified bistable, and post-ischemic system are shown next to each other for easy comparison.  
Note that a label for H is omitted from the post-ischemic state space simply to keep the images from be-
coming cluttered.  The basin within which S is the minimum point is in fact H.  The separatrix is indicated in 
each state space by the dashed line extending from (0,0) to (1,1).  

It is surprising that in these and other complex multi-
dimensional systems, the control of outcome can be 
reduced to two mutually antagonistic variables.  We 
continue with the example of differentiation started 
earlier to illustrate how in practice one models a sys-
tem as bistable.  In doing so, the logic of reducing the 
complex changes induced by brain ischemia to only 
two mutually antagonistic variables, DM and SR, will 
be seen to be a maneuver that allows us to frame 
brain ischemia as another example of bistability in 
nature. 

GATA1/PU.1 Control of FDCP Cell Differentiation.  
We briefly review the work of Huang et al (2007) on 
the differentiation of FDCP-mix (FDCP) progenitor 
cells into either erythroid cells or myeloid/monocytic 
cells.  This is a bistable system in which the differen-
tiation of FDCP cells into either erythroid or myelo-
id/monocytic cells is a mutually exclusive decision. 

The mutual exclusivity of the decision rests on elicit-
ing different patterns of gene expression in the FDCP 
precursors.  As is now well known, lineage specifica-
tion is often controlled by “master” transcription fac-
tors (TFs) (Kim et al 2009).  These are TFs that sit at 
the top of a hierarchy of gene control.  Activation of 
the master TF induces downstream TFs that may 
induce further downstream TFs, where the final set of 
downstream TFs turns on the genes of the final diffe-
rentiated phenotype (Boheler 2009). 

The lineage fate decision of the FDCP cells is con-
trolled by the mutual antagonism of two master TFs.  
GATA1 triggers erythroid differentiation and PU.1 
triggers monocytic differentiation (Huang et al 2007).  
Overexpression of either TF by transfection will in-
duce its respective phenotype (Graf 2002).  Key to 
this whole system, GATA1 and PU.1 are mutually 
inhibitory.  GATA1 suppresses PU.1 transcription, 
and vice versa (Huang et al 2007).  Therefore, the 
entire complex set of hierarchical changes in the 

gene regulatory network of the FDCP cell can be re-
duced simply to the mutual antagonism between 
GATA1 and PU.1, allowing FDCP differentiation to be 
modeled as a bistable system. 

We point out that when we discussed gene network 
state spaces in the 1st paper these were described in 
terms of Boolean networks, and the input functions 
were binary.  The following model of GATA1/PU.1 
bistability is not binary but is modeled using conti-
nuous input functions where protein concentrations 
are continuous, not binary, variables (Alon 2006).  
Ahead, we emulate this approach and model the 
DM/SR competition also in terms of expressing these 
as continuous, not binary, variables. 

Modeling the GATA1/PU.1 Competition as a Bistable 
System.   Figure 7 illustrates the bistable models of 
the GATA1/PU.1 competition (Figure 7A and B) and 
of brain ischemia (Figure 7C).  Images shown in Fig-
ures 7A and 7B are precise adaptations of data from 
Huang et al (2007).  Here, the concentrations of 
GATA1 and PU.1 are notated as x and y.  Notating 
Figures 7A and 7B generically is meant to illustrate 
that the underlying equations are generic, and not 
dependent upon the specifics of the GATA1/PU.1 
system. The underlying generic model is that of a 
bistable system.  The GATA1/PU.1 system happens 
to fit this pattern.  We argue in the next section that 
brain ischemia also fits this pattern.  The circuit re-
presentations for each system are shown across the 
tops of the columns in Figure 7. 

Figure 7A shows a pure bistable network that models 
only the mutual antagonism of x and y.  Under the 
circuit diagram is a cross section through the result-
ing state space.  The points A and B are the attrac-
tors associated with high [x] and high [y], respectively.  
If A is the erythroid phenotype, then x represents 
GATA1.   Similarly, if B is the monocytic phenotype, 
then y represents PU.1.  One can see that if [x] > [y] 
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(e.g. [GATA1] > [PU.1]), then the system is attracted 
to A, the erythroid phenotype, and vice versa if [y] > 
[x].   At the center of the cross section where [x] = [y] 
is again a “watershed” point where the slope reverses 
sign. On either side of this “watershed” point, the sys-
tem is fated to move to its respective attractor.  Simp-
ly stated, in this pure bistable circuit, the TF with the 
higher concentration wins the competition and deter-
mines the outcome phenotype. 

Underneath the cross section is a quasi-potential plot 
of the entire state space.  In 3D, the state space in 
Figure 7A resembles a saddle (but it must be kept in 
mind that the state space itself is a two dimensional 
surface in x and y and the 3rd dimension is a quasi-
potential projection).  The state space bends down to 
the attractors at A and B, the lowest (e.g. most stable) 
points in the state space.  The x and y axes extend 
from 0 to 1, but the range is arbitrary and can simply 
be thought of as a normalized range.  Note that A is 
the point (1, 0), the maximum of x and the minimum 
of y, and vice versa for attractor B.  All other points 
on the state space represent different proportions of x 
and y and correspond to all possible combinations of 
concentrations of the two TFs.  All other points on the 
surface are unstable relative to the attractors (e.g. 
are at some higher point in the quasi-potential 3rd 
dimension).  The highest, most unstable points of the 
state space are at (0, 0) and (1, 1).  The “watershed” 
point in the cross section is actually a point on the 
line (technically, geodesic, because the 2D surface is 
bent) from (0, 0) to (1, 1).   This line is called a sepa-
ratrix; it is the unstable state between the two attrac-
tors in which the system is poised to go in either di-
rection.  The separatrix is designated on each state 
space in Figure 7D.  We can now see why the term 
“ischemia on the separatrix”, IS, was introduced earli-
er.  It refers to the point on the state space cross-
section that lies on the separatrix of the 3D state 
space. 

One of the objectives of Huang et al (2007) was to 
generate a state space that contained not only the 
final differentiated phenotypes (e.g. A and B), but 
also included the attractor for the undifferentiated 
FDCP cells.  To do this, he modified the input func-
tions as shown in Figure 7B.  He added one addition-
al feature about GATA1 and PU.1 to the bistable cir-
cuit: each activates its own transcription.  This is now 
depicted in the circuit diagram by the rounded arrows 
emanating from and returning to x and y in Figure 7B.  
This modification adds positive feedback to each TF’s 
control of its own transcription. 

Adding positive feedback to the circuit modified the 
parameters of the input function equations (Huang et 
al 2007). The effect on the resulting state space is 
shown again in cross section and as a quasi-potential 
plot (Figure 7B).  By adding the self-activation of 

each TF, the input functions now generated a third 
attractor in the state space, here labeled C.  The new 
attractor C represents the FDCP progenitor cell.  It 
should be noted that the new attractor C fell along the 
separatrix of the pure bistable model, and generated 
a tristable system.  However, attractor C is at a high-
er quasi-potential than either A or B, thereby making 
it inherently less stable than A or B.  In this fashion, 
Huang et al (2007) were successful in generating a 
realistic model of the phenotypes of the FDCP cell by 
simply adding only one biologically relevant fact to 
the pure GATA1/PU.1 bistable circuit: each TF acti-
vates its own transcription. 

Bistability and Brain Ischemia.  The above was ne-
cessary to set the background to discuss how the 
post-ischemic state space derives from a bistable 
competition between DM and SR.  The important 
take-home message is this: one can modify the input 
functions of the pure bistable circuit and alter the 
shape of the state space.   Such modifications in-
volve adding reasonable additional features to the 
core bistable antagonism of the two variables.  We 
now discuss possible ways to modify the pure bista-
ble circuit to get equations that give us back the post-
ischemic state space as shown in Figures 3 and 7C. 

The post-ischemic state space is now depicted to 
mimic as closely as possible the results of Huang et 
al (2007) (Figure 7C).   The images shown in Figure 
7C constitute precisely the faux bistable network 
model of global brain ischemia.  We can envision the 
end result.  The issue is how to work backwards from 
the surface in Figure 7C to the input functions. 

Mapping Ischemia and Differentiation.  Let us first 
discuss the leaps in logic required to map the ische-
mia problem to the differentiation problem.  This 
mapping occurs through a series of substitutions: 

1. Where FDCP differentiation is control by two 
mutually antagonistic transcription factors, 
brain ischemia is controlled by two mutually 
antagonistic abstract variables, DM and SR. 

This may seem an unequal substitution in that 
GATA1 and PU.1 are physical, individual proteins, 
whereas DM and SR refer to total effects of many 
individual damage and stress responses, respectively, 
induced in neurons by ischemia.  The issue here in-
volves identifying two mutually antagonistic factors 
that control the system of interest.  It happens to be 
physical proteins in the GATA1/PU.1 system.  For 
brain ischemia, it happens to be the consequence 
associated with any specific ischemia-induced 
change.  One is hard pressed not to assign a value of 
“good” or “bad” to any particular change identified in 
the post-ischemic brain.  Or we could as well say 
“contributes to survival” and “contributes to death”.   If 
there is some other possible consequence of an 
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ischemia-induced change, it escapes this author.  If a 
change is “neutral” (with respect to outcome) then 
why consider it?  There is the possibility that a specif-
ic change can flip state as a function of its position on 
the state space landscape.  That is, a particular re-
sponse could go from “good” (SR) to “bad” (DM) or 
vice versa.  In such a fashion we could formally mod-
el Eng Lo’s (2008) suggestion about the “biphasic” 
nature of stress responses.  Here we simply point this 
out but do not discuss it further. 

Therefore, we now see the main reason for classify-
ing all changes induced in the brain as either contri-
buting to survival (stress responses) or to cell death 
(damage mechanisms) and further,  lumping these 
together in aggregate as the variables DM or SR.  
Doing so provides two mutually antagonistic variables 
that allow us to model brain ischemia as a bistable 
system.  In the 3rd paper we address the relationship 
between the variables DM and SR and the many in-
dividual molecular changes of which each consists.  
At this point in the discussion, we justify this leap in 
logic by the simple fact that it seems to work. 

2. Where the plots in Figure 7A/B are plots of 
protein concentrations (x and y), we substi-
tute the intensities of the DM and SR.   

This does not seem unreasonable as concentrations 
are nonnegative continuous variables, and as Figure 
6 indicates, the intensities of the DM and SR can so 
be depicted as well. 

3. Where the changes in concentrations of x 
and y are a function of time in the input func-

tions (e.g. dt
xd ][

 and dt
yd ][

) (Huang et al 
2007), the changes in the SR and DM are a 
function of the amount of ischemia (e.g. 

dI
dSR

 and dI
dDM

; where I is the amount of 
ischemia). 

Even though we discussed the relationship between 
the amount of ischemia, I, and duration in the 1st pa-
per, the explicit role of time in the change of the in-
tensities of the SR and DM, considered as conti-
nuous variables, is obviously complicated.  The dis-
cussion of kinetic and thermodynamic control would 
factor in here.  It is likely that being able to formulate 
this question precisely in terms of rate and steady-
state equilibrium expressions will allow derivation of 
the proper input functions for the post-ischemic state 
space.  These would be precisely the functions f and 
g discussed earlier. 

4. Where A and B are differentiated phenotypes, 
for brain ischemia these correspond to the 
normal neuron phenotype S and the cell 

death phenotype CD.  No caveats can be 
envisioned as to why substituting phenotypes 
would present a problem. 

Comparison of the Post-Ischemic and Differentiation 
State Spaces.  Let us next compare the bistable re-
presentation of the post-ischemic state space to 
those of differentiation.   In Figure 7C, the cross sec-
tion through the state space from point S to point CD 
captures all the features shown previously in Figure 3.  
Under the cross section, the intensities of the DM and 
SR are depicted as concentration (intensity) triangles 
by analogy to the Huang et al (2007) data.  These 
however are inaccurate as depicted, thus the red 
question mark through them.  The main inaccuracy is 
that they are shown as symmetric.  From Figure 6, it 
is clear that they should be asymmetric because, as 
discussed, the SR and DM do not both increase in 
the same manner as a function of the amount of 
ischemia, I.  At present, the best that could be ac-
complished is to estimate input functions from the 
curves of DM and SR as shown in Figure 6; a chore 
for a future paper. 

The 3D post-ischemic state space representation has 
several features different from those of the differen-
tiation state spaces (easily compared in panel D of 
Figure 7, where all three are aligned next to each 
other).  First, the post-ischemic state space is clearly 
asymmetrical across the separatrix, whereas both 
differentiation state spaces are mirror images across 
the separatrix.  The symmetry in the differentiation 
cases is due to symmetric parameters in the input 
functions (Huang et al 2007).  Choice of asymmetric 
parameters would generate an asymmetric space, 
but these would simply be distorted mirror images 
across the separatrix.  The asymmetry in the post-
ischemic state space is of a more fundamental nature, 
being due to the P phenomena on the S but not the 
CD side of the separatrix.  P simply does not mirror 
image itself functionally.  Thus, we see the issue of 
the P-D boundary is nontrivial and reflects the intrin-
sic asymmetry of the post-ischemic state space. 

The circuit diagram for the post-ischemic state space 
is shown with question marks because we do not yet 
know exactly how to modify the pure bistable circuit 
to generate the post-ischemic state space.  For the 
GATA1/PU.1 bistable circuit, adding positive feed-
back altered the state space in Figure 7A by generat-
ing a shallow valley, the attractor C, in Figure 7B.  
We require the opposite change in the post-ischemic 
state space: a low flat hill to represent the D pheno-
type.  In addition the slopes associated with the H 
and N subregions of the state space are not expected 
to be mirror images. 

Just to go through the intellectual exercise, if we, by 
analogy to the differentiation case in Figure 7B, add 

http://www.s4es.org/�


DEGRACIA, A post-ischemic neuronal state space 
 

- 88 - 
J Exp Stroke Transl Med (2010) 3(1): 72-89 

Society for Experimental Stroke (www.s4es.org) 

positive feedback to DM and SR, that would mean 
that damage would beget damage and the stress 
responses would induce themselves.  Neither of 
these is physically realistic.  Generally, stress re-
sponse pathways are the opposite, they are self limit-
ing.  As stress gene products accumulate, they inhibit 
their own transcription, as for example with the heat 
shock response (Balakrishnan and De Maio 2006). In 
addition, as we said, SR is expected to saturate with 
increasing I. And while some damage mechanisms 
are chain reactions (again, lipid peroxidation), in gen-
eral damage does not increase in a positive feedback 
after ischemia has ended.  No, it seems reasonable, 
as a first approximation, to assume that DM increas-
es as a linear function of I (after TP), as depicted in 
Figure 6.  So, while we know positive feedback is not 
the required modification to the pure bistable circuit, 
going through this exercise illustrates the type of 
thinking required to find the necessary modification(s). 

As the above discussion illustrates, the bottle neck to 
getting input functions lies precisely in answering the 
question:  how is the pure bistable circuit to be mod-
ified to alter the shape of the state space to match 
that of our post-ischemic state space that we have 
derived based on the mass of empirical evidence?  A 
first stab at an answer is that addition of saturation to 
the function SR = g(I), and leaving the function DM = 
f(I) linear with respect to I (e.g. when I  > TP) may 
generate the shape we have here hypothesized for 
the post-ischemic state space.  There are also re-
lated empirical questions: 

1. What are the real graphs (or some reasona-
ble approximation) of the relative intensities 
of the SR and DM as a function of the 
amount of ischemia, I?  What molecular 
markers could provide this information? 

2. Is the P-D boundary (e.g. at TD) a continuum 
or is there a wall (quasi-potential barrier) 
there (Figure 5)?  Again we raise this point 
because P introduces an intrinsic asymmetry 
to the state space.  This is not a question to 
be answered by theory.  It needs to be ans-
wered empirically by a demonstration (or not) 
that resistant neurons in D are in fact pre-
conditioned.  To our knowledge, this issue 
has not been considered before, but the is-
sue is clearly experimentally accessible, and 
answering it will provide an important clue to 
the shape of the post-ischemic state space. 

9. Open ends 

On one hand it is perhaps unsatisfying that this story 
does not yet have a closed ending, and that we in-
stead end this discussion with our sleeves rolled up 
considering technical issues.  This is science after all, 
it is what we do, and many hands make light work.  

On the other hand, we have here the beginnings of a 
viable reformulation of what brain ischemia is.  The 
core of this reformulation is to model brain ischemia 
as a bistable system in a network context.  Again, 
and quite obviously, post-ischemic neurons face the 
mutually exclusive decision to either live or die.  Re-
cognizing that bistability underlies brain ischemia 
brings it into the distinguished company of a myriad 
other biological processes that have bistability at the 
core of their operation. 

Clearly the approach described here is not simply a 
metaphor or vague insight.  It provides a new means 
to conceptualize, systematize and mathematically 
model brain ischemia.  It is an alternative to the 
“ischemic cascade” as an explanatory framework.  It 
does not reject the “ischemic cascade”; it encom-
passes it in a new context where the myriad details of 
the “ischemic cascade” become subsumed as the 
points of the state space (more said on this in the 3rd 
paper). 

This “Brain Ischemia 2.0” offers new insights into the 
causes of cell death by introducing the kinetic and 
thermodynamic explanations completely independent 
of any specific physiologic or molecular detail.  It can 
unify our conception of brain ischemia by bringing all 
the ischemia-induced phenomena within the scope of 
one mathematical framework.  Finally, the model 
hints at a general theory of cell injury.  The logic used 
here could be applied to other brain injuries (and in 
fact has, Villoslada et al 2009), other cell types, other 
organs.  While the sky is the limit in this regard, as 
the above makes plain, we still have to complete the 
project of modeling brain ischemia before moving on 
to other applications.  But even at its present stage of 
development, the Brain Ischemia 2.0 viewpoint offers 
a fresh look at the current crisis in therapeutics, 
which we discuss in the next, the 3rd paper of this 
series. 
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