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Bone erosion is a major hallmark of rheumatoid arthritis and is executed solely by the bone-
resorbing cell, the osteoclast. This cell arises from macrophage precursors and differentiates 
into the mature polykaryon after stimulation with the receptor activator of NF-κB ligand 
(RANKL) and macrophage colony-stimulating factor. Osteoclasts are recruited to sites of 
inflammation, or differentiate at these sites owing to elevated levels of circulating RANKL and 
other inflammatory cytokines secreted by cells in the inflamed tissue. Recent therapies to 
combat inflammatory bone erosion have focused on proximal and intracellular signaling 
molecules to attenuate osteoclast formation and activity. In this review, osteoclast 
differentiation, activation mechanisms, the role of the NF-κB pathway in inflammatory 
osteolysis and the relevant intervention approaches are presented briefly. The emphasis of 
this review will be on the RANKL–RANK–IκB kinase–NF-κB pathway and related antiosteolytic 
and anti-inflammatory modalities.

Inflammatory synovitis and subsequent destruc-
tion of joint cartilage and bone are hallmarks of
rheumatoid arthritis (RA) [1]. Whereas the
destruction of cartilage tissue results primarily
from the action of tissue proteinases, focal bone
erosion is almost exclusively the result of osteo-
clast action. Increased osteoclast activity as is
obvious in numerous osteopenic disorders,
including RA, leads to increased bone resorption
and devastating bone damage. Several studies
have established the fact that synovial tissue-
residing cells secrete a broad range of inflam-
matory cytokines, and factors that directly or
indirectly encompass a microenvironment sup-
portive of osteoclast recruitment and
activation [2,3]. These include interleukin (IL)-1,
IL-6, transforming growth factor (TGF)-β,
parathyroid hormone (PTH), inducible nitric
oxidase synthase (iNOS), cyclooxygenase
(COX)-2 and, most notably, members of the
tumor necrosis factor (TNF) superfamily of
cytokines. These latter cytokines include the
receptor activator of NF-κB ligand (RANKL)
and TNF-α, which activate the Rel/NF-κB fam-
ily of transcription factors predominantly [4–7].
These transcription factors govern inflammatory
and osteolytic processes [8–11] and are thus
increasingly considered the centerpiece fueling
inflammatory arthritic bone erosion and, as
such, the focus for therapeutic intervention.

Osteoclast differentiation & activation
The bone loss component associated with RA
has a devastating impact on human health.
Thus, understanding the mechanisms involved

in this process is particularly imperative. One
key component in this response is the develop-
ment and function of the sole bone-resorbing
cell, the osteoclast [12].

Osteoclasts are required for skeletal develop-
ment, bone resorption and remodeling through-
out the lifespan of mammals. Osteoclast
differentiation is controlled primarily by the
stromal/osteoblast-derived proteins, RANKL
and macrophage colony-stimulating factor
(M-CSF) [12]. RANKL, a member of the TNF
superfamily, binds to its transmembrane receptor,
RANK and leads to the differentiation of bone
marrow macrophages into multinucleated mature
osteoclasts, a process that requires adhesion to the
matrix by various cell-associated proteins, termed
integrins [13–15]. Several genes, such as PU.1, c-
fms (M-CSF receptor), c-fos, RANK and NF-κB
(p50,  p52 subunits), are critical for osteoclast
differentiation. Other gene deletion studies
implicated the proto-oncogene c-Src, the proton
adenosine triphosphatase (H+-ATPase) [12,13],
nuclear factor for activated T cell (NFAT) c1, tar-
trate-resistant acid phosphatase (TRAP) and
cathepsin-k genes [16–18] at later stages of
osteoclast activation and function (Figure 1).

The principal function of osteoclasts is to
resorb bone matrix. The primary event in this
process is acidification of a defined and isolated
extracellular resorptive microenvironment. This
critical process is facilitated by adhesion to the
matrix and formation of a tightly sealed zone
beneath the osteoclast concurrent with polariza-
tion of the cell towards bone tissue. The polariza-
tion event is coupled with the translocation of a
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vacuolar proton pump, the vacuolar H+-ATPase,
to the ruffled border of the osteoclast. This event
requires the assembly of microtubules and actin
filaments, which provide structural tracks defin-
ing cellular polarization domains and the deliv-
ery of cargo vacuoles to and from these
domains [19]. The ruffled membrane is a highly
convoluted membrane structure juxtaposed to
the bone and facilitates the movement of ions
and molecules essential for the resorption proc-
ess. Another important component required for
proper acidification is the exportation of chloride
ions. This is coordinated by energy-independent
Cl-/HCO3

- exchangers that exist on basolateral
osteoclast plasma membranes [20]. Coupling of
chloride ions with secreted protons leads to the
formation of hydrochloric acid in the resorptive
microenvironment. The acidification step is crit-
ical for mineral mobilization and degradation of
the organic phase of bone by acidic proteases and
enzymes, such as procathepsin-κ and TRAP [12].

A major breakthrough in the regulation of
osteoclastogenesis was achieved with the discov-
ery of osteoprotegerin (OPG), a soluble protein

of the TNF-receptor family [21–23]. OPG acts as a
decoy receptor through binding to circulating
RANKL and decreasing its bioavailability. Several
studies have demonstrated that OPG is a potent
inhibitor of bone loss, thus regulating bone den-
sity and mass in mice and humans [15,23–25]. As
expected, overexpression or targeted deletion of
the OPG gene in animals led to osteopetrosis or
bone loss, respectively [15]. This secreted cytokine
was also proven effective in blockade of meta-
bolic, pathologic and tumor-induced bone loss.
Subsequently, these functions led to the identifi-
cation of the OPG target protein (i.e.,
RANKL) [22,26,27]. Gene targeting studies have
shown that RANKL and its receptor RANK are
required for osteoclastogenesis; as such, regula-
tion of these factors determines overall osteo-
clastogenesis. In fact, mice deficient in these
genes are osteopetrotic and lack osteoclasts [26,28].
Inhibition of RANKL by OPG was mimicked by
the expression of soluble extracellular RANK
protein which, essentially, in a similar way to
OPG, neutralizes RANKL by sequestering it in
an inactive complex. This approach was further

Figure 1. Genetic regulation of osteoclast development.

The critical stages of osteoclast differentiation with corresponding stage essential genes are illustrated. PU.1 
and M-CSF are required for early-stage macrophage precursor formation; RANKL, TRAF6, c-fos, NF-κB and 
IKKs are essential for the differentiation of immediate osteoclast progenitors; other genes, such as the 
integrin αvβ3, c-Src, proton ATPase, carbonic anhydrase and more, play a crucial role in the differentiation of 
the mature multinucleated osteoclasts and their activation state. Certain genes, such as NF-κB participate at 
multiple differentiation stages.
IKK: IκB kinases; M-CSF: Macrophage colony-stimulating factor; NFATc1: Nuclear factor of activated T cells 
isoform c1; OCL: Osteoclast; pOC: Prefusion osteoclast-like cell; RANKL: Receptor activator of NF-κB ligand; 
TRAF: Tumor necrosis factor receptor-associated factor.
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proven effective in vitro and in vivo by adminis-
tration of Fc–RANK fusion protein to block
bone loss pathologies [29,30].

Signaling by RANKL entails binding of the
soluble ligand to its cognate receptor RANK to
prompt transcription of osteoclastogenic
genes (Figure 2). The primary signals are initiated
by assembly of the signaling cascade at the cyto-
plasmic tail of RANK. To this end, assembly
begins with recruitment of signaling and adaptor
molecules, such as TNF receptor-associated fac-
tor (TRAF)-6 [7,31,32]. Subsequently, several
downstream tyrosine and serine/threonine
kinases, including NF-κB inducing kinase
(NIK), IκB kinases (IKKs), c-Src, Akt/protein
kinase B (PKB) and mitogen-activated protein
extracellular signal-regulated kinase (MEKK)-1
are recruited to the complex and undergo activa-
tion. The most notably activated pathway by
RANK is NF-κB [11,33]. Another major pathway
transmitted by the activated RANK–TRAF6 axis
is the mitogen-activated protein kinase (MAPK)
pathway [34,35]. The functional relevance of these
proteins to RANK-induced osteoclastogenesis
has been established [7,36–38]. In this respect,
interfering with NF-κB activation [9,39,40] or
deleting certain NF-κB subunits (combined
deletion of p50 and p52) arrests osteoclasto-
genesis [41,42]. Likewise, dominant negative forms
of various MAPKs and selective inhibitors of the
MAPK pathways inhibited osteoclastogenesis or
reduced osteoclast survival [43–45].

In general, osteoclast deficiency leads to oste-
opetrosis, whereas excessive osteoclast activity
under pathologic conditions leads to devastat-
ing bone loss diseases, such as osteoporosis,
periarticular osteolysis, inflammatory arthritis,
periodontitis and other forms of osteopenia.
This hyperactivity of osteoclasts was established
as the result of direct upregulation of RANKL-
induced osteoclastogenesis by a network of pro-
inflammatory cytokines and factors, notably
TNF, which synergize with RANKL pre-exist-
ing signals in preosteoclasts [7,46,47]. Therefore,
understanding key signal transduction path-
ways in osteoclastogenesis provides an impor-
tant foundation towards the design of
intracellular inhibitors in states of exaggerated
osteoclast activity.

Overview of the IKK/NF-κB 
signaling pathway
The transcription factor NF-κB family comprises
several members, including p50, p52, RelA/p65,
RelB, c-Rel, the precursors NF-κB1/p105,

NF-κB2/p100 (which undergo processing into
p50 and p52, respectively) and the inhibitory sub-
units IκBα, IκBβ, and IκBε [11,33,48]. Under non-
stimulated conditions, most NF-κB is bound to
IκBα and retained in the cytosol in its inactive
form [49,50]. Stimulation of the NF-κB pathway is
mediated by diverse signal transduction cascades
that lead to three major events. First, phosphor-
ylation of the inhibitory IκBα by upstream
kinases and the release of NF-κB. Second, translo-
cation of NF-κB dimers to the nucleus, and last,
NF-κB dimers bind to specific DNA elements
and trigger transcriptional activity of several genes
(Figure 2) [51] The signal is eventually terminated
through NF-κB-directed IκBα resynthesis which
binds and resequesters cytoplasmic NF-κB. Phos-
phorylation of IκBα occurs on N-terminal serine
residues and is induced by the IKK complex. The
predominant IKK complex found in most cells
contains two catalytic subunits, IKK1 (also
known as IKKα) and IKK2 (IKKβ), and a regula-
tory subunit, IKKγ/NF-κB essential modulator
(NEMO) [48,52–54]. Whereas the catalytic serine
kinases IKK1 and IKK2 were found to target ser-
ines 32 and 36 of the IκBα (and p100 processing
by IKK1), the role of NEMO was identified as a
regulatory subunit. NEMO contains several pro-
tein interaction motifs with no apparent catalytic
domains but essential for staging the assembly of
the IKK signalsome [55–58]. Aside from their classi-
cal NF-κB activation mode, IKKs, in particular
IKK1, induce activation of p100NF-κB through a
noncanonical pathway (Figure 2) resulting in the
activation of p52–RelB dimers [59].

Role of IKK/NF-κB in basal bone biology, 
inflammation & inflammatory 
bone erosion
NF-κB is absolutely essential for osteoclasto-
genesis [42,60]. In fact, the combined deletion of
two subunits of this transcription factor (i.e.,
p50 and p52) arrests osteoclast development and
leads to osteopetrosis [41,42]. Recent findings fur-
ther established that members of the IKK com-
plex, namely IKK1, IKK2 and NEMO regulate
osteoclasts directly. In this regard, genetic studies
show that the deletion of IKK1 or IKK2
impedes osteoclastogenesis [61,62]. Furthermore,
inhibition of NEMO binding to and activation
of the IKK2 by a NEMO binding decoy peptide
(termed NBD for NEMO-binding domain)
arrests osteoclast formation and activation [63,64].
Several other studies have established that
NF-κB is a legitimate target for modulating
osteoclastogenesis and osteoclast activity. For
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example, the administration of NF-κB inhibi-
tors, such as dominant-negative forms of IκBα
and inhibitors of IKKs, showed great promise in
arresting osteoclasts [40,65].

Osteoclast recruitment and activation are
induced markedly and coincide with elevated
levels of NF-κB in states of inflammatory bone
diseases [8,66,67]. This is apparently fueled by
proinflammatory factors converging at inflam-
matory sites under the auspices of NF-κB. This
transcription factor induces a wide range of
genes among which are those encoding IL-1,
IL-6, TNF, iNOS, COX-2 and other pro-
inflammatory cytokines, some (such as TNF,
IL-1 and IL-6) are capable of activating the
NF-κB pathway directly, thus establishing a
vicious positive autoregulatory loop that can
amplify the inflammatory response and increase
its duration. In this regard, activation of the
NF-κB pathway has been shown to be involved
in the pathogenesis of several inflammatory dis-
eases, including all forms of arthritis [5,8,9,67–69].
Specifically, NF-κB subunits p50 and p65 have
been localized to nuclei in synovial lining cells as
well as mononuclear cells in the underlying
regions. NF-κB binding to DNA is also much
higher in RA compared with osteoarthritis
controls, consistent with increased pro-
inflammatory cytokine production in RA [70].
Furthermore, cytokines, such as TNF, IL-6 and
RANKL, which activate NF-κB and induce
bone loss and inflammation, are elevated in the
synovial fluid of arthritic patients.

The pathogenic role of NF-κB has been also
widely established in animal models of inflam-
matory arthritis. The incidences of increased
NF-κB activity that correlate with early stages of
RA in rodents support the concept that the tran-
scription factor plays a key role in the develop-
ment and progression of RA [8,70,71]. Numerous
studies have established that NF-κB regulates
RA directly through the use of decoy oligonu-
cleotides and various IκBα and IKK dominant
negative forms virally transferred into different
rodent models of RA [72–78].

Therapeutic targets for bone loss
Proximal approaches: 
RANK/RANKL/OPG/TNF/TNF receptors 
As osteoclasts, the centerpiece of osteolytic
responses, depend upon circulating levels of
RANKL (which is abundant in inflamed sites
where it is secreted by synovial and activated
T cells [79]), in experimental arthritis, targeting
this mechanism has proved tangible [2,6,10,80].

A direct approach to target the final destruc-
tive phase of bone loss in inflammatory osteo-
lytic diseases is the inhibition of osteoclast
differentiation through the application of the
RANKL decoy molecule, OPG. Studies with
animal models and with in vitro osteoclast cul-
tures have shown significant inhibition of osteo-
clastogenesis and reduced hallmarks of bone
erosion [10,15,25,81,82]. In this regard, recent stud-
ies with animals have shown that RANKL-defi-
cient mice subjected to autoimmune serum
transfer-induced RA did not develop bone ero-
sion, despite ongoing inflammation [83]. More-
over, treating animals with OPG at the onset of
disease almost completely preserved cortical and
trabecular bones compared with severe bone loss
in joints from untreated rats. This was associ-
ated with a significant decrease in osteoclast
numbers in OPG-treated animals. Cartilage
destruction was less severe in the absence of
RANKL (knockout animals) and in OPG-
treated arthritic rats, probably owing to the pre-
served architecture of the subchondral bone
structures that provide physical support for the
articular cartilage [1,84,85].

Following years of investigating effectors of
bone loss, proinflammatory cytokines (prima-
rily TNF and IL-1) remain the centerpiece
among factors mediating osteoclast differentia-
tion, bone erosion and exacerbating inflamma-
tory bone diseases. Osteoclast recruitment and
activation is induced markedly by TNF and
IL-1 in vitro and in vivo [5,7,46,86–90]. As TNF,
IL-1 and RANKL are abundant in sites of
inflammatory bone erosion and their signaling
pathways overlap considerably, it was recog-
nized that these potent osteoclast inducers syn-
ergistically orchestrate inflammatory bone loss.
There is ample evidence to implicate TNF as a
major mediator of inflammatory arthritis in
experimental animals and patients with
RA [91,92]. For example, TNF transgenic mice
develop spontaneous joint destructive
polyarthritis [93,94]. Thus, several approaches
have been developed over the past decade to
combat erosive arthritis through anti-TNF
therapies. These approaches were based on tar-
geting proximal moieties of the TNF system,
primarily neutralizing circulating levels of the
cytokine by TNF-binding proteins and soluble
(non-signaling) receptors or blocking binding
of TNF to respective receptors with mono-
clonal antibodies [91–93,95–98]. Three drugs that
block the activity of TNF are available. Inflixi-
mab and adalimumab are antibodies against
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TNF and etanercept is a fusion protein of the
TNF receptor II. All of these agents improve
clinical signs of RA, typically over 50% respon-
siveness, and reduce radiographic progression
of RA significantly [91,99–104].

Similar to TNF, IL-1 has long been known as
a potent inducer of osteoclastogenesis and a
mediator of inflammation and RA [44,89,105].
Evidence for a key role of IL-1 in erosive arthri-
tis was established in animals lacking the IL-1
decoy receptor, IL-1 receptor antagonist
(IL-1Ra) (commercially known as anakinra).
These mice developed RA owing to excessive
IL-1 signaling. Typically, this soluble IL-1Ra
molecule binds to circulating IL-1 and attenu-
ates binding of the cytokine to its cognate cell
surface receptor. Other findings showed that

blocking IL-1 activity with IL-1Ra resulted in
significant clinical and hematological responses
in patients with juvenile idiopathic arthritis
(JIA) [106,107]. Resolution of clinical symptoms
including fever, marked leukocytosis, thrombo-
cytosis, elevated erythrocyte sedimentation,
anemia and arthritis were rapid and sustained.
The efficacy of IL-1Ra in these children super-
seded TNF therapies in JIA mandating careful
consideration of anti-RA therapeutic choices.

Another promising approach to directly lessen
osteoclast activity is the use of bisphosphonates
and selective estrogen-receptor modulators
(SERMs). These compounds inhibit osteoclast
function and induce osteoclast apoptosis [108–111].
Although initial clinical trials in RA failed to
show retardation of joint destruction, recent

Figure 2. NF-κB signaling pathway in osteoclasts and selected therapeutic targets.

L, including RANKL and TNF, binding to transmembrane receptors activates the NF-κB transduction pathway 
in osteoclasts. Signaling molecules and inhibitory steps are illustrated.
GC: Glucocorticoid; IFN: Interferon; IκB-SS: IκB super repressor; IKK: IκB kinases; IL-1Ra: Interleukin-1 
receptor antagonist; L: Ligand; NBD: NEMO-binding protein; NEMO: NF-κB essential modulator; NIK: NF-κB 
inducing kinase; OPG: Osteoprotegerin; PG: Prostaglandin; RANKL: Receptor activator of NF-κB ligand; 
STAT: Signal transducers and activators of transcription; TNF: Tumor necrosis factor; TRAF: TNF receptor-
associated factor.
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experimental data from TNF-mediated destruc-
tive arthritis indicate that high doses of bisphos-
phonates could be highly effective in the
prevention of joint destruction [112]. Other stud-
ies using combined therapies of OPG and pamid-
ronate show greater reduction of inflammatory
bone erosion in the TNF transgenic mouse model
of spontaneous destructive polyarthritis [25]. In
summary, these approaches seem to directly target
the destructive osteoclast-directed phase and only
indirectly cause a moderate reduction in cartilage
destruction. These observations support the con-
cept that cartilage breakdown results largely from
osteoclast-independent mechanisms, probably
secreted metalloproteinases and other catalytic
enzymes (Figure 2).

Inhibition of intracellular & signal 
transduction cascades 
Signal transduction cascades induced by RANKL,
TNF and IL-1 in osteoclasts are well studied and
described above. Ample data point to a considera-
ble signaling overlap between the various
cytokines, which converges at the NF-κB and
MAPK signal transduction pathways. Notably,
ligation of RANKL, TNF or IL-1 to their respec-
tive receptors induces recruitment of adaptor pro-
teins (TRAF2, TRAF6, cellular inhibitor of
apoptosis [IAP]) and kinases (TGF-β activated
kinase [TAK] 1, MEKK, IRAK, IKKs, c-Src tyro-
sine kinase and more) that direct the signaling cas-
cades towards relevant inflammatory and
osteoclastogenic transcriptional regulation [12,66].
One of the initial steps in the signal assembly is
the formation of the IKK signalsome that cata-
lyzes NF-κB machinery. This process is mediated
by recruitment of IKKγ/NEMO by distal recep-
tor-interacting adaptors to form a platform that
facilitates upstream receptor-transmitted signals
through IKK2 and IKK1, which in turn activate
classical and nonclassical NF-κB pathways,
respectively, through phosphorylation and proteo-
lytic processing of the inhibitory protein IκBα
and the NF-κB precursor p100 [49]. These events
lead to the release and nuclear translocation of the
various NF-κB subunits. Given the notion that
NF-κB is central to inflammatory and osteoclas-
togenic responses, targeting various regulatory
steps in the activation cascade of this transcription
factor attracted considerable interest. A promising
approach to block NEMO from binding to IKK2
and IKK1 was described recently in murine mod-
els of inflammation and spontaneous RA. A cell-
permeable NBD derived from the carboxyl termi-
nal domain of IKK2 binds efficiently to NEMO

and attenuates activation of the IKK
complex [113,114]. More intriguingly, this peptide
inhibits osteoclastogenesis and ameliorates
inflammatory bone erosion [63,64]. Several immu-
nomodulatory and selective inhibitors of IKK2,
IκBα and NF-κB subunits have been described.
For example, thalidomide inhibits TNF-induced
IKK2 in various cells and blocks TNF-stimulated
osteoclasts [115,116]. However, toxic side effects
may preclude usage in vivo. Other inhibitors of
IKK activity, in the form of chemical compounds,
have been designed recently and exhibit varying
efficiencies [4].

Commonly used approaches to inhibit NF-κB
activation in animal models of the inflammatory
response, including RA, have centered for
several years on the administration of dominant-
negative forms of IKKs and IκBα, as well as using
proteosome inhibitors to preserve the IκBα pro-
tein. In this regard, viral transfer and protein
transduction of dominant-negative forms of
IKK2 and IκBα were efficient in decreasing
inflammation and arresting bone erosion in the
joint of experimental models of RA [66,75]. Specif-
ically, transduction of a dominant-negative form
IκBα was sufficient to block osteoclast formation
and activity [65,117]. More importantly, applica-
tion of the IκBα protein to arthritic mice signifi-
cantly blocked bone erosion associated with
inflammatory arthritis [40]. Selective activation of
NF-κB in normal rats by intra-articular transfer
of a constitutively active IKK2 gene induced syn-
ovial inflammation and clinical signs of arthritis.
By contrast, transfer of a dominant-negative ade-
noviral IKK2 construct reduced NF-κB nuclear
translocation and clinical synovitis in adjuvant
arthritis (AA) in rats [69]. Similarly, in other stud-
ies using collagen-induced arthritis (CIA) or
serum transfer-induced RA, direct administration
of dominant-negative forms of IκBα reduced
inflammatory signs of RA and inhibited tissue
deterioration significantly [40]. Other studies used
a direct approach to inhibit NF-κB-mediated
arthritis. These include the blockade of NF-κB
with decoy oligonucleotide, direct viral gene
transfer of dominant-negative molecules
upstream of NF-κB (such as super-repressor IκBα
or its kinase, IKK) [8,40,69,76] and cell-permeable
blocking peptides, as outlined below [63,64].

Several genes have been shown to be critical for
osteoclast differentiation or function. Among
these are c-fms, c-fos, RANKL, NF-κB, c-Src,
nuclear factor of activated T cells isoform c1
(NFATc1) and the proton H+-ATPase. Recent
studies have unveiled that proinflammatory
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cytokines, such as TNF, act directly on some of
these genes and their products, in particular c-src
and NF-κB, to accelerate osteoclast formation and
cause a potent osteoclastic response [7,46,118,119].
Selective inhibitors of the c-src tyrosine kinase
show great promise in halting osteoclast activity
and future studies should be geared towards test-
ing the effect of such inhibitors on inflammatory
osteolysis [119–122] (Figure 2).

Anti-inflammatory approaches
Anti-inflammatory cytokines secreted by
T lymphocytes, such as interferon (IFN)-γ,
IL-4, -13, and -10, have also been shown effec-
tive in antagonizing proinflammatory and
osteoclastogenic cytokine actions transmitted
by T helper cell (Th)1 and fibroblast-like syn-
oviocytes. In this regard, a recent finding
documents that IL-4 mRNA was found more

frequently in nonerosive compared with erosive
disease [123]. Additionally, IL-4 adenoviral gene
therapy has been shown to be effective in reduc-
ing inflammation, inhibiting proinflammatory
cytokine secretion and sparing bone destruc-
tion in a model of adjuvant-induced arthritis
(AIA) [124]. These findings provide indirect evi-
dence that IL-4 has bone-sparing effects in vivo
and participates in the resolution of inflamma-
tory arthritis. Clarifying the molecular mecha-
nisms underlying the antiresorptive action of
these anti-inflammatory cytokines should
unveil useful molecular targets. For example,
the finding that IL-4 requires signal transducer
and activator of transcription (STAT) 6 to
block osteoclastogenesis [125], presents the latter
transcription factor as a potential target for
antierosive drug design. In fact, an active form
of STAT6, termed STAT6-valine-threonine
(VT), readily ameliorates bone erosion
associated with spontaneous serum-induced
arthritis [126].

IFN-γ is another major product of immune
cells that potently inhibits bone resorption.
Recent reports illustrated that IFN-γ interferes
with RANK–RANKL signal transduction in
osteoclasts and their precursors. It induces
rapid degradation of TRAF6, a RANK adaptor
protein [80,127]. This action results in the arrest
of RANK downstream signals, such as the
NF-κB and c–Jun N-terminal kinase (JNK)
pathways. Another study reported that
RANKL-induced secretion of IFN-γ by osteo-
clast precursors counterbalances bone resorp-
tion by blocking osteoclastogenesis in an
autoregulatory fashion [127].

NF-κB transcription machinery also encodes
anti-inflammatory cues, such as COX-2-medi-
ated synthesis of anti-inflammatory cyclopen-
tenone prostaglandins (cyPGs), which are
involved in the resolution phase of
inflammation [128]. These prostaglandin metab-
olites inhibit NF-κB transcriptional activity
through induction of peroxisome proliferation-
activated receptor (PPAR)-γ [129–132]. Moreover,
cyPGs can inhibit activation of the NF-κB
pathway directly by blocking IKK2 activity [133].
The compound 15-deoxy-prostaglandin
(PG)-J2 (15dPGJ2) inhibits IκBα degradation
through the inhibition of IKK activity [134]. The
utility of these anti-inflammatory PG metabo-
lites as antiosteoclastogenic factors is supported
by a study showing that 15d-PGJ2 is a potent
inhibitor of NF-κB in macrophages and also
inhibits osteoclastogenesis [135] (Figure 3).

Figure 3. Cellular responses in inflammatory arthritis.

Pro-inflammatory signals, such as RANKL, are elicited by FLS and Th1 cells. Anti-
inflammatory signals including IFN-γ and IL-4, are secreted by Th1 and Th2 cells 
and participate in the resolution of the inflammatory and osteolytic responses.
FLS: Fibroblast-like synoviocytes; IFN: Interferon; IL: Interleukin; 
RANKL: Receptor activator of NF-κB ligand; Th: T-helper cell.
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Executive summary

Introduction

• The destruction of bone is a hallmark of rheumatoid arthritis (RA). This focal bone erosion is the result of increased osteoclast action. 
Synovial tissue-residing cells secrete a wide range of inflammatory cytokines and factors such as interleukin (IL)-1, IL-6, transforming 
growth factor (TGF)-β, parathyroid hormone (PTH), inducible nitric oxidase synthase (iNOS), cyclooxygenase (COX)-2 and members of the 
tumor necrosis factor (TNF) superfamily cytokines that directly or indirectly comprise a microenvironment supportive of osteoclast 
recruitment and activation. Members of the TNF family including receptor activator of NF-κB ligand (RANKL) and TNF-α activate the 
Rel/NF-κB family of transcription factors that govern inflammatory and osteolytic processes and are thus considered increasingly as the 
centerpiece that fuels inflammatory arthritic bone erosion and, as such, the focus for therapeutic intervention.

Osteoclasts & their role in inflammatory arthritis

• Osteoclasts arise from bone marrow macrophage precursors and their differentiation into the mature polykaryon requires RANKL and 
macrophage colony-stimulating factor (M-CSF). Osteoprotegerin (OPG), a soluble factor secreted by osteoblast and stromal cells, acts as 
a decoy receptor through binding to circulating RANKL and decreasing its bioavailability. This molecule has been used widely as a potent 
antiosteoclast therapy.

• Several genes such as PU.1, c-fms (M-CSF receptor), c-fos, RANK and NF-κB (p50, p52 subunits), the proto-oncogene c-Src, the 
proton ATPase, tartrate-resistant acid phosphatase (TRAP), and cathepsin-k, are critical for osteoclast differentiation. These genes have 
been targeted to modulate osteoclastogenesis.

Summary of the NF-κB system

• Members of the NF-κB family include p50, p52, RelA/p65, RelB, c-Rel, the precursors NF-κB1/p105, NF-κB2/p100 (which undergo 
processing into p50 and p52, respectively) and the inhibitory subunits IκBα, IκBβ, and IκBε. Inactive NF-κB is bound to IκBα and resides in 
the cytosol. Stimulation of the NF-κB pathway entails phosphorylation by IκB kinases (IKKs) and subsequent removal of IκBα, followed by 
the nuclear translocation of NF-κB dimers to the nucleus and initiation of transcriptional activity.

NF-κB axis is central to osteoclastogenesis & inflammatory responses

• Certain NF-κB family members are essential for osteoclast formation. Deletion of IKK1, IKK2, p50 and p52 arrests osteoclastogenesis. 
Similarly, inhibition of NF-κB essential modulator (NEMO) binding to IKKs inhibits osteoclasts.

• NF-κB induces a wide range of genes encoding proinflammatory cytokines and factors, including interleukin (IL)-1, IL-6, tumor necrosis 
factor (TNF), inducible nitric oxidase synthase (iNOS) and cyclooxygenase (COX)-2. NF-κB mediates inflammatory responses directly, 
including RA and inflammatory bone erosion.

Proximal approaches to inhibit inflammatory osteolysis

• Given that osteoclasts are primarily responsible for focal bone erosion associated with RA, proximal inhibition of this process is highly 
efficacious. OPG and RANK–Fc target RANKL directly and inhibit osteoclast formation. Other widely used approaches target 
proinflammatory cytokines such as TNF and IL-1, which propagate inflammatory osteolysis. Anti-TNF antibodies, soluble TNF receptor 
(nonsignaling) moieties and IL-1 receptor antagonist (anakinra) are also effective at inhibiting inflammatory bone erosion. A similar 
approach is the use of bisphosphonates and selective estrogen-receptor modulators (SERMs), which directly target and inhibit osteoclast 
activity and viability.

Targeting signaling pathways to combat inflammatory bone erosion

• The intracellular NF-κB signaling cascade by RANKL, TNF-α and IL-1 provide ample targets for therapeutic intervention. Upstream 
signaling targets include TNF receptor-associated factor (TRAF) 6, NEMO, IKK1,and IKK2. A promising approach described recently is the 
use of a NEMO-binding domain (NBD) derived from IKK1/2. Short peptides corresponding to this domain block osteoclasts and 
ameliorate bone erosion in mouse models of inflammatory arthritis.

• Selective inhibitors for IKKs and dominant-negative forms of IKKs and IκBα are also promising approaches to inhibit NF-κB-mediated 
responses. Other signaling molecules, such as the tyrosine kinase c-Src, have been exploited through the use of selective inhibitors.

Anti-inflammatory approaches

• Anti-inflammatory cytokines, such as interferon (IFN)-γ, IL-4, IL-13 and IL-10, have also been shown to be effective in antagonizing pro-
inflammatory cytokine actions and osteoclastogenesis. IL-4 inhibits NF-κB activation and osteoclastogenesis in a signal transducer and 
activator of transcription (STAT) 6-dependent manner. Furthermore, active STAT6 ameliorates inflammatory osteolysis. IFN-γ targets TRAF6 
for degradation, thereby attenuating NF-κB activation, arresting osteoclastogenesis and alleviating inflammatory responses.

• Prostaglandin metabolites termed cyclopentenone prostaglandins (cyPGs), inhibit IKK2 activity and NF-κB transcriptional activity through 
the induction of peroxisome proliferation-activated receptors (PPAR)-γ. These metabolites are potent inhibitors of inflammatory and 
osteoclastogenic processes.

Concluding remarks

• The central role of the NF-κB cascade in osteoclastogenesis and inflammatory responses positions this family of transcription factors as a 
target for therapeutic intervention in diseases associated with inflammatory bone erosion. However, selective inhibition remains limited 
due to the ubiquitous nature of the NF-κB pathway and its essential role for basic cellular functions as well as pathological cell responses.
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Conclusion & future perspectives
Discoveries in the past decade have unveiled
the role of a large number of genes that regulate
osteoclastogenesis, with specific emphasis on
the RANK–RANKL–OPG system. Concerted
efforts have led to the design of successful
antiresorptive therapies that should benefit
patients suffering from bone loss pathologies.
These types of therapies are more promising
owing to their cell-specific approach. Unfortu-
nately, the same does not apply when using
anti-inflammatory approaches targeting signal-
ing mechanisms, such as NF-κB. The approach
of inhibiting the IKK/NF-κB signal trans-
duction pathway has proved very useful in
combating numerous forms of inflammatory
responses, including RA. However, the ubiqui-
tous nature of this pathway across cell types
and its fundamental role in basal cellular func-
tions limits its utility. For example, concerns
related to toxicity and liver cell death in the
absence of NF-κB are evident. Such cell death
is likely to propagate in the presence of elevated
levels of TNF-α, a hallmark of RA. To avoid
such drawbacks, therapy design would have to

rely on a better understanding of the molecular
role of the various IKK/NF-κB components in
RA. For example, short-term treatment with
specific inhibitors of the NF-κB pathway that
resembles regimens in animal models might
reduce potential side effects.

Selective inhibition of certain candidate
molecules, at levels that do not interfere with
basal cell functions and acquire tissue specifi-
city, would be ideal. For example, the precise
role of IKK1 (noncanonical) versus IKK2
(canonical) pathways in inflammatory arthritis
remains in its infancy. Recent work suggests
that IKK1-mediated NF-κB signals may par-
ticipate in the resolution of inflammatory
responses [136,137]. Future studies might
provide further insights as to the differential
roles and thus the utility of either pathway. As
it stands, antiresorptive therapy using OPG
and RANK–Fc appears to be the most prom-
ising approach to alleviate erosive arthritis.
Less promising are therapies directed against
the inflammatory component of the diseases
that might require combined therapies to
ameliorate the disease.
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