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Angiogenesis, the formation of new blood vessels from existing ones, is a potentially 
important therapeutic target. The discovery of the role of VEGF in angiogenesis 
prompted research on two major classes of antiangiogenic drugs: those acting through 
VEGF itself and those acting on VEGF receptors. Combination trials, particularly with 
cytotoxic drugs, followed single-agent clinical trials in several cancer types including 
colorectal, breast and non-small-cell lung cancer. Positive findings of tumor responses 
were balanced by later analyses showing in many trials that overall survival was 
not significantly increased. The challenge for the future is to identify appropriate 
biomarkers that will allow patient selection for optimal therapy.
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Tumor tissue, like normal tissue, is dependent 
on a functioning vascular network for the 
delivery of oxygen and nutrients. However, 
tumor tissue differs from most normal tissues 
by being in a state of net expansion. Angio-
genesis, the formation of new blood vessels 
from existing ones [1], was hypothesized to be 
necessary for tumors to grow to a diameter 
of more than 1 mm, prompting the concept 
that inhibition of tumor angiogenesis would 
provide effective therapy for a broad range of 
malignancies [2]. Most research at that time 
involved studies with murine tumor models 
and the antiangiogenic compounds identified 
included angiostatin, a 38 kDa internal frag-
ment of plasminogen released by enzymatic 
cleavage [3], endostatin, a 20 kDa C-terminal 
fragment of collagen XVIII that is stored in 
platelets and released by inhibition of cyclo-
oxygenases [4] and TNP-470, a synthetic 
fumagillin analog that inhibits methionine 
aminopeptidase [5]. Further work identified 
a number of further compounds including 
neovastat [6], SU6668 [7], ABT-510 [8] and 
squalamine [9], which showed evidence of 
antiangiogenic effects in mouse tumor mod-
els. In this review, we would like to provide 

an overview of the work and thinking that 
has occurred since that time. The clinical 
literature on antiangiogenic agents is vast 
and we can only cover some of it, pointing 
out both positive and negative aspects. We 
have provided some commentary on pos-
sible reasons for negative results and finish 
by briefly describing the differences between 
antiangiogenic drugs and vascular disrupting 
agents, the other class of anticancer drug that 
is directed to the tumor vasculature.

VEGF as a target
Against this background of results with 
antiangiogenic compounds that had poorly 
defined targets of action, the discovery [10] 
that the cytokine VEGF was preferentially 
expressed in tumor tissue provided a large 
impetus to the development of antiangio-
genic therapy. VEGF, also called vascular 
permeability factor because of its action on 
tumor vasculature, was found to be capable 
of inducing angiogenesis in experimental 
systems [11] and also of protecting the vascu-
lar endothelium from apoptosis [12]. There 
are five structurally related members of the 
VEGF family forms (VEGFA, VEGFB, 
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VEGFC, VEGFD and placental growth factor/PIGF) 
but this diversity is increased by alternative splicing 
and processing. These ligands act on a series of tyro-
sine kinase receptors including VEGFR-1, VEGFR-2 
and VEGFR-3 [13] as well as on neuropilins and integ-
rins that act as co-receptors [14]. Dvorak and colleagues 
introduced the principle of blocking either VEGF or its 
receptors as an approach to antitumor therapy.

The development of mouse antibodies to VEGF [15] 
was followed by the clinical introduction in 1997 of 
bevacizumab (Avastin®), a humanized antibody that 
targeted VEGF-A. Bevacizumab had a long plasma 
half-life and could therefore effectively reduce cir-
culating VEGF-A, and thus corresponding VEGFR 
responses, for a long period of time. Bevacizumab 
became widely used in combination with conventional 
anticancer drugs such as 5-fluorouracil, carboplatin 
and paclitaxel in a variety of malignancies [16], more 
recently including glioblastoma [17,18], cervical cancer 
[19] and ovarian cancer [20]. Ziv-aflibercept, an engi-
neered soluble VEGF ‘decoy’ receptor comprising the 
extracellular domains of VEGFR1 and VEGFR2 fused 
to an Fc segment of immunoglobulin G1, provided a 
further addition to the group of antiangiogenic drugs 
with an action that was potentially similar to that of 
bevacizumab [21].

Therapies targeting VEGF or the extracellular por-
tion of the VEGF receptor were complemented by 
the development of drugs that targeted the VEGF 
receptor tyrosine kinase; this included ramucirumab, 
an antibody that targets the extracellular domain of 
VEGFR-2 [22].

Approved anticancer drug therapies targeting vas-
cular growth factors or their receptors are shown in 
Table 1. The rationales developed with earlier work on 
drugs targeting EGF receptor tyrosine kinase in cancer 
cells were applied to VEGFR [23] leading to a num-
ber of drugs including sunitinib [24], sorafenib [25,26], 
pazopanib [27], vandetinib [28], axitinib [29], cabo-
zantinib [30] and TAS-115 [31]. A further strategy was 
based on the principle of inhibiting cellular receptors 
other than VEGFR which contribute to angiogenesis, 
such as PDGFR. This strategy included agents such 
as dasatinib [32], nilotinib [33], regorafenib [34] and 
ponatinib  [35].

Rationales for combination clinical trials 
with antiangiogenic agents
The efficacy of a two-pronged approach, combining 
inhibition of tumor cell proliferation and inhibition 
of tumor angiogenesis, was suggested by combination 
studies in mice [44]. This concept was further bolstered 
by the hypothesis that ‘vascular normalization,’ would 
provide a possible rationale for the administration of 

combination therapy. It was known from clinical as 
well as experimental studies that the many tumors were 
characterized by a low vascular density, which in turn 
led to a situation where the consumption of oxygen by 
some regions occurred at rates that were greater than 
those of oxygen diffusion across the tumor, resulting in 
increased hypoxia among tumor cells most distant to 
the vasculature. This in turn activated HIF-1α, lead-
ing to the transcription of a number of genes including 
that for VEGF. Increased tumor tissue concentrations 
of VEGF lead to both sprouting of the vasculature 
and to increased vascular permeability; the vascular 
normalization hypothesis postulates that inhibition 
of VEGF action, as a consequence of either blocking 
the external VEGF signal or blocking the correspond-
ing tyrosine kinase, reduces both angiogenic sprouting 
and vascular permeability, correspondingly increasing 
blood flow through individual tumor vessels and thus 
improving delivery of cytotoxic drugs, targeted antitu-
mor drugs and immunotherapy to tumor cells [45,46]. 
Thus, an antiangiogenic drug might exert multiple 
effects with different time courses in a combination 
framework, improving drug delivery at earlier times 
and inhibiting vascular expansion at later times.

The normalization hypothesis was supported by 
experimental studies in mice, as well as by limited 
studies in human cancer. For instance, glioblastoma 
patients have been reported to experience increased 
tumor vascular perfusion and improved tumor oxygen-
ation following administration of the antiangiogenic 
agent cediranib in conjunction with temozolomide as 
a standard cytotoxic agent [47]. However, some experi-
mental studies have also indicated that administration 
of antiangiogenic drugs reduces tumor oxygenation [48]. 
The observation that some antiangiogenic therapies can 
render tumors hypoxic while others show improved 
tumor oxygenation has been discussed in terms of the 
heterogeneity of individual capillary transit times [48]. 
Thus the two effects of antiangiogenic agents, increased 
tumor blood flow and decreased vascular area, can act 
in opposite pharmacological directions. The overall 
effect of administration of an antiangiogenic drug on 
uptake of an antitumor drug may therefore depend on 
both the vascular organization of the tumor and the 
pharmacological properties of the antitumor drug.

Antiangiogenic agents in clinical 
combination chemotherapy
An early pivotal study in metastatic colorectal cancer 
demonstrated that addition of bevacizumab to a com-
bination regimen involving irinotecan, 5-fluoroura-
cil and leucovorin produced statistically significant 
(p  <  0.001) increases in the duration of progression-
free survival (6.2–10.6 months), and median survival 
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(15.6–20.3 months) [36]. Many clinical combination 
studies have subsequently reported positive results and 
a number of agents are now used as part of standard 
clinical practice. Table 1 lists approved protein-based 
antiangiogenic agents, together with key trials that led 
to their approval. In addition, a recent study of bevaci-
zumab in combination with standard pelvic chemora-
diation therapy for locally advanced cervical cancer has 
shown promising results [49].

The analysis of clinical trials of the small molecu-
lar-weight tyrosine kinase inhibitor class of antiangio-
genic drugs is complex because any observed antitu-
mor responses may reflect, as they do for antibodies 
such as bevacizumab, effects of the drug on tumor 
cells rather than on tumor endothelial cells. While 
VEGFR is expressed by tumor vascular endothelial 
cells, it is also expressed by tumor cells [50,51], and the 
growth of such cells in culture is potentially inhib-
ited by cellular actions of tyrosine kinase inhibitors 
that act on VEGFR (it is worthwhile mentioning 
that depletion of circulating VEGF by bevacizumab 
may also affect the behavior of tumor cells express-
ing VEGFR). Table 2 lists approved kinase inhibitors 
together with key trials that led to their approval; only 
agents acting on renal cell carcinoma are included 
as this disease is considered to be clearly driven by 
aberrant angiogenic signaling. In cancers, such as 
gastrointestinal stromal tumors, leukemias and thy-
roid tumors where kinase inhibitors are approved, the 
exact contribution of inhibition of angiogenesis is less 
clear and these agents have therefore been omitted 
from the table.

Negative results in clinical trials of 
angiogenic agents
Against the above background of positive results, a key 
retrospective survey in 2011 highlighted a number of 
clinical combination chemotherapy studies, including 
those for breast, prostate, ovary, lung, gastric, pancre-
atic and colorectal cancer, where addition of bevaci-
zumab to drug combinations failed to provide a con-
sistent increase in overall survival [53]. Since that time, 
a number of Phase III combination clinical trials have 
been reported that also failed to demonstrate a survival 
advantage. In metastatic colorectal cancer, a Phase III 
randomized trial (AVANT) concluded that addition of 
bevacizumab did not improve the efficacy of oxalipla-
tin-based chemotherapy in the adjuvant treatment of 
patients with resected stage 3 or high-risk stage 2 colon 
carcinoma [54]. A randomized Phase II study testing 
the capacity of bevacizumab or axitinib in combina-
tion with FOLFOX (5-fluorouracil/leucovorin/oxali-
platin) or FOLFIRI (5-fluorouracil/leucovorin/irino-
tecan) to extend survival in second-line treatment of 
metastatic colorectal cancer also produced negative 
results [55]. A double-blind, Phase III study concluded 
that sunitinib plus FOLFIRI (fluorouracil, leucovorin 
and irinotecan) was not superior to FOLFIRI alone in 
previously untreated patients. In non-small-cell lung 
cancer, a multicenter, randomized, placebo-controlled 
trial assessed the efficacy of sorafenib in combination 
with carboplatin and paclitaxel in first-line therapy 
of patients with unresectable stage IIIB or stage IV 
non-small-cell lung cancer, and found no survival 
advantage [56].

Table 2. Antiangiogenic small molecular-weight inhibitors of vascular receptor kinases & their pivotal clinical trials 
and approvals in treating renal cell carcinoma.

Drug Mode of action Pivotal clinical trial  

    Treatment and sample size Primary endpoint: result Ref.

Axitinib (Inlyta®) Inhibits multiple tyrosine kinases 
including VEGFR-1, VEGFR-2 and 
VEGFR-3

Axitinib (n = 361) or sorafenib 
(n = 362)

PFS: median, 6.7 vs  
4.7 months; HR, 0.67; 
p < 0.0001

[29]

Pazopanib (Votrient®) Inhibits multiple tyrosine kinases 
including VEGFR-1, VEGFR-2, 
VEGFR-3, PDGFRA, PDGFRB, FGFR1, 
FGFR3, ITK, KIT, LCK and CSF1R

Pazopanib (n = 290) or 
placebo (n = 145)

PFS: median, 9.2 vs  
4.2 months; HR, 0.46; 
p < 0.001

[27]

Sorafenib (Nexavar®) Inhibits multiple kinases including 
CRAF, BRAF, mutant BRAF, KIT, 
FLT-3, RET, VEGFR-1, VEGFR-2, 
VEGFR-3, and PDGFRB

Sorafenib (n = 384) or placebo 
(n = 385)

PFS: median, 167 vs  
84 days; HR, 0.44; 
p < 0.000001

[52]

Sunitinib (Sutent®) Inhibits multiple kinases including 
PDGFRA, PDGFRB VEGFR-1, 
VEGFR-2, VEGFR-3, KIT, FLT-3, RET 
and CSF1R

Sunitinib (n = 375) or IFNA 
(n = 375)

PFS: median, 47.3 vs  
22.0 weeks; HR, 0.415;  
p < 0.000001

[24]

HR: Hazard ratio; PFS: Progression-free survival.
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In breast cancer, an analysis of early results concluded 
that no Phase III trial had yet demonstrated overall and 
progression-free survival benefits [57]. A randomized, 
placebo-controlled, double-blind, Phase  II study also 
showed that combination of axitinib did not improve 
response to docetaxel in first-line treatment of meta-
static breast cancer [58] and a Phase III study showed 
that the addition of sunitinib did not improve responses 
to capecitabine [59]. A Phase III trial examining 
capecitabine in combination with sorafenib for the treat-
ment of locally advanced or metastatic HER2-negative 
breast cancer (RESILIENCE trial) is underway [60]. In 
ovarian cancer, analysis of a large series of combination 
trials concluded that antiangiogenic therapy was ben-
eficial to tumor response but its effects on overall sur-
vival were not clear [61]. A meta-analysis of four Phase III 
randomized controlled trials suggested that the addition 
of bevacizumab to chemotherapy offered meaningful 
improvement in objective response rate but not in over-
all survival [62]. A recent randomized placebo-controlled 
Phase III trial (OCEANS) concluded that addition of 
bevacizumab to gemcitabine and carboplatin signifi-
cantly improved investigator-determined progression-
free survival and objective response rate in platinum-
sensitive, recurrent ovarian cancer [63]. In glioblastoma, 
a randomized, double-blind, placebo-controlled trial 
demonstrated prolonged progression-free survival but 
not overall survival in bevacizumab-treated patients 
undergoing radiotherapy [18]. A Phase III double-blind, 
placebo-controlled trial in patients with newly diag-
nosed glioblastoma showed that bevacizumab did not 
significantly increase progression-free survival [64]. A 
further trial in patients treated with radiotherapy and 
temozolomide treatment concluded that addition of 
bevacizumab improved quality of life and performance 
status but not overall survival [17].

The current clinical picture of combination anti-
angiogenic therapy thus provides a balance of positive 
and negative results. It is also worth emphasizing that 
patient cross-over design in randomized clinical trials, 
as well as the availability or other therapies adminis-
tered after patients progress on the experimental drug 
assessment, makes assessment of overall survival dif-
ficult. Nevertheless, the earlier optimism that such 
therapy would greatly benefit a wide variety of cancer 
types has given way to a view that we need to under-
stand more of the factors involved in clinical response, 
and to develop some form of patient selection strategy 
to maximize the benefits of therapy.

Reasons for negative clinical results for 
antiangiogenic therapy
One possible reason for a lack of response to antiangio-
genic agents is that the antiangiogenic agent utilized 

may not have the correct specificity for the receptors 
expressed in tumor vasculature [65]. Angiogenesis may 
be dependent on only one VEGFR type, or on recep-
tors for other angiogenic factors such as ephrinB2, 
PDGF-β and FGF [66,67]. Randomized Phase III trials 
in which patients are selected or stratified on the basis 
of biomarkers such as elevated VEGF expression have 
not yet been reported and further clinical work to eval-
uate the expression of vascular receptors to angiogenic 
factors by individual tumors is required.

A second possible reason for the failure of antian-
giogenic therapy is that nonresponding human cancers 
are not utilizing angiogenesis for growth. Angiogen-
esis is only one of several possible mechanisms for 
tumor expansion; other mechanisms include invasion 
by tumor cells of existing normal vasculature, recruit-
ment of circulating endothelial precursor cells to the 
vasculature and phenotypic conversion (vasculogenic 
mimicry) of tumor cells to those expressing endothe-
lial function [68]. Angiogenesis may therefore be a fea-
ture of more rapidly growing tumors, meaning that 
antiangiogenic therapy could be improved by selecting 
for rapidly growing tumors. A number of tumor imag-
ing studies have been carried out to estimate tumor 
growth [69,70] and the diagram in Figure 1 indicates 
the approximate distribution of human tumor dou-
bling times obtained in these studies. Some human 
malignancies, particularly germ cell tumors, pediat-
ric tumors and leukemias, have relatively short tumor 
volume doubling times [70]. Furthermore, there is evi-
dence that markers of angiogenesis in human tumors 
decline with increased age [71], suggesting that the effi-
cacy of antiangiogenic therapy might also decline with 
age, suggesting that tumors from older patients have 
reduced reliance on angiogenesis. It should be noted 
that the cycle times of human tumor cells, measured 
either in vivo [69] or after initial transfer to culture [72], 
are shorter (typically in the range 3 days to 3 weeks) 
than the volume doubling times of tumors, indicating 
that measurement of tumor cytokinetics is unlikely to 
predict the rate of tumor angiogenesis.

It is pertinent to compare the volume doubling times 
of human tumors with those for murine tumors, which 
have been used extensively in the development of anti-
angiogenic drugs. As indicated in Figure 1, tumor vol-
ume doubling times of murine tumors, as well as those 
of human tumor xenografts in murine hosts, are gener-
ally in the range 2–5 days, about 30-fold shorter than 
that for human tumors. Angiogenesis may therefore be 
more active in murine tumors than in human tumors, 
helping to explain why antiangiogenic drugs have gen-
erally been found to be highly effective against murine 
tumors. Measurement of the rates of proliferation 
of tumor endothelial cells would be of great help in 
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comparing the contribution of angiogenesis to tumor 
growth in different species. A study in murine tumors 
estimated endothelial cell doubling times between 
2.4 and 13 days [73]. A study of human tumors could 
not measure endothelial cell doubling times directly 
but compared proliferating capillary indices in tissue 
sections. Glioblastomas showed the highest index, 
followed by renal cell carcinomas, colon carcinomas, 
mammary carcinomas, lung carcinomas and prostate 
carcinomas [74].

Antiangiogenic therapy in comparison to 
vascular disrupting therapy
Tumor vasculature is generally thought to show 
increased vascular permeability in comparison with 
normal tissue [75], which is in turn related to increased 
VEGF production in response to hypoxia and other 
factors [76]. Such increased endothelial permeability 
leads to higher interstitial pressures and reduced blood 
vessel diameters, which combine to decrease tumor 
blood flow [77]. This gives rise to two main treatment 
strategies, as shown in Figure 2; antiangiogenic agents, 
reviewed here, decrease tumor vascular permeability by 

‘normalizing’ the tumor vasculature, while tumor vas-
cular disrupting agents (VDAs) further increase tumor 
vascular permeability to disrupt vascular function [78]. 
It should be noted however that antiangiogenic drugs, 
by decreasing microvascular density and increasing 
hypoxia, can also induce regional VEGF production 
with consequent increased tumor vascular permeabil-
ity. It is pertinent to mention here the clinical results of 
trials with the two main tumor VDAs that have been 
advanced to clinical trial, vadimezan (DMXAA) and 
fosbretabulin (combretastatin-A4 phosphate) [79]. Vad-
imezan was tested in two Phase III combination ther-
apy trials in patients with non-small-cell cancer but 
failed to induce a significant increase in survival [79,80]. 
Fosbretabulin was tested in a Phase II/III combination 
therapy trial in patients with anaplastic thyroid cancer 
but also failed to induce a significant increase in sur-
vival [81]. Increased overall survival has not yet been 
demonstrated in a Phase III trial.

Conclusion
It is evident that incorporation of antiangiogenic 
agents into combination therapy has resulted in clini-
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Figure 1. Approximate distribution of human tumor volume doubling times (green line), based on published 
data [70] as compared with those of murine tumors and of human tumor xenografts growing in immunodeficient 
mice (red arrows). More rapid tumor growth rates (shorter doubling times, on left) may reflect higher rates of 
tumor angiogenesis and correspondingly higher susceptibility to antiangiogenic agents.
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cal responses, with the result that several of these agents 
are now included in standard chemotherapy regimens. 
On the other hand, it is also clear that a number of 
Phase III trials have failed to demonstrate a significant 
increase in overall survival. There is now a need to 
study underlying mechanisms of tumor angiogenesis 
in individual cancer patients, so that antiangiogenic 
treatment can be tailored for maximum effect.

Future perspective
The main challenge for the future is to identify defini-
tive biomarkers that will select patients who can poten-
tially benefit from antiangiogenic therapy. In particu-
lar, it is important to utilize biomarkers to determine, 
in cases where a clinical benefit has been obtained, 
whether it has resulted from an effect on the tumor 
vasculature or from an effect on tumor cells. Circulat-

ing VEGF and tumor neuropilin-1 (a co-receptor for 
VEGF) have both been suggested as potential predic-
tive biomarkers for sensitivity to bevacizumab [82,83]. 
Clear cell renal carcinomas lacking a VHL gene are 
known to activate the HIF-1α pathway and to over-
express VEGF [84], and these are clearly worthy of 
further studies.
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Figure 2. Comparison of the actions of two main classes of drugs that act on tumor vasculature. Antiangiogenic 
agents and tumor vascular disrupting agents tend to have opposite effects on vascular function, one improving 
function and the other further compromising it.

Executive summary

•	 Tissues depend on a vascular network for the delivery of oxygen and nutrients.
•	 Vascular function in tumor tissue is compromised, mainly because of increased vascular permeability and 

consequent reduced blood flow.
•	 Reduced blood flow leads to reduced delivery of oxygen and nutrients, and to hypoxia
•	 Hypoxia in turn leads to increased production of VEGF, which acts on receptors on vascular endothelial cells to 

increase angiogenesis, formation of new blood vessels from existing ones.
•	 Antiangiogenic agents such as bevacizumab and aflibercept act to prevent VEGF from activating its receptors.
•	 Antiangiogenic agents such as sunitinib and axitinib act on VEGF receptors to prevent their downstream 

signaling.
•	 Both types of antiangiogenic agents have generally been employed in combination with other types of 

anticancer agent.
•	 While some clinical trials have shown that addition of antiangiogenic drugs to standard therapy has a clinical 

benefit, others have not.
•	 Possible reasons for this result are that nonresponding tumors do not require VEGF for angiogenesis, or that 

nonresponding tumors do not require angiogenesis for growth.
•	 Future work in this area is needed to assess the mechanisms utilized by individual tumors for growth and to 

tailor therapy to these mechanisms.
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