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In the last 30 years, since the discovery of the HGFR (also known as 
c-MET), much has been learned about its roles in a broad spectrum of 
cellular phenotypes, including mitogenesis, morphogenesis, angiogenesis 
and invasiveness. While these phenotypes are tightly regulated during 
embryogenesis and in adulthood processes, such as wound healing and liver 
regeneration, they can be responsible for tumor initiation and progression 
when c-MET is aberrantly activated by mutation, gene amplification and/or 
protein overexpression. As such, both c-MET and HGF have several targeted 
inhibitors currently in clinical trials. This manuscript provides an overview 
of the c-MET signaling pathway, including its role in the development of 
cancers, and presents data that support this pathway as a relevant target for 
personalized cancer treatment. 
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Receptor tyrosine kinases (RTKs) are key regulatory proteins responsible for 
many essential processes in mammalian physiology [1,2]. However, in the last 
few decades, RTK signaling has come under intense interest due to its role in the 
pathogenesis and biology of many cancer types through aberrant activation [3,4]. 
An example of this is the HGFR RTK, more commonly known as c-MET, and its 
ligand HGF. Expression of both the ligand and/or the receptor has been detected 
in the majority of solid cancers and evidence for c-MET signaling activity has also 
been detected in a large number of human cancers [5–7]. This article will provide 
a brief overview of the c-MET signaling pathway, describe the mechanisms that 
have been found to be responsible for its aberrant regulation in different cancers 
and then provide a summary of the inhibitors of this pathway that are currently 
undergoing clinical trials.

HGF & c-MET: structure & function 
The proto-oncogene MET is located on chromosome 7q31.2, with its transcrip-
tion being regulated by multiple transcription factors such as Ets, Pax3, AP2 
and Tcf-4 [8–11]. The protein product of this gene is c-MET. This cell-surface RTK 
is expressed in endothelial and epithelial cells during both embryogenesis and 
adulthood [12], while its ligand is expressed mainly in cells of mesenchymal origin. 
However, some reports have shown that HGF is also expressed by some neoplastic 
epithelial cells [13–17]. 

c-MET is transcribed as a single transcript, although the mature protein is 
formed by proteolytic processing in the post-Golgi compartment into a sin-
gle-pass, transmembrane, disulphide-linked a/b heterodimer [18]. The extracel-
lular portion of c-MET is composed of three domain types. The 500 N-terminal 
residues form the SEMA domain, folding to form a 7-bladed b-propeller that 
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encompasses the whole a-subunit and part of the 
b-subunit [19,20]. The SEMA domain shares sequence 
homology with domains found in the semaphorin 
and plexin families and has been found to function 
as a protein–protein interaction domain [19,21–23]. The 
PSI (found in plexins, semaphorins and integrins) 
domain, which spans approximately 50 amino acids, 
is a cysteine-rich module that forms a three-stranded 
antiparallel b-sheet and two a-helices that function 
as a wedge between the SEMA b-propeller and the 
immunoglobulin-like domains [24]. Intracellularly, the 
c-MET receptor contains a tyrosine kinase catalytic 
domain, flanked by distinctive juxtamembrane and 
carboxy-terminal sequences. 

The ligand for c-MET was identified concurrently 
by two independent studies as both a mitogen for 
hepatocytes and a motility factor for epithelial cells, 
and was called both HGF and scatter factor before 
it was revealed to be the same molecule [25–27]. HGF 
promotes several phenotypes, including cell prolifera-
tion, survival, motility, scattering, differentiation and 
morphogenesis, also known as an ‘invasive growth 
program’ [5,18,28]. In addition, HGF appears to play a 
protective role in several diseases, including liver cir-
rhosis [29], lung fibrosis [30], and progressive nephrop-
athies [31,32]. 

Under normal conditions, HGF is secreted by mes-
enchymal cells as a single-chain, biologically inert 
precursor before it is cleaved by extracellular prote-
ases, such as urokinase, between Arg-494 and Val-495 
[33]. The mature, bioactive form of HGF consists of a 
disulphide bond-linked a- and b-chain. The a-chain 
contains an N-terminal hairpin loop, followed by four 
kringle domains (80 amino acid double-looped struc-
tures formed by three internal disulphide bridges), 
while the b-chain is homologous to serine proteases 
of the blood-clotting cascade, although it does not 
demonstrate any protease activity (Figure  1B) [34]. 
Interestingly, cleavage of HGF is required for its bio-
logical activity, but not for receptor binding [35]. This 
finding introduced the possibility of using mimetics of 
the HGF kringle domains as competitive inhibitors of 
HGF/c-MET binding, such as the NK4 fragment [36]; 
however, this strategy has not yet found its way into 
clinical trials. Antibodies that block the binding of 
HGF to c-MET by competitively binding to the ligand 
have also been studied as a means of inhibiting c-MET 
activation; an example of this is undergoing clinical 
trials and will be discussed later in this article.

HGF/c-MET signal transduction
■■ c-MET activation & signaling adaptors

The complex phenotype that results from c-MET sig-
naling involves a number of molecular events that 

have been described in detail in previous articles 
[5,7,37–40], while recent large-scale phosphoproteomic 
studies have provided even more insight into the 
intricacies of the HGF/c-MET signaling axis [41–43]. 
HGF binding to c-MET results in receptor homodi-
merization and phosphorylation of two tyrosine resi-
dues (Tyr-1234 and -1235) located within the catalytic 
loop of the tyrosine kinase domain [44]. Subsequently, 
Tyr-1349 and -1356 in the carboxy-terminal tail 
become phosphorylated. These two tyrosines form 
a tandem SH2 recognition motif unique to c-MET 
(Y1349VHVX3Y

1356VNV) [45]. When these tyrosines 
become phosphorylated, they recruit signaling effec-
tors including the adaptor proteins GRB2 [46], SHC 
[47], and CRK and CRKL [48,49]; the effector molecules 
PI3K, PLC-g and SRC [45]; SHIP-2 [50]; and STAT3 
(Figure 2) [51,52]. In addition, unique to c-MET is its 
association with the adaptor protein GAB1, which has 
been shown by several studies to be the most crucial 
substrate for c-MET signaling [53]. GAB1 is a multi-
adaptor protein that binds to activated c-MET via a 
unique MET binding site [54]. Once bound, GAB1 is 
phosphorylated and creates binding sites for further 
downstream adaptors. GAB1 can bind directly to the 
c-MET docking tyrosines [45], or indirectly, through 
GRB2 [55]. Additional tyrosines can also contribute to 
c-MET signaling. When Tyr-1313 is phosphorylated, 
it binds PI3K, which probably promotes cell viability 
and motility [56]. Additionally, Tyr-1365 regulates cell 
morphogenesis when phosphorylated [56].

■■ Downstream signaling modulators
The downstream response to c-MET activation relies 
on stereotypical signaling modulators common to 
many RTKs. These pathways have previously been 
reviewed in detail [40] and are summarized in Figure 2. 
These include the two major arms of c-MET signal-
ing, including the MAPK cascades and the PI3K/
AKT signaling pathways. Binding of GRB2 and SHC 
to activated c-MET stimulates the activity of the 
RAS guanine nucleotide exchanger SOS [57], leading 
to the activation of RAS. This results in the indirect 
activation of RAF kinase, which can subsequently 
activate the MAPK effector kinase MEK and finally 
ERK. Translocation of MAPK to the nucleus regu-
lates ETS/AP1 transcription factors responsible for 
regulating a large number of genes. In the context of 
c-MET signaling, this results in phenotypes such as 
cell proliferation, cell motility and cell cycle progres-
sion [46,58]. SHP2 can also link c-MET signaling to the 
MAPK cascade, as sequestration of SHP2 to GAB1 
is responsible for extending the duration of MAPK 
phosphorylation [59,60]. 

The other major arm of c-MET signaling is the 
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PI3K/AKT signaling axis. The p85 subunit of PI3K can 
bind either directly to c-MET or indirectly through 
GAB1, which then signals through AKT/PKB. This 
axis is primarily responsible for the cell-survival 
response of c-MET signaling [61]. 

The transformation phenotype downstream of 
c-MET activation has been shown to be mediated by 
the phosphorylation of JNK via its binding to CRK 
[48,62], as well as putatively through STAT3. STAT3 
binds directly to c-MET, resulting in STAT3 phos-
phorylation, dimerization and translocation to the 
nucleus. Although this has been shown to be involved 
in tubulogenesis [51] and invasion [63], conflicting 
reports have found that although STAT3 plays a role 
in c-MET-mediated tumorigenesis, it is not through 
these two phenotypes [52].

In response to changes in the extracellular environ
ment, activation of c-MET can regulate processes 
involved in cellular migration, mediated in part by 
FAK. FAK is activated through phosphorylation 
by SRC family kinases, which have been shown to 
associate directly with c-MET [45]. The c-MET–SRC–
FAK interaction leads to cell migration as well as 
the promotion of anchorage-independent survival 
and growth [64,65]. In addition, SRC activation may 
feedback positively on c-MET phosphorylation [43,64]. 
Owing to this, combinatorial therapies involving both 
c-MET and SRC inhibitors show promise in the treat-
ment of cancers that are dependent on either kinase 
[66–68].

■■ Negative regulation of c-MET
Negative regulation of the c-MET receptor is cru-
cial for its tightly controlled activity and can occur 
through a number of mechanisms. The Tyr-1003 site, 
located in the juxtamembrane domain, is a negative 
regulatory site for c-MET signaling (absent in the 
TPR–MET oncoprotein) that acts as a binding site 
for the E3 ubiquitin ligase CBL, resulting in c-MET 
ubiquitination, endocytosis and degradation [69,70]. 
Regulation of c-MET signaling is also accomplished 
via its binding to various protein-tyrosine phospha-
tases (PTPs), including dEP1 (or PTPrI) and LAR 
(or PTPrF) [71,72] and the nonreceptor PTPs PTP1B 
and TCPTP [73]. These PTPs modulate c-MET sig-
naling by dephosphorylation of either the tyrosines 
in the c-MET kinase domain (in the case of PTP1b 
and TCPTP) or the docking tyrosines (in the case 
of dEP1). Binding of PLCg to c-MET results in the 
activation of PKC, which can then negatively regulate 
c-MET receptor phosphorylation and activity [74,75]. 
Independent of PKC activation, an increase in intra-
cellular calcium levels can also lead to negative c-MET 
regulation [76]. 
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Figure 1. Domain structure of c-MET and HGF. (A) c-MET is formed 
by proteolytic processing into an a/b heterodimer. The N-terminal 500 
residues, including the a-subunit and part of the b-subunit, form a Sema 
domain. The PSI domain spans 50 residues and is followed by four IPT 
domains. Intracellularly, c-MET contains the tyrosine kinase domain, 
flanked by distinctive juxtamembrane and carboxy-terminal sequences. 
This portion of c-MET contains the catalytic Tyr-1234 and -1235, while 
the juxtamembrane Tyr-1003 negatively regulates c-MET. The C-terminal 
tail contains Tyr-1349 and -1356, which form a docking site for signaling 
molecules when c-MET is active. Domains in bold contain mutations 
identified in human cancers. (B) The c-MET ligand, HGF, is secreted by 
mesenchymal cells as a biologically inert precursor and is activated when 
extracellular proteases cleave between Arg-494 and Val-495. Mature HGF 
consists of a disulphide-bonded a- and b-chain. The a-chain contains 
an N-terminal hairpin loop followed by four kringle domains (K1–4). The 
b-chain is homologous to serine proteases.  
Reprinted with permission from [37]. 
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Downregulation of c-MET protein expression 
can occur by means of a relatively novel mechanism 
involving miRNAs, which are endogenous small non-
coding RNAs that negatively regulate protein expres-
sion by blocking the translation of and degrading the 
target’s mRNA [77,78]. miRNAs have been shown to 
control a range of important cancer-related processes, 
such as proliferation, survival and metastasis. Both 
c-MET and HGF expression are regulated by miR-
NAs. c-MET has been reported as being downregu-
lated by miR-152, miR-34b, miR-34c, miR-199*, miR-
130a, miR-340, miR-198, miR-449, miR-133b, miR-1, 

miR-206 and miR-23b [79–90]. Little is currently known 
about miRNAs that modulate HGF expression; how-
ever, several studies report miRNAs that are sup-
pressed upon HGF stimulation. Suzuki et al. reported 
that let-7a, miR-23a and miR-200C (which target RAS, 
MYC and ZEB1, respectively) were downregulated 
in head and neck carcinoma cells stimulated with 
HGF [91]. Garofalo and collaborators also reported 
that EGFR and c-MET can control the expression of 
miR-30b, miR-30C, miR-221 and miR-222, whereas 
miR-103 and miR-203 are uniquely controlled by 
c-MET expression/activity [92]. Similarly, upon HGF 
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Figure 2. c-MET signaling adaptors and mediators. An overview of the signaling adaptors and mediators of 
HGF/c-MET signaling. HGF binding to c-MET results in receptor homodimerization and phosphorylation of two 
tyrosine residues within the c-MET catalytic loop. Subsequently, Tyr-1349 and -1356 in the carboxy-terminal tail 
become phosphorylated. These two tyrosines form a tandem SH2 recognition motif unique to c-MET and, when 
phosphorylated, recruit signaling effectors. Unique to c-MET is its binding with GAB1, a multiadaptor protein that, 
once bound to and phosphorylated by c-MET, creates binding sites for numerous downstream adaptors. GAB1 
can bind either directly to c-MET or indirectly, through GRB2.  Additional tyrosines, including Tyr-1313 and -1365, 
can also contribute to c-MET signaling as is described in the text. Negative regulation of the c-MET receptor is 
crucial for its tightly controlled activity and can occur through a number of mechanisms including recruitment of 
CBL, receptor dephosphorylation by phosphatases, the PLCg pathway and miRNAs.  
Reprinted with permission from [37]. 
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stimulation, hepatic stellate cells upregulate the 
expression of miR-29, which targets and therefore 
decreases the synthesis of collagen I and IV [93]. Lastly, 
miR-519c, a negative regulator of HIF-1a, and there-
fore angiogenesis in general, is downregulated when 
HUVEC cells are HGF stimulated [94]. Even without 
a complete understanding of how miRNAs control 
HGF/cMET expression, it is likely that they will be 
found to play important roles in cancer progression.

■■ c-MET transactivation by coreceptors
The potency, endurance and specificity of c-MET-trig-
gered pathways is secured by a network of upstream 
signaling coreceptors that physically associate with 
c-MET at the cell surface [40]. For instance, the v6 splice 
variant of the hyaluronan receptor CD44 links c-MET 
signaling to the actin cytoskeleton via GRB2 and the 
ezrin-radixin-moesin family of proteins in order to 
recruit SOS, which then amplifies RAS ERK signaling 
[95]. ICAM-1 can also substitute for CD44v6 as a core-
ceptor for c-MET in CD44v6 knockout mice, result-
ing in similar c-MET pathway activation [96]. c-MET 
binding to the integrin a6b4 creates a supplementary 
docking platform on integrin to bind signaling adap-
tors, leading to specific enhancement of PI3K, RAS and 
SRC activation [97,98]. The G-protein-coupled receptor 
agonists lysophosphatidic acid, bradykinin, thrombin 
and carbachol, can induce c-MET phosphorylation [99], 
although the functional consequences of these interac-
tions are still unclear. 

Several other RTKs form a crucial subset of c-MET 
coreceptors that result in c-MET transactivation and 
they have been studied in great depth due to their 
potential importance in the development of resis-
tance to cancer therapeutics [100]. For instance, several 
members from the family of semaphorin receptors, 
including the plexins and neuropillins can transacti-
vate c-MET in the absence of HGF when stimulated by 
their semaphorin ligands [101–103]. Interaction of c-MET 
with the closely related RON receptor has also been 
shown to cause transphosphorylation of the c-MET 
receptor in the absence of HGF [104]. Interestingly, 
it was recently shown that transactivation of RON 
by c-MET may be a feature of cancer cells that are 
‘addicted’ to c-MET signaling [105]. Transactivation 
between c-MET and both the PDGFR and AXL was 
found to play a role in bladder cancer [106]. 

c-MET has also been shown by multiple studies to 
interact directly with the EGFR, allowing activation of 
c-MET after stimulation of cells with the EGFR ligands 
EGF or TGF-a [107]. Stimulation of cells expressing 
both c-MET and EGFR with EGF resulted in phos-
phorylation of c-MET and stimulation with ligands 
for both receptors resulted in synergistic activation 

of downstream modulators, indicating mutual acti-
vation of these two pathways [108]. Evidence also exists 
for c-MET interaction with the other EGFR family 
members ERBB2 and ERBB3, causing transactivation 
of both receptors [109,110]. c-MET/EGFR cross-talk 
has important clinical significance, as several stud-
ies have shown that patients treated with EGFR TKIs 
can develop resistance to the drug by amplification of 
the MET gene. Further discussion of this important 
finding can be found later in this article. 

HGF/c-MET deregulation in cancer
MET was originally identified as an oncogene in the 
1980s [111], isolated first from a human osteosarcoma 
cell line treated with the carcinogen N-methyl-N-
nitro-N-nitrosoguanidine. The MET identified in 
this cell line contained a chromosomal rearrangement 
that fused the tyrosine kinase domain of c-MET to 
an upstream translocating promoter region (TPR). 
This rearrangement caused constitutive dimerization 
and therefore activation of the encoded protein [112]. 
Expression of TPR–MET in transgenic mice resulted 
in the development of multiple epithelial-derived 
tumors [113]. In humans, the TPR–MET translocation 
has been reported in both the precursor lesions of 
gastric cancers and in the adjacent normal mucosa, 
suggesting that this genetic lesion could predispose 
the development of gastric carcinomas [114]. These 
findings with TPR–MET became the starting point 
for an ongoing effort to uncover all the oncogenic 
activites of c-MET. Currently, c-MET and HGF are 
being studied in a wide range of different cancers [301]. 

As described above, c-MET signaling is an intricate 
and highly regulated process. During tumor growth 
or cancer progression, mechanisms have been iden-
tified that can result in constitutive or prolonged 
activation of c-MET. Data collected from in vitro and 
in vivo tumor models suggest that these mechanisms 
typically occur via three mechanisms: 

■■ The occurrence of specific genetic lesions, including 
translocations, gene amplifications and activating 
mutations;

■■ Transcriptional upregulation of the c-MET protein 
in the absence of gene amplification; 

■■ Ligand-dependent autocrine or paracrine mech
anisms [115].

■■ MET gene mutation
Proof-of-concept for the role of c-MET in human 
cancers was provided following the identification 
of activating point mutations in the germ line of 
patients with hereditary papillary renal carcinomas 
[116,117]. However, sporadically and spontaneously 
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occurring oncogenic MET mutations remain rare, 
occuring in approximately 2–3% of patients [117,118]. 
Activating mutations have been described mainly in 
non-small-cell lung cancer (NSCLC), hereditary and 
spontaneous renal carcinomas, hepatocellular carci-
nomas, gliomas, gastric cancers, squamous cell car-
cinomas of the head and neck, and breast carcinomas 
[119–124]. Potentially oncogenic point mutations that 
were reported in cancers include those that generate 
an alternative splice variant lacking exon 14, which 
encodes for the juxtamembrane domain of c-MET 
[119,125]; point mutations in the kinase domain that ren-
der the enzyme constitutively active [120]; and a muta-
tion at Tyr-1003 that abrogates CBL binding leading to 
constitutive c-MET expression [70,126,127]. In contrast, 
several other point mutations (i.e., N375S, R988C 
and T1010I) have been reported as single nucleotide 
polymorphisms and were found to lack transform-
ing abilities [128–130]. To date, missense mutations and 
single nucleotide polymorphisms have been found 
in the SEMA and juxtamembrane domains of MET 
(Figure 1).

■■ MET gene amplification
The most frequent genetic alteration of MET is gene 
amplification, resulting in high c-MET protein expres-
sion and consequent activation. MET amplification 
is facilitated since it forms part of the chromosomal 
fragile site FRA7G [131–133]. High protein expression, 
detected by immunohistochemistry, as a result of 
MET amplification has been associated with poor 
prognosis in NSCLCs, colorectal and gastric cancers 
[134–138]. Reports that MET is more frequently ampli-
fied in metastatic compared with primary tumors sug-
gest a role for this gene in the late phases of malignant 
progression [138–140]. The importance of c-MET activa-
tion by other RTKs has gained considerable interest 
during the last 5 years, following the report that a 
lung adenocarcinoma cell line sensitive to the EGFR 
inhibitor erlotinib developed resistance to this drug by 
amplification of the MET gene [141]. This finding is fur-
ther supported by clinical evidence that lung tumors 
from four EGFR tyrosine kinase inhibitor (TKI) 
refractory patients displayed MET amplification as 
well [141]. Furthermore, cells with amplified MET are 
now sensitive to dual treatment with EGFR and MET 
inhibitors, suggesting that inhibition of both receptors 
could result in disease stabilization. In a large cohort 
of EGFR TKI-treated lung cancer patients who had 
relapsed, approximately 18% displayed MET amplifi-
cation [135,142–144] or high HGF levels [145]. Based on this 
evidence, as well as evidence of c-MET–EGFR RTK 
cross-talk discussed earlier, two putative mechanisms 
have been suggested by which c-MET activation may 

bypass EGFR TKI sensitivity: 
■■ c-MET autophosphorylation creates docking sites 
where downstream signaling proteins can trans-
duce prosurvival signals via the MAPK and PI3K/
AKT signaling pathways;

■■ Transphosphorylation of other ERBB receptors may 
amplify the protumorigenic invasive program of 
c-MET. Other RTKs may allow cells resistant to 
c-MET TKIs to bypass this inhibition using similar 
cross-talk mechanisms.

■■ c-MET protein overexpression
Increased protein expression as a consequence of 
transcriptional upregulation in the absence of gene 
amplification is the most frequent cause of constitu-
tive c-MET activation in human tumors [12] and has 
been reported in a growing number of carcinomas 
including thyroid [137,146], colorectal [139,147,148], ovar-
ian [149] pancreatic [16,137], lung [13,150] and breast [151], 
to name a few. Hypoxia-induced overexpression is 
another method by which c-MET expression can be 
aberrantly increased in cancer. Hypoxia, caused by 
a lack of oxygen diffusion to the center of a grow-
ing tumor, has been demonstrated to activate MET 
transcription in vitro and in vivo [152]. Hypoxia acti-
vates the MET promoter, via the transcription factor 
HIF1a, which itself is regulated by the concentration 
of intracellular oxygen [153]. 

■■ c-MET autocrine or paracrine activation
Ligand-dependent autocrine or paracrine c-MET 
stimulation is another mechanism of c-MET activa-
tion. HGF is expressed ubiquitously within human 
tissues and has been found to be frequently overex-
pressed in the reactive stroma of primary tumors 
[154]. This supports the formation of paracrine pos-
itive feedback loops, which in turn can support the 
dissemination of cancer cells to distant locations. The 
autocrine stimulation of c-MET has also been identi-
fied in cancer cells [155,156] and appears to be associated 
with increased aggressiveness and metastatic poten-
tial of tumor cells [17,157,158].

c-MET as a prognostic marker 
Regardless of the mechanism, high levels of HGF and/
or c-MET expression have been associated with poor 
patient outcome. Nearly half of lung adenocarcinoma 
patients demonstrate high expression of HGF and 
c-MET [15,159,160]. Such high expression patterns have 
been reported to correlate with increased tumor growth 
rate and metastasis, poor prognosis and resistance to 
radiotherapy [157,161,162]. High levels of HGF/c-MET 
in breast carcinoma has been correlated with higher 
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histological grade, poorer progno-
sis and high tumor cell proliferative 
index [163–165], and with a greater inci-
dence of metastases [166,167]. In these 
reports, c-MET overexpression was 
observed in hypoxic areas and cor-
related directly with poorer overall 
survival (OS). Overall, reports tend 
to show that high levels of HGF and/
or c-MET expression are found in a 
significant subset of primary patient 
samples and, importantly, high 
levels of these proteins in distant 
metastases are often correlated with 
worse prognosis.

c-MET as a therapeutic target
Due to its diverse roles in cellular 
processes important to oncogenesis 
and cancer progression, c-MET has 
been postulated as an important 
target in anticancer therapy [40,168–

170]. Preclinical studies have shown 
that in animal models, the inhi-
bition of c-MET impairs tumor-
igenic and metastatic properties 
of cancer cells [171–176]. As such, a 
few molecules targeting c-MET 
have recently been evaluated in 
clinical trials and several articles 
have been published on this sub-
ject [12,177,178]. c-MET inhibitors 
include small molecule TKIs and 
biological antagonists, targeting 
either the ligand or the receptor 
[12,178,179]. Mechanisms of action of 
these inhibitors are summarized in Figure 3. 

Promising c-MET-specific inhibitors are currently 
being clinically evaluated. The most advanced in 
clinical trials is the non-ATP competitive c-MET 
inhibitor tivantinib (ARQ 197), which recently com-
pleted a Phase II clinical trial showing an increased 
response rate and OS when combined with erlo-
tinib [180]. Based on these results, tivantinib has started 
the ATTENTION Phase III trial (randomized, dou-
ble-blinded, placebo-controlled) in previously treated 
patients with advanced or metastatic wild-type EGFR 
NSCLC (NCT01377376) [302]. Prior to this study, 
a Phase I trial demonstrated that 27% (14 out of 51 
patients) had stable disease for over 4 months [181]. 
However, little is known regarding the mechanism 
of action of this inhibitor [182,183]. 

Several of the other c-MET inhibitors cur-
rently in clinical trials are multikinase inhibitors, 

targeting several different RTKs in addition to c-MET. 
Cabozantinib (XL184), a multikinase inhibitor that tar-
gets c-MET, VEGFR2, AXL, KIT, TIE2, FLT3 and RET, 
has reached Phase II/III trials showing reduction of 
tumor mass in almost 60% of glioblastoma patients and 
an overall disease control rate of almost 50% in all of the 
patients who received this inhibitor in Phase II studies 
[184,185]. Exelixis has announced two different Phase III 
clinical trials to test cabozantinib: one in metastatic cas-
tration-resistant prostate cancer (registered under the 
name of ‘306) [303] and the other is the EXAM trial for 
medullary thyroid cancer patients (NCT00704730) [304]. 
Preliminary results from the latter trial demonstrate a 
significant improvement in median progression-free 
survival (PFS) by 7.2 months compared with placebo: 
median PFS for cabozantinib- and placebo-treated 
patients being 11.2 versus 4.0  months, respectively 
(hazard ration [HR] = 0.28). Lastly, cabozantinib is 
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Figure 3. c-MET/HGF inhibitors in clinical trials. C-MET inhibitors currently being evaluated 
in clinical trials include small molecule tyrosine kinase inhibitors and biological antagonists, 
targeting either the ligand or the receptor. C-MET-specific inhibitors include the non-ATP 
competitive inhibitor tivantinib (ARQ 197), and the ATP-competitive inhibitor JNJ38877605. 
Other multikinase inhibitors include cabozantinib (XL184), foretinib (XL880), crizotinib 
(PF02341066) and dacomitinib (PF00299804). Anti-c-MET monoclonal antibodies have also 
displayed promising results in tumors with high HGF/c-MET levels, and include, Rilotumumab 
(AMG102), which is an anti-HGF monoclonal antibody that interferes with c-MET’s activation by 
HGF, and MetMAb (OA-5D5), a human, monovalent, antagonistic anti-MET antibody.  
RTK: Receptor tyrosine kinase.
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being combined with erlotinib [186]. Several Phase II 
trials have been initiated for foretinib as a single agent 
or in combination with EGFR inhibitors in advanced 
or metastatic NSCLC patients who have failed chemo-
therapy [305] and in metastatic/recurrent triple negative 
(NCT01147484) [306] or ERBB2-positive breast cancer 
patients (NCT01138384) [307]. Lastly, the dual MET 
and ALK inhibitor crizotinib (PF02341066), which 
was recently approved for NSCLC patients with ALK 
gene rearrangement, is being tested as a single agent 
(NCT00585195) [308] or in combination with the irre-
versible pan-HER inhibitor dacomitinib (PF00299804) 
in Phase I/II trials involving advanced NSCLC patients 
(NCT01121575 and NCT00965731) [309,310].

A  d i f fe re nt  c l a s s  o f  c -M E T-t a r-
g e t e d  a g e n t s  i n c l u d e s  m o n o 
clonal antibodies, which have displayed promis-
ing results in tumors with high HGF/c-MET levels. 
Rilotumumab (AMG102) is an anti-HGF monoclonal 
antibody that interferes with c-MET activation by 
HGF [187]. Rilotumumab is currently being evaluated 
in Phase I/II studies alone or in combination with the 
EGFR-blocking antibody panitumumab [311]. Previous 
studies have shown that rilotumumab decreases c-MET 
phosphorylation and can stabilize the progression of 
certain solid tumors [188,189]. Onartuzumab (also known 
as MetMAb or OA-5D5) is a human monovalent 
antagonistic anti-MET antibody [190] that has shown 
promising preclinical results. It was able to inhibit 
glioblastoma U87, as well as pancreatic BxPC3 and 
KP4 tumor xenograft growth by causing a decrease 
in cellular proliferation and motility [190,191]. A recent 
Phase II clinical trial involving onartuzumab in com-
bination with erlotinib in NSCLC patients did not result 
in significant improvement in both PFS and OS [192]. 
However, patients with low c-MET expression tumors 
determined by immunohistochemistry, when treated 
with onartuzumab and erlotinib, had a worse OS than 
when compared with the erlotinib plus placebo arm 
(PFS HR = 2.01; OS HR = 3.02), while c-MET positive 
tumors (scoring a 2+ or 3+, using a scale of 0–3+ by 
immunohistochemistry) benefited from the combi-
national treatment (PFS HR = 0.56; OS HR = 0.55). 
Nonetheless, this antibody has now entered a Phase III 
clinical trial (MetLung) in combination with erlotinib, 
which will target patients with incurable NSCLC and 
be identified as c-MET positive (NCT01456325) [312]. So 
far, monoclonal antibodies in preclinical and clinical 
studies have only demonstrated a partial or complete 
response in patients (or cell lines) with high c-MET lev-
els or an HGF/c-MET autocrine loop [188–191,193].

An important issue relevant to the development of 
c-MET inhibitors is the identification of molecular pro-
file predictive of tumors that would benefit from this 

targeted therapy. Several studies on a large panel of cell 
lines demonstrated that upon treatment with a c-MET 
TKI, those with constitutive c-MET activation due to 
the presence of an autocrine loop or MET amplifica-
tion undergo apoptosis both in vitro and in vivo. These 
studies identified a subset of tumors, based on genetic 
alterations, which appear to be dependent on sustained 
c-MET activity for their growth and survival, such that 
treatment with a single agent may inhibit tumor growth 
and induce cell death [125,171,174,175,193,194]. This appears to 
be the case in the onartuzumab trial, as a greater ben-
efit from onartuzumab plus erlotinib compared with 
erlotinib alone was observed mainly in high c-MET 
expression patients (scoring a 2+ or 3+ on a scale of 0–3 
by immunohistochemistry) [192].

Blocking of HGF or c-MET using antibodies and 
TKIs appears to be a promising therapeutic strategy, 
and one anticipates that many studies will be initiated 
in the years to come. All of the c-MET targeted agents 
discussed here exhibit the potential to reach approval 
to be administered, either alone or in combination 
with other kinase inhibitors, for the treatment of solid 
tumors.

Potential resistance factors to c-MET inhibitors
As with other RTK inhibitors, cancer cells and tumors 
treated with c-MET inhibitors eventually develop 
resistance [195,196]. Based on preclinical cell-line stud-
ies, three mechanisms have been hypothesized. First, 
cells treated with c-MET TKIs at high doses develop 
a dependence on EGFR signaling as a way to cir-
cumvent c-MET inhibition [197,198]. Cells harboring 
high MET copy number can undergo an oncogenic 
switch to ERBB dependency, similar to the oncogenic 
switch from EGFR to c-MET in NSCLC cells. The sec-
ond mechanism may occur when c-MET dependent 
NSCLC and gastric cancer cell lines exposed to increas-
ing doses of c-MET inhibitors acquire amplifications 
of wild-type MET and KRAS, which enables cells to 
overcome the inhibitory threshold of the compound 
to sustain high MAPK and PI3K/AKT activation [196]. 
Finally, the third potential mechanism of resistance 
reported is the acquisition of a point mutation in the 
kinase domain of c-MET (Y1230H) [199]. While this 
mutation had been previously described as a somatic 
mutation in hereditary and sporadic renal carcinomas 
[120], it may overcome the inhibitory effect of any c-MET 
kinase inhibitor. 

In recent years, the aim of anticancer therapeutics 
has shifted away from personalized therapies that selec-
tively target a single molecule, towards combinatorial 
therapies: that is, finding drugs or combinations of 
drugs that are able to inhibit multiple pathways both 
in cancer cells and cells of the microenvironment [195]. 
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Executive summary

c-MET & cancer
■■ c-MET is a receptor tyrosine kinase that binds to its ligand HGF. After activation, c-MET becomes autophosphorylated on 
its kinase domain, leading to activation of its C-terminal tyrosines, creating a binding site for a wide range of downstream 
mediators.

■■ c-MET-pathway activation leads to phenotypes such as cell survival, transformation, motility, invasion and proliferation.
■■ c-MET is highly expressed in numerous cancers, most frequently by gene amplification and/or protein overexpression. High 
c-MET and/or HGF expression has been associated with poor prognosis.

Clinical trials with c-MET inhibitors
■■ c-MET inhibitors currently in clinical trials include the small molecule tyrosine kinase inhibitors tivantinib, cabozantinib, foretinib 
and crizotinib, while monoclonal antibodies targeting either the ligand or the receptor include rilotumumab and onartuzumab.

■■ Drug combination trials involving c-MET inhibitors and other targeted anticancer agents are ongoing, with the aim of delaying or 
preventing the onset of acquired resistance.

Clinical experience has shown that patients treated by 
a single-targeted therapy often develop drug resistance 
and relapse. In addition, we are more aware that the 
tumor microenvironment plays an important role in 
maintaining the tumor niche; therefore, combination 
therapies must attempt to inhibit not only neoplastic 
cells, but also the vessels and stromal cells (cancer-as-
sociated fibroblasts or tumor-associated macrophages) 
that provide them with the nutrients and growth fac-
tors critical to their survival [200]. Finally, the use of 
multikinase inhibitors have the potential to delay the 
development of resistance, since it is known that neo-
plastic cells are able to undergo an ‘oncogenic switch’ 
by which the cell that was originally dependent on a 
single oncogene can rely on the activation of alterna-
tive(s) oncogenes [195,196].

Future perspective
Over 25 years since its first discovery, much is known 

about the mechanisms and pathways involved in c-MET 
signaling. As our knowledge of these pathways grows, 
the c-MET receptor emerges as an important prognostic 
indicator and target for personalized cancer therapy. 
Results from early phase clinical trials are beginning to 
highlight the importance of HGF/c-MET signaling in 
cancer biology, as inhibition of c-MET receptor activity 
in vivo has shown promising results in reduction of can-
cer cell growth and impaired angiogenesis. Importantly, 
inhibition of c-MET can overcome resistance to anti-
EGFR therapies and this is now under consideration for 
use in combination with other RTK inhibitors to treat 
advanced NSCLC patients. If lessons can be learned 
from clinical trials with EGFR inhibitors, it appears 
as though small-molecule TKIs may be more effective 
when the receptor is mutated, while inhibitory antibod-
ies are more efficacious when the receptor protein is 
overexpressed. Owing to the fact that c-MET mutations 
are so rarely found in solid tumors, c-MET-blocking 

antibodies may prove to be the more prom-
ising therapeutic. If this is the case, then 
the challenge will then be to combine this 
treatment with other important cross-
talk mechanisms of c-MET activation in 
cancer, leading to further improvements 
in the efficacy of novel and personalized 
anticancer therapeutics. E
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