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Review

Central to the needs of the biopharmaceutical industry to support the development 
of innovative biologics and biosimilars are more effective and efficient manufacturing 
processes which require highly productive cell lines with desired quality attributes. New 
designs of molecules such as antibody humanization have greatly reduced immunogenicity 
concerns, and advances in cell culture technology including media optimization and 
process control have driven monoclonal antibody productivities in excess of 10 g/l with 
peak cell densities in bioreactors climbing to over 35 million per ml. However, over this 
same timeframe, the fundamental processes utilized for cell line generation have not 
changed significantly, especially in the selection step for top-producing clonal cell lines. 
Cell line generation continues to be time consuming and labor intensive and has become 
the timeline limiting step for the majority of the industry. In order to meet the ‘Fast-to-
Proof-of-Principle’ strategy, multiple efforts including host cell and expression plasmid 
engineering have been pursued in order to improve the effectiveness and efficiency of 
cell line generation processes. This review will summarize the recent advancements 
in cell line generation processes in Chinese hamster ovary cells, with a focus on the 
glutamine synthetase selection system.

Since the first approval of recombinant insu-
lin in the early 1980s, more than 100 new 
recombinant protein therapeutics have been 
approved by the US FDA or the European 
Medicines Agency [1]. The biopharmaceuti-
cal industry has been rapidly growing at a 
pace of 10–20% annual increase in revenue 
worldwide [2] and with biologics’ sales in 2010 
exceeding US$100  billion [201,202]. At the 
same time, with biologic drugs worth more 
than $80 billion in global sales losing patent 
protection through 2015, biosimilars have also 
become an emerging area of interest garnering 
substantial investment by many biotech and 
large pharmaceutical companies [3]. Central to 
the needs of the industry to support the devel-
opment of innovative biologics and biosimilars 
are more effective and efficient manufacturing 
processes which require highly productive cell 
lines with desired quality attributes. 

Choosing an appropriate expression system 
is one of the critical steps for biopharmaceuti-
cal product development. Multiple expression 
systems including micro-organisms [4,5], mam-
malian cell lines [6,7], plants [8–10] and animals 
[11] are currently available for biopharmaceuti-
cal production. Though the gap has been nar-
rowed, microbial systems, as exemplified by 
Escherichia coli, have the advantages of low cost 
and short timeline in establishing a production 
strain, quick production cycle, easy in-process 
control, and comparable productivity com-
pared with mammalian expression systems. 
However, there are various limitations for 
prokaryotic systems such as E. coli. It is quite 
challenging for microbial systems to express 
large complex proteins containing multiple 
subunits, requiring cofactors, disulfide bonds, 
and post-translational modifications [12], since 
the post-translational metabolic machinery 
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Key Terms

Suitability: A phenotypic term 
that describes the change in 
productivity as a function of 
increasing generation number 
accumulating through culturing 
(passaging) of a cell line. It is 
not necessarily the result of any 
product-related genetic instability. 
Cell lines with <20% productivity 
drop over the manufacturing 
window are acceptable.

Stability: Reserved for genetic 
changes to the coding sequence 
that could have potential for 
impacting the quality or integrity 
of the recombinant product.

is only available in eukaryotic cells. 
Many recombinant proteins includ-
ing monoclonal antibodies (mAb), 
the largest class of therapeutic pro-
teins currently under development, 
require post-translational modifica-
tions such as glycosylation for their 
optimal biological functions and 
pharmacokinetics [13–15]. Plant and 
transgenic animal systems have been 
encouraging for protein therapeutics 
manufacturing with their eukaryotic 
protein processing. However, chal-
lenges and concerns still remain and 
have to be addressed with respect 
to drug safety. These are, however, 

outside the scope of current review [9,16]. 
More than half of the therapeutic proteins approved 

and currently marketed are produced using Chinese 
hamster ovary (CHO) cells [16–21], mainly due to 
CHO cells’ unique characteristics, such as human-like 
post-translational modification of the product and it 
amenability to bioprocess development and large-scale 
manufacturing [18,22,23]. DHFR-based methotrexate 
(MTX) selection or glutamine synthetase (GS)-based 
methionine sulfoximine (MSX) selection are two of the 
most commonly leveraged CHO expression systems [18]. 
In the case of the DHFR-based system, CHO-DG44, a 
CHO derivative lacking DHFR activity, has been widely 
used via selection, for an exogenously-introduced DHFR 
gene, in glycine, hypoxanthine and thymidine (GHT) 
deficient medium [6,24–27]. Historically, amplification of 
the DHFR and gene of interest (GOI) was needed to 
improve productivity, resulting in a longer timeline for 
cell line generation and introducing potential suitability 
and genetic stability risk arising from a loss of gene cop-
ies following removal of MTX selective pressure. MTX 
is generally removed from the cell culture process to 
avoid potential drug product safety concerns (MTX is a 
highly toxic drug), and to simplify processing by remov-
ing the need to demonstrate that the purification process 
has cleared MTX from the drug product. In contrast, 
a GS-based system [203] does not typically require an 
amplification step, thus resulting in fewer copies of the 
transgene per cell needed to achieve highly productive 
clonal cell lines [28,29]. 

Over the past two decades, advances in new designs 
of molecules such as antibody humanization have 
greatly reduced immunogenic concerns. Cell culture 
processes including media, process control and bioreac-
tor design have also changed significantly to drive a five- 
to ten-fold increase of peak cell densities in mammalian 
cell cultivated bioreactors and this has reached >10 g/l 
in mAb and Fc-fusion protein production [6,23,30–32]. 

However, over this same timeframe, the fundamen-
tal processes utilized for cell line generation have not 
changed significantly, especially in the selection step for 
top-producing clonal cell lines. Hundreds to thousands 
of individual clonal cell lines need to be screened to 
identify the final top producers, which makes cell line 
generation time consuming and labor intensive, and this 
has become the timeline limiting step for the majority 
of the industry. It is only recently that the increased use 
of new high-throughput screening technologies includ-
ing fluorescence-activated cell sorting (FACS) [33–36], 
ClonePix [37], CellXpress [38,39] and mRNA expression 
levels [40], together with new CHO cell lines, have cre-
ated opportunities that have substantially shortened 
cell line development timelines. Numerous outstanding 
reviews have previously summarized expression systems 
[7], cell culture process developments [6,23,41], metabolic 
pathway and host cell engineering [42]. This review will 
focus on the latest advancements, achieved through host 
cell and expression plasmid engineering approaches, 
in cell culture selection systems used in the cell line 
generation process, as exampled by GS-CHO. 

Nature of the GS gene: biological function 
& the molecular mechanism used as a 
selection marker
GS (l-glutamate:ammonia ligase, E.C. 6.3.1.2) is a 
universal housekeeping enzyme that catalyzes the syn-
thesis of glutamine from glutamate and ammonia using 
the hydrolysis of ATP to ADP and phosphate to drive 
the reaction (Figure 1A) [43]. It is the only enzyme that 
can synthesize glutamine de novo. The function of GS 
in human cells is tissue specific [44,45]. In the brain, 
GS regulates the level of toxic ammonia and converts 
neurotoxic excess extracellular glutamate to harmless 
glutamine. The potential links between GS enzyme’s 
malfunctioning and illnesses such as Alzheimer’s dis-
ease [46,47], schizophrenia, Parkinson’s disease [48], and 
Huntington’s chorea [49] have stimulated studies on GS 
enzyme over the past 50 years [50]. In the liver, GS is one 
of the enzymes responsible for the removal of ammo-
nia [51]. The complete knockout of the mouse GS gene 
results in early embryonic lethality [52]. In bacteria and 
plants, GS is responsible for fixation and re-assimilation 
of ammonia, allowing glutamine to be used as a nitrogen 
source for metabolism [53,54].

The CHO GS gene was identified from a CHO cell 
line over expressing GS [55]. It is comprised of six exons, 
with exon 5 comprising the sequence critical for GS 
activity (Figure 1B) [51,56,57]. Mammalian GS is a deca-
meric protein consisting of two pentamers with a total 
of ten active centers, each located at the interface of two 
adjacent subunits in the pentameric ring [51]. The amino 
acid sequences of GS are highly conserved across species 
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and the differences in the crystal structures between the 
mammalian and plant enzymes are extremely subtle [51]. 
The metabolic pathways that regulate GS in bacteria and 
mammalian cells have been well established [45,50,58]. 

Glutamine is one of the essential amino acids 
needed by CHO cells when cultured in vitro [59]. The 
primary functions of glutamine in cell culture are as an 
energy source, and as a nitrogen donor in the synthe-
sis of amino acids and nucleotides. The GS system™ 
was designed originally for use in cell lines that do not 
produce sufficient GS to support growth. Hybridomas 
(Sp2/0-Ag14) and cell lines, such as mouse myeloma 
(NS0) lines [60] naturally do not express sufficient GS 
even though the GS gene (GLUL) is present (inferred 
by the ability to obtain glutamine-independent 
revertants). For other cell lines (e.g., CHO) that are 
glutamine prototroph, this trait can be introduced 
by genome editing [57] or inclusion of an appropriate 
enzyme inhibitor (MSX) in the medium [61]. The com-
plementation of a glutamine auxotrophy by recombi-
nant GS provides the basis for use of GS as a selectable 
marker [6,62]. 

MSX, an analogue of glutamate, has been identified 
as an inhibitor of GS by binding to the glutamate site of 
the enzyme [50,63]. Irreversible inhibition of GS results 
from binding of the phosphorylated form of MSX to 
the glutamate binding site [64]. More specifically, MSX 
blocks glutamate entry through stabilization of the 
flexible loop in the active site [63,65]. In a concentration-
dependent manner, MSX, inhibits enzyme activity in 
cells that possess endogenous GS activity (3 µM [55]), 
improves selection stringency (25–50 µM [66]); or can 
be used to select for gene amplification (200 µM [67]). 

It is worth mentioning that MSX is not a specific 
inhibitor of GS. MSX also inhibits γ-glutamylcysteine 
synthetase, the first enzyme of both glutathione 
(GSH) synthetic pathways [68]. GSH has a crucial role 
in maintaining an environment within the endoplas-
mic reticulum (ER), conducive for protein folding. 
GSH has been implicated in the formation of native 
disulfide bonds within the mammalian ER, where it 
functions to maintain the ER oxidoreductases in the 
reduced state [69,70]. Mammalian cells respond to the 
formation of reactive oxygen species resulting from 
disulfide bond formation in the ER by increasing 
the synthesis of GSH [71]. Larger pools of GSH have 
been found in highly productive antibody-producing 
DHFR-CHO cell lines whilst the benefit of over 
expressing the enzymes of disulfide bond formation is 
not clear [70,72]. This raises an intriguing possibility: 
in cell lines selected for their ability to complement 
a chemically induced glutamine auxotrophy, have we 
also inadvertently selected for cell lines with a greater 
inherent capacity for protein secretion?

History of the development of the GS 
selection system in CHO cells for the 
production of biologics
The GS gene expression system [60,62], uses comple-
mentation of a glutamine auxotrophy by a recombinant 
GS gene to select for high-level expression of proteins 
from mammalian cells. As the GS System is intended 
for the commercial manufacture of therapeutic proteins, 
materials and procedures are developed so that cell lines 
are selected to fit a commercially relevant platform. 
To-date (August 2013), 13 licensed therapeutic proteins 
are manufactured using the GS system: eight antibod-
ies (including Soliris®, Synagis® and Zenapax®) are 
manufactured using GS-NS0 cell lines, and five non-
antibodies are manufactured using GS-CHO cell lines 
[Lonza, Unpublished Data].

Expression Vectors
GS expression vectors comprise the GS gene plus up 
to three highly efficient transcription cassettes for the 
GOIs [66]. Initially, different vectors were used to create 
GS-NS0 and GS-CHO cell lines (pEE12 and pEE14 
respectively, Figure 2). These vectors differed in the for-
mat of the GS gene and the structure of promoter used 
to drive expression of the GOIs. The GS transcription 
cassette for vector pEE12 uses a GS cDNA, SV40E pro-
moter, and SV40 splicing and polyadenylation signals. 
The GS transcription cassette in the pEE14 vectors uses 
GS mini-gene plus the SV40L promoter and two polyA 
signals. The mini-gene, unlike the GS cDNA, contains 
intron 6 of the genomic CHO GS gene. In both vec-
tors, the transcription cassette for the GOI includes the 
hCMV-MIE promoter and 5́ -untranslated sequences 
from the hCMV-MIE gene, including the first intron, to 
enhance mRNA levels and translatability. In the current 
version of the GS System™ for use with CHO cell lines, 

Glutamate + ATP + NH3   Glutamine + ADP + Phosphate  

GS 

MSX 

CHO GS Gene

ZFN target sites

E1 E2 E3 E4 E5 E6

Figure 1. Function and gene structure of mammalian glutamine 
synthetase. (A) GS plays an essential role in the metabolism of nitrogen by 
catalyzing the condensation of glutamate and ammonia to form glutamine. 
Methionine sulphoximine irreversibly inhibit GS activity; (B) CHO GS gene 
structure. ZFN target sites indicated the mutation sites in GS-knockout cells.  
CHO: Chinese hamster ovary; E: Exon; GS: Glutamine synthetase; 
MSX: Methionine sulphoximine.
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GS Xceed™, the mCMV promoter is used as this has 
advantages in terms of how quickly transfectants appear 
and their number [204].

The pEE14 vectors were recommended for protein 
expression in CHO-K1 cells because they produced 
higher numbers of transfectants compared with the 
pEE12 vectors. pEE12 vectors were used with the NS0 
host cell line. During the development of the CHOK1SV 
host cell line, it was observed that pEE12 and pEE14 
vectors produced similar antibody concentration distri-
butions (0.4 to 290 mg/l, mean 79 mg/l, for pEE12 cf. 
0.4 to 209 mg/l, mean 63 mg/l, for pEE14 in a 24-well 
plate model) [Lonza, Unpublished Data]. However, there 
were substantial differences in numbers of transfectants 
recovered (120 transfectants from 20 96-well plates for 
pEE12 cf. 85 transfectants from 239 96-well plates for 
pEE14). This is in contrast to the result observed with 
CHO-K1. To simplify use of the GS system and exploit 
the potential advantages of pEE12 in CHOK1SV, the 
use of pEE12 was standardized across both GS-NS0 and 
GS-CHO.

Host cell line
In principle, the GS system can be used with a variety 
of cell lines [60], but in practice, the most commonly 
used are CHO and NS0. The mouse myeloma cell line 
NS0 does not grow in glutamine-free medium and has 
a reversion frequency to glutamine prototrophy of <10–7. 
The reversion frequency is substantially lower than the 
value for the murine hybridoma Sp2/0-Ag14 and rat 
myeloma Y0 [60]. The NS0 cell line is derived from the 
IgG1 secreting myeloma cell line P3-X27, although it 
does not synthesize light chain (LC) or heavy chain 

(HC) itself [73]. As such, it made the NS0 host cell line 
the preferred choice for manufacturing antibodies as 
it was considered a professional antibody secreting cell 
line. The NS0 host cell line, along with Sp2/0-Ag14, are 
no longer the preferred host cell lines since they produce 
recombinant proteins containing the immunogenic 
sugar α-1,3-galactose [74,75]. The default growth mode 
for CHO cells is as adherent cells in serum-containing 
media. This has several disadvantages for the rapid 
development of cell lines suitable for the manufacture, 
in the current regulatory landscape, of proteins for 
clinical and commercial uses. The current generation 
of CHO host cell lines has been selected to circumvent 
these disadvantages.

Originally, the GS System™ used the cell line CHO-
K1 grown initially in attachment mode for cell line con-
struction and early cell line selection before adaptation 
to suspension growth mode for late stage cell line selec-
tion. Additionally, early stages typically used serum-
containing media and the later stages used serum-free 
media. The adaptation to growth in serum-free media 
as a single cell suspension is time consuming, typically 
taking in the order of 30 weeks [Lonza, Unpublished Data]. 
In the 1990s, Sinacore and colleagues demonstrated 
that the CHO cell line DUKX could be pre-adapted to 
growth in serum-free media and then be used for the 
generation of stable, recombinant cell lines [76]. This 
approach provided an opportunity to reduce the time 
and resources required to develop large-scale, suspen-
sion culture-based manufacturing processes with serum-
free medium. To shorten the timeline for selection and 
development of GS-CHO cell lines, a CHO-K1 host 
cell line was successfully adapted to growth in suspen-

Polylinker pEE12.4

pEE12.4
7569 bp

SV40 Poly-A

pEE6 ori

Intron A

hCMV-MIE 
promoter

SV40 intron + Poly-A

Poly-A 2

Poly-A 1 Intron
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GS minigene
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Figure 2. pEE12.4 and pEE14.4 vectors. (A) pEE12.4 uses a GS cDNA, SV40E promoter, and SV40 splicing and polyadenylation signals; 
(B) pEE14.4 uses GS mini-gene plus the SV40L promoter and two polyA signals. In both vectors, the transcription cassette for the gene of 
interest. includes the hCMV-MIE promoter and 5-untranslated sequences from the hCMV-MIE gene.

Fan, Frye & Racher



Review

future science group www.future-science.com 491

The use of glutamine synthetase as a selection marker

sion mode as single cells using protein-free media by first 
adapting the cells to suspension culture in serum-con-
taining medium, and switching to serum-free and then 
protein-free media (Figure 3). The resultant cell line was 
renamed CHOK1 SV (CHO-K1 Suspension Variant). 
CHO cell line contain a functional GS gene and can 
grow in glutamine-free medium, but growth is inhibited 
by inclusion of MSX at 3 µM [55]. 

Cell line development & cell culture process 
Highly productive cell lines are selected using the GS 
system through a combination of a weak promoter driv-
ing expression of the selectable marker gene together 
with stringent selection for transfected cells expressing 
high levels of the gene product, and tight genetic link-
age between the transcription cassettes for the selectable 
marker gene and the GOIs.

The vectors use a SV40 promoter to drive transcrip-
tion of the GS gene. By using either glutamine-free 
media or glutamine-free media containing at least 3 µM 

MSX, transfected NS0 and CHO cells, respectively, can 
be selected. By using a MSX concentration above that 
needed to inhibit growth and selecting for cell lines that 
grow well, cell lines are selected that synthesize sufficient 
glutamine through having high levels of GS. As a weak 
promoter is used in the GS expression cassette, it is pos-
tulated that cells are selected where the vector is inserted 
into a transcriptionally active locus within the genome. 
Since the GOIs and GS gene are on the same vector and 
genetically tightly linked, for an antibody the vector is 
approximately 11 kb, selection for integration of the GS 
gene into a transcriptionally active locus results in coin-
tegration into the same locus. Expression by the strong 
promoter in the GOI expression cassette is enhanced by 
the favorable site of integration.

The development of bioreactor process for GS-CHO 
cell lines reflects the changes in the bioprocessing 
industry over the last 25  years and has been covered 
in several reviews [6,23,41]. The history of the GS-CHO 
process is summarized in Table 1. Initially, the process 

CHO-K1 cells from ECACC
(catalogue number: 85051005)

Serum-containing,
static

Serum-containing,
static

Serum-containing,
suspension

Serum-free,
suspension

Protein-free,
suspension

Master host cell bank for CHO-K1
Identity code: 024-M

Master host cell bank for CHO-K1
Identity code: 024-M

Stored in Lonza’s GMP facility
from date of cryopreservation

Development cell bank for CHOK1SV

Development cell banks for CHOK1SV

Development cell bank for CHOK1SV
Identity code: 269-CS

Cryopreserved May 2002

Master host cell bank for CHOK1SV
Identity code: 269-CS

Cells switched to the protein-free
medium CD-CHO (Invitrogen)

Cells revived May 2000 into a Lonza 
proprietary medium with 10% FBS and 
grown in static culture on a 14 day 
subculture regime. Subsequently 
adapted to suspension culture in a 
Lonza proprietary medium containing 
5% FBS. Cell line renamed ‘CHOK1SV’

Cells rswitched to a Lonza proprietary
serum-free medium 

Cells revived into a Lonza proprietary
medium containing 10% FBS

Figure 3. Derivation of cell line CHOK1SV. 
CHO: Chinese hamster ovary cells; FBS: Fetal bovine serum.
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was fed-batch using simple feeds with serum-free media. 
The initial optimization was performed by changing 
the base medium, from serum-free to a chemically 
defined, animal component- and protein-free medium, 
and modifying the feed system based on the approach 
of spent medium analysis and feed supplementation. 
This increased the product concentration from 139  to 
585 mg/l. The resulting process (version 2) was used as 
the starting point for developing a process for cell lines 
developed using the new host cell line CHOK1SV. 
Switching host cell lines gave a 14-fold increase in mAb 
concentration. The mAb concentration increased to over 

8 g/l by version 8 through a mixture 
of optimizing process parameters and 
modification of the feed following 
spent media analysis. 

Recent advances in the GS 
selection system: expression 
host & expression plasmid 
engineering
Clinical cell line development has a 
profound impact in biopharmaceuti-
cal product development. While the 
productivity and product quality 
characteristics of the producing cell 
line affect the complexity of cell 
culture and downstream purification 
processes, the speed of developing 
a successful cell line can provide 
significant timeline advantages for 

product clinical development programs in the current 
highly-competitive industry [77]. The efficiency of 
identifying top-producing cell lines largely depends on 
the selection stringency during cell line generation pro-
cesses. Considerable efforts have been made in CHO 
cells to improve the productivity, product quality, cell 
line stability [78,79], and cell culture process robustness 
through media optimization, process control, host 
cell protein dynamics [2,80], and host cell engineering 
[81–85]. However, improvements in selection systems 
related to host cells and plasmids were relatively slower 
due to technology limitations in generating knock-
out cell lines through plasmid-based homologous 
recombination. 

CHO host cell engineering
It is only most recently, with the advancement in several 
key technologies including ZFNs [86–88], meganucleases 
[89], TALE nucleases [90,91], and CRISPR/Cas9 [92,93] 
that targeted modification of key genes related to the 
selection process has become practical with successful 
demonstration of the generation of knockout CHO 
cell lines to improve selection stringency and product 
qualities [94,95]. 

Unlike NS0 cells, CHO cells have constant expres-
sion of GS from the endogenous GS genes when 
grown in glutamine-free media. This ‘background’ GS 
expression results in a decrease in selection stringency 
when the GS selection system is used in CHO cells, as 
evidenced by the observations that large numbers of 
non- or low-producing cells exist within the selected 

Key Terms

Selected bulk culture: Describes 
the enrichment of transfected 
cells containing copies of external 
transgenes that stably integrated 
into its genome through a 
suspended cell culture condition. 
The selection processes 
generally requires the use of a 
selection marker (auxotrophy, 
antibiotics) to counter select 
non-transfectents.

Gene Knockout: This is a genetic 
term (abbreviation KO) in which 
one of an organism’s genes are 
disrupted and lost its natural 
function. It is one of the most 
popular techniques to study 
gene that has been sequenced, 
but which has an unknown or 
incompletely known function.

Table 1. Development of glutamine synthetase-Chinese hamster ovary cells, process from 1990 
to 2008. The chimeric antibody cB72.3 was initially expressed using CHO-K1. With launch of 
CHOK1SV in 2003 was re-expressed in the new host line.

Process version Maximum viable cell 
concentration (106/ml)

Integral of viable cell 
concentration (106 cells h/ml)

mAb (mg/l) Specific production 
rate (pg/[cell h])

22HI1 (CHO-K1)

Not defined 3.25 328 41 0.13

Not defined 2.29 267 139 0.52

1 4.51 498 334 0.66

2 6.32 1041 585 0.53

LB01 (CHOK1SV)

2 9.70 2266 1917 0.89

3 14.19 2493 2829 1.17

4 12.40 2254 3560 1.55

5 12.63 3470 4301 1.41

6 15.78 4215 5929 1.52

7 16.30 6048 6851 1.13

8 17.83 5142 8335 1.62

CHO: Chinese hamster ovary cells; mAb: Monoclonal antibody.
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bulk culture population and the recovery of mock-
transfected parental CHO cells under standard dosage 
of MSX (50  µM compared with 5  µM in NS0 cells) 
(Figure 4A & B). Given the fact that some CHO parental 
cells can survive in as high as 5 mM MSX selection [55], 
simply increasing the MSX concentration to improve 
selection stringency is not feasible since higher MSX 
will have a negative impact on cell growth. Additionally, 
transgene amplification could result from increasing 
MSX levels, which could also cause potential stability 
concerns on established cell lines. Thus, CHO cells in 
which the background expression of GS is eliminated 
are desirable to enable a highly effective and efficient cell 
line development process in CHO cells. 

Recently, attempts to delete or disrupt the endog-
enous GS gene from CHO cells through gene knockout 
technology have been very successful [95,96]. Independent 
development of GS-knockout cell lines has been under-
taken and these engineered expression hosts have been 
implemented in biopharmaceutical processes. Compared 
to CHOK1SV cells, GS-knockout cells allow for more 
stringent GS selection conditions to be leveraged in bulk 
cell cultures after removal of the background expression 
of the CHO GS gene. Through these stringent selec-
tion conditions, significant productivity improvements 
in bulk cell cultures are achieved, helping meet protein 
needs for early-stage drug discovery (Figure 5A) [57,97]. It 
is obvious that the bulk culture productivity improve-
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Figure 4. Monoclonal antibody versus bulk cell culture selection in CHOK1SV cells. (A) Viability of selected bulk cell cultures indicating 
mock transfection (without plasmid DNA, dotted line) recovered at the end of the selection. Solid line represents typical monoclonal anitbody 
selection. (B) Distribution of productivity of clonal cell lines from selected mAb x bulk cell culture in CHOK1SV cells. A total of 114 individual 
cell lines were randomly picked and scaled up for a 14-day fed batch shake flask study.
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ments are largely due to the elimination of non- and 
low-producing cells within the bulk culture populations 
(Figure 5B). This shift in selected bulk culture popula-
tions to larger percentages of high-producing cells has 
also impacted the cell line generation screening process 
resulting in a six- to eight-fold efficiency improvement. 
In addition, changing the host cell line to a GS-knockout 
derivative of the CHOK1SV host cell line reduced the cell 
line development timeline further. With the CHOK1SV 
host, selected to fit the current GS-CHO inoculum and 
bioreactor process (version 8; Table 1), a high producing 
clonal cell line is available about 23 weeks after transfec-
tion (Figure 6A). Comparison of Figure 6A & B shows that 
when using the CHOK1SV GS-knockout host with 
pXC vectors, the elapsed time to a high producing clonal 
GS-CHO cell line is 17 weeks. The six-week time reduc-
tion results from faster selection and expansion of trans-
fectant pools, faster outgrowth of cell lines after cloning 
and a faster doubling time for the host. 

Furthermore, the ‘Fast-to-Proof-of-Principle’ strategic 
requirement of the bioprocessing industry with ‘good 
enough’ cell lines making 2–3 g/l of an antibody creates 
the opportunity to reduce both the number of screening 
rounds and the number of cell lines screened (Figure 6C). 
This reduces the timeline by a conservative 2  weeks. 

Figure  6B & C differ in that there is no intermediate 
screening stage using ‘abbreviated fed-batch cultures,’ 
where feeds are added at a fixed time and volume rather 
than by, for example, cell concentration. Instead, high 
ranked cell lines are identified at the clone screening 
stage and then evaluated in a miniature bioreactor sys-
tem. Historically, generating a clonal CHO cell line took 
more than 2 years: with the current generation of cell 
lines, vectors and equipment, this is now approximately 
4 months.

Expression plasmid engineering
While selection stringency could be increased by raising 
drug (MSX) concentrations in the cell culture medium, 
this approach is typically not very attractive as the high 
drug concentration will normally have negative impact 
on cell growth and lengthen the timeline for cell line 
generation. Alternative strategies have been employed to 
modulate the expression level of marker genes through 
attenuating the selection marker or DNA components 
that regulate the marker gene expression. Mutation of 
neomycin phosphotransferase II to reduce its affinity to 
neomycin has improved the specific mAb productivities 
from 1.4- to 14.6-fold [98,99]. However, similar strategies 
have not been used for the GS gene due to the complex-
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ity in balancing the potential negative impact on GS’ 
normal metabolic function and the use of GS enzyme as 
a selection marker. 

Modulating the level of transcription of the selection 
marker gene through the manipulation of DNA compo-
nents that regulate marker gene expression is an alterna-
tive approach to increase selection sensitivity. Limited 
successes have been achieved with such approaches 
including the use of dicistronic vector containing an 
internal ribosome entry site of the encephalomyocarditis 
virus [100]. Antibody production from an expression vec-
tor with HC and LC gene transcription driven by two 
separate CMV promoters was compared with expression 
using a single CMV promoter to drive expression of a 
single HC–LC fusion, where the two polypeptides were 
linked using a foot-and-mouth disease F2A polypeptide 
self-cleaving linker sequence [101]. The lower expression of 
the single polypeptide was attributed to the ER process-
ing/degradation capacity setting a limit on the transcrip-
tional input. AU-rich elements and MODC PEST region 
as respective mRNA and protein destabilizing elements 
[102,103] had not been previously tested in the GS-CHO 
expression system due to the lack of GS knockout cells, 
because only in GS knockout cells can the needed sensi-
tivity to MSX be achieved. One approach in our lab has 
been the development of weakened SV40E (DSV40E) 
promoter through a series of nested deletions involv-
ing key regulatory elements of the wild type SV40E 
promoter [104]. When those DSV40E promoters, which 
were 40–60% lower in GS gene transcriptional activity, 
were used to drive GS expression and were utilized in cell 
line generation in combination with GS-knockout cells, 
selection stringency was further improved compared 
with wild-type SV40E promoter used in combination 
with the GS-knockout cells. Not only non-producing 
cells, but a large number of lower-producing cells were 
eliminated even in cases where no MSX was added to the 
cell culture medium (Figure 7A). In addition to improve-
ments in screening efficiency, productivities of individual 
top cell lines also improved dramatically (from 1.5 g/l to 
3.5 g/l) when ∆SV40E promoters were used to replace 
wild-type SV40E promoter (Figure 7B), a significant dif-
ference from using GS-knockout cells alone [57]. The 
removal of MSX from cell culture medium has multiple 
advantages including eliminating a raw material from 
cell culture processes, reducing the regulatory concern 
on trace amounts of MSX in purified drug substance, 
and providing potential advantages in terms of cell line 
suitability and stability by maintaining selection pressure 
in the absence of chemical selection. 

Targeted integration
Traditional stable transfection strategies typically 
result in random integration of transgenes into CHO 
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chromosomes. Targeted integration technology offers 
an alternative strategy to develop highly productive 
and stable cell lines in a reproducible and predictable 
manner [105] by targeted integration of transgene into a 
transcriptionally active genome region(s) – ‘hot spots’. 
Identification of those rare ‘hot spots’ in the CHO 

genome and an established technol-
ogy that can target transgene deliv-
ery into the ‘hot spots’, are the two 
key components required for the suc-
cess of targeted integration strategy. 
Efficient delivery methods have been 
established with several recombi-
nases including Flp, Cre and PhiC31 
and more recently by introducing 
a site-specific DNA double-strand 

break on the chromosome that can 
stimulate homologous recombina-
tion efficiency by up to 1000-fold or 
more in mammalian cells [106–108]. 
In contrast, screening for and iden-
tifying ‘hot spots’ has been rela-
tively less successful as it depends 
largely on the selection system for 
cell line generation, the bioprocess 
for cell cultures, the understand-
ing of mammalian genome, and 
the mechanism of gene expression. 
Phenotypic markers, such as GFP, 
have been used as tools in screen-
ing for transcriptionally active 
spots, but how representative these 
reporters are to industrial processes 
(i.e. expression of secreted therapeu-
tic proteins) is still questionable. As 
‘hot spots’ are extremely rare in the 
CHO genome, intensive screening 
of cell lines with single copy inte-
gration, high expression levels, and 
stability is required to identify an 
ideal target locus. Using FLP/FRT 
technology for targeted integration 
in GS-knockout cells, Pfizer has 
recently achieved four weeks reduc-
tion in their cell line generation 
process [29]. A stringent selection 
system such as that provided by the 
combination of DSV40E promot-
ers and GS-knockout cells could 
provide a valuable tool to identify 
transcriptional ‘hot spots’ in CHO 
genome for the development of a 
targeted integration system, which 
is deemed as the next generation 

cell line generation process development [109–111]. 
Additionally, chromatin-modifying DNA elements 

that control the chromatin structures on regulation 
of transgene expression, such as ubiquitous chromatin 
opening elements (UCOEs) and scaffold or matrix 
attachment regions (S/MARS) of DNA, could further 
improve the targeted integration strategy by increas-
ing the stability of transgene expression after the 
transgenes have been put into the ‘hot spots’. UCOEs 
are methylation-free CpG islands that function as 
insulator elements against heterochromatin expansion 
making a DNA region more accessible to transcrip-
tion machinery [112]. S/MARS of DNA are genomic 
DNA sequences at which chromatin is anchored to the 
nuclear matrix during interphase and are linked to his-
tone hyperacetylation. which indirectly recruits DNA 
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Key Term

Targeted integration: Describes 
the integration of transgene(s) into 
specific genomic regions through 
site specific recombination 
technologies. It is the counterpart 
term for ‘random integration’, 
which describes the insertion of 
external transgenes throughout 
the genome randomly. 
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demethylase to demethylate DNA in order to make it 
accessible for transcription [113–115]. Previous studies 
revealed that both UCOEs and S/MARS augment the 
expression of a reporter protein in stably transfected 
mammalian cell lines [116–118]. 

Future perspective
The effective and efficient generation and identifica-
tion of highly productive CHO cell lines for biophar-
maceutical products continue to be a challenge for the 
industry. Current cell line generation processes are 
often time consuming and require improvement to 
support the growing number of biologics moving into 
clinical development and the increasing costs for such 
programs. By utilizing technologies such as FACS/
automated colony pickers and automated cell culture 
evaluation systems allows high-throughput screening, 
the procedures are often expensive and need constant 
modification to adapt to different cell lines and protein 
products. The recent advances involving host cell and 
expression plasmid engineering and targeted integra-
tion have shown promising results in improving the 
generation and identification of very high-producing 
cell lines. Further implementation of such strategies 
has the potential to increase overall efficiency of bio-
pharmaceutical drug development, especially for those 
non-mAb molecules including non-mAb proteins, 
peptides, bifunctionals and bispecifics, by reducing the 
timeline required to supply drug product for clinical 
studies. 

Recent progress in improving GS-CHO selection 
efficiency and bulk culture productivity has provided 
a solid foundation for the development of an improved 
transient CHOK1 expression system. It has been shown 
that there can be inconsistencies between protein qual-
ity from HEK293 and CHO which could impact 
pharmacokinetic profiles, as well as potentially impact 
chemical and/or physical characteristics [119]. The 
detection of aberrant splicing of transgene expression 
in HEK293 and CHO cells can also be inconsistent 
and negatively impact the drug development timeline. 
In order to keep a consistent protein quality source 
between early discovery research and commercializa-
tion, it will be desirable to have a transient CHOK1 
expression system to replace current HEK293 cells for 
early discovery needs. Recent studies with polyethyl-
enimine (PEI) have shown promising progress [119–121] 
and the combination of the engineered ∆SV40E pro-
moter in combination with the GS-knockout system 
should provide a valuable tool for this application. 

Going forward, the targeted integration strategy is 
very likely to become the next generation process for 
cell line development. Leveraging technologies such 
as ZFNs and TALEN transgenes could be introduced 

into specific sequence locations in the host genome. 
One of the central challenges that remains is the 
identification of genomic sites which are ‘hot enough’ 
and ‘stable’. One potential option is to utilize reverse-
genetic approaches using selection markers to identify 
clonal cell lines containing ‘hot spots’ through standard 
cell line generation process. Even though the timeline 
for this approach is longer relative to other strategies, 
the ‘hot spots’ identified tend to be more representa-
tive and robust, more importantly, the new parental 
host cells could be screened for other characteristics 
including growth, metabolic profile and host cell pro-
teins to improve cell culture process robustness. In the 
reverse-genetic approach, use of the metabolic selec-
tion marker itself is only necessary for the first round 
‘hot spots’ identification, and may not be needed for 
subsequent targeted integration efforts. Depending on 
the design of targeted integration, metabolic selection 
markers could either be permanently inserted in the 
new host cell genome, or removed by the replacement 
plasmid constructs. The combined usage of targeted 
integration and chromatin regulation elements will 
possibly generate a homogeneous population of highly 
productive and stable cells within much shorter time 
windows, and it will provide great opportunity to cut 
current timelines from transfection to first human 
dose study.

Finally, the availability of the CHO genome will 
likely provide another round of breakthroughs in cell 
line generation technologies as we continue to further 
the understanding of the underlying cellular processes 
of protein production. A good example will be further 
understanding of the mechanisms causing instability 
in some CHO cell lines, especially as some authors 
argue that it “is a consequence of the inherent genetic 
instability of recombinant CHO cell lines” [122]. 
Tremendous efforts have been made to illustrate the 
long -term culture instability issues at a post-mRNA 
level to metabolic events [78,79]. With further omics 
data providing more insight into the mechanisms, 
regulatory events, and linkages underpinning cel-
lular phenotype changes, highly productive and 
stable GS-CHO cell lines could be generated in more 
predictive ways. 
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Executive summary

Background
»» Central to the needs of the industry to support the development of innovative biologics and biosimilars are 

more effective and efficient manufacturing processes which require highly productive cell lines with desired 
quality attributes. 

»» The fundamental processes utilized for cell line generation have not changed significantly, especially in the 
selection step for top-producing clonal cell lines over the past two decades. 

»» Many recent advancements in the field of GS-Chinese hamster ovary (CHO) cell culture selection systems 
used in the cell line generation process through host cell and expression plasmid engineering approaches. 

Nature of the GS gene
»» GS catalyses the synthesis of glutamine from glutamate and ammonia and it is the only enzyme that can 

synthesize glutamine de novo.
»» Glutamine is one of the essential amino acids needed by CHO cells when cultured in vitro. The 

complementation of a glutamine auxotrophy by recombinant GS provides the basis for use of GS as a 
selectable marker. 

»» Methionine sulfoximine, an analogue of glutamate, has been identified as an irreversible inhibitor of GS by 
binding to the glutamate site of the enzyme.

History of the development of the GS selection system in CHO cells
»» The GS gene expression system was developed in 1980s and 13 licensed therapeutic proteins are 

manufactured using the GS system to date.
»» GS expression vectors comprise the GS gene plus up to three highly efficient transcription cassettes for the 

genes of interest.
»» CHO cells are widely used for the manufacture of therapeutic proteins.  CHO cells have been adapted to 

serum-free media and in suspension culture. 
Recent advances in the GS-selection system
»» Compared to CHOK1SV cells, GS-knockout cells allow for more stringent GS selection conditions resulting 

in significant productivity improvements in bulk cell cultures, a six- to eight-fold cell line generation efficiency 
improvement, and reduced the cell line development timeline.

»» The combination usage of weakened SV40E (∆SV40E) promoter and GS-knockout cells further improved 
selection stringency in GS-CHO system, resulting in additional improvements in screening efficiency, 
productivities of individual top cell lines and the potential removal of methionine sulfoximine from cell culture 
medium. 

»» Targeted integration technology offers an alternative strategy to develop highly productive and stable cell lines 
in a reproducible and predictable manner by targeted integration of transgene into a transcriptionally active 
genome region(s).

Future perspective
»» The recent advances involving host cell and expression plasmid engineering and targeted integration have 

shown promising results in improving the generation and identification of very high-producing cell lines .
»» Future improvements will focus on transient CHOK1 expression system, stability of clinical cell lines and 

global metabolic flux.
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