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Abstract

Vitamin K naturally occurs as two structurally similar but functionally different 
vitamins: K1 and K2. Vitamin K2 activates Matrix Gla Protein (MGP) which acts 
as an inhibitor of vascular calcification. Vitamin K2 plays a role in cardiovascular 
health. It slows down the progression of coronary artery and aortic valve calcification 
by inhibiting vascular and valvular calcification. It also has an impact on metabolic 
syndrome, heart failure, microvascular function, and the progression of arterial 
stiffness. Vitamin K deficiency was shown to correlate with worse clinical outcomes. 
Additionally, vitamin K2 supplementation is safe and has been the focus of numerous 
studies and randomized clinical trials. While some trials have shown no significant 
effect of supplementation in mitigating coronary artery or valvular calcification, the 
overall findings remain promising. Many methods and assays to assess vitamin K 
status and function exist, however, in clinical practice, Protein Induced by Vitamin K 
Absence/antagonism (PIVKA-II) and vitamin K1 are commonly used together. 
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Introduction

Vitamin K was discovered through the work of Carl Peter Henrik Dam between 1928 
and 1930 [1]. He discovered that chicks fed on cholesterol and fat-free chicken feeds 
for more than 2-3 weeks were more likely to have a spontaneous hemorrhage [2]. He 
discovered a new vitamin and called it Vitamin K. In the late 1930s, Edward Albert 
Doisy was able to isolate vitamin K and received the Nobel Prize jointly with Dam 
[1]. Vitamin K is a fat-soluble vitamin that exists as 2 compounds that are structurally 
similar, but functionally different: Vitamin K1 (phylloquinone) and vitamin K2 
(menaquinones, MKs) [3]. Vitamins K1 and K2 both have a naphthoquinone ring 
and a side chain of isoprenoids. The main structural difference between them is the 
length and saturation of the isoprenoid side chain at the 3rd carbon atom [4]. Vitamin 
K2 has extrahepatic activity and a longer half-life. Therefore it has an important role 
in activating γ-carboxyglutamate (Gla) proteins, such as Matrix Gla Protein (MGP), 
which is an inhibitor of vascular calcification [5]. MGP is synthesized by Vascular 
Smooth Muscle Cells (VSMCs). To be fully functional, MGP requires vitamin K. 
Several studies, including randomized clinical trials, have investigated the cardiovascular 
benefits of vitamin K2. This paper aims to explore the role of MGP and vitamin K2 in 
cardiovascular health.

Literature Review

Dietary sources of phylloquinone and menaquinones 

Vitamin K1 is responsible for coagulation. It is generally present in leafy green 
vegetables, which contribute around 60% of the total phylloquinone intake [6,7]. 
Leafy green vegetables with a darker color like collards have higher phylloquinone 
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concentrations than those with lighter colors such as iceberg 
lettuce. Phylloquinone can also be found in plant oils such as 
canola, soybean, olive, and cottonseed [8]. Therefore, spreads and 
margarines derived from these oils are important dietary sources of 
phylloquinone [9,10].

Menaquinones (MKs) are characterized by the length of their 
isoprenoid side chain, but their origins as well as functions are not 
the same. Their primary origin is bacteria, except MK-4 which 
is formed in 2 different ways: Either via a realkylation step from 
menadione, or as a product of tissue-specific conversion directly 
from phylloquinone [8,11,12]. MK-4 formed from menadione 
comes from poultry products [13], and that coming from 
phylloquinone is found in small amounts in dairy products, and 
in organs such as the kidney [8]. On the other hand, MK-7 is 
the product of bacterial fermentation and is present in natto, a 
traditional Japanese soybean-based product [8]. Natto is rich in 
MK-7, and also contains MK-8, MK-9, and phylloquinone [8]. 
Figure 1 summarizes the dietary sources of vitamin K1 and K 
[8,9,14,15].

Matrix Gla Protein (MGP)

GP plays a key role in cardiovascular disease [16]. Mice who had 
their MGP gene knocked out were found to die prematurely due 
to arterial calcification and spontaneous aortic rupture [17]. MGP 
undergoes two post-translational modifications essential for its 
activation: serine phosphorylation and γ-glutamate carboxylation, 
the latter being a step that requires vitamin K [18]. Various forms 
of MGP exist, depending on its phosphorylation and carboxylation 
status. Since vitamin K is needed for activation of MGP, the 
unphosphorylated, and uncarboxylated form (dp-ucMGP) can 
be used as a marker of vitamin K deficiency [19,20]. The active 
form of MGP plays a role in preventing vascular calcification. In 

the absence of active MGP, VSMCs produce a matrix that favors 
calcium deposition, a characteristic of osteoblasts and chondrocytes 
[21]. Active MGP inhibits the formation of calcium crystals and 
modulates the transcription factors that prevent VSMCs from 
differentiating into cells that act similarly to osteoblasts and 
chondrocytes [22,23]. Active MGP is also an inhibitor of Bone 
Morphogenic Protein-2 (BMP-2), which induces osteogenic gene 
expression in VSMCs [5,23]. Moreover, it activates fetuin-A, 
which is an inhibitor of calcification.  Figure 2 summarizes the 
mechanism of action of vitamin K.

Relationship of vitamin K with cardiovascular health

To investigate the impact of vitamin K2 on cardiovascular 
health, a proper assessment of vitamin K status is needed. Assays 
measuring MGP reflect vitamin K bioactivity over a period of 
weeks to months [18,24-27]. These assays rely on dual antibody 
ELISA to measure dephosphorylated-uncarboxylated MGP and 
dephosphorylated-carboxylated MGP, and mono-antibody assays 
measuring total uncarboxylated MGP and total dephosphorylated 
MGP. Table 1 summarizes those assays and their reference values. 
Moreover, the measurement of dp-ucMGP is used to quantify 
vitamin K deficiency. Figure 3 summarizes the cardiovascular 
benefits of vitamin K supplementation.

Vascular calcification: Many studies have found that vascular 
calcification was associated with vitamin K deficiency. Loss-of-
function mutations in the MGP gene cause systemic vascular 
calcification [28]. Studies have also shown that elevated dp-ucMGP 
levels correlate with coronary and peripheral artery calcifications, 
and more plaque stability [29-31]. Furthermore, Vitamin K 
Antagonists (VKA) was found to accelerate calcification of the 
coronary arteries [32-34].

Figure 1: Dietary Sources of vitamin K1 and vitamin K2. Note: Concentrations are presented as µg/100g.
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associated with less mitral and aortic valve calcification compared 
to warfarin [44].

Measuring inactive forms of MGP may be useful in identifying 
patients at risk for progression of valvular calcification. Valvular 
calcification is an active process that could be modified. A study 
by Parker et al. found an association between serum inactive total 
MGP and mitral annular calcification in non-diabetic patients 
with CAD [45].

Studies tried to investigate the role of vitamin K2 supplementation 
in delaying the progression of aortic valve calcification. One 
randomized clinical trial found that vitamin K1 daily intake slowed 
the progression of aortic valve calcification [37]. On the other 
hand, another randomized double-blinded clinical trial concluded 
that in elderly men with an aortic valve calcification score >300, 
vitamin K2 supplementation did not affect the progression of AS 
[46].

Vitamin K is thought to slow the progression of Coronary Artery 
Calcification (CAC) [35,36]. However, few studies showed that 
although vitamin K2 supplementation decreased dp-ucMGP 
levels [37,38], it did not reduce arterial calcification [39,40]. 
Namely, a multicenter double-blinded randomized controlled trial 
with 2 years of follow-up concluded that in patients with no prior 
ischemic heart disease, supplementation with vitamin K2 did not 
slow the progression of coronary artery calcification [41]. However, 
this could be attributed to the short follow-up of 2 years. Longer 
follow-ups could show a significant reduction in mean coronary 
artery calcification. Moreover, the same trial found a significant 
reduction in the progression of coronary artery calcification in 
patients with CAC scores ≥ 400 Agatston Units [41].

Valvular calcification: Vitamin K2 deficiency is thought to 
correlate with valvular calcification. VKAs like warfarin were linked 
to aortic and mitral valve calcifications [42,43]. Moreover, a study 
comparing rivaroxaban with warfarin showed that rivaroxaban was 

Figure 2: Mechanism of action of vitamin K2. Note: Ca: Calcium; dp-uc: Dephospho-Uncarboxylated; MGP: Matrix Gla Protein; OC: Osteocalcin.

Figure 3: Possible effects of Vitamin K supplementation on cardiovascular health.

Table 1: Summarizes the method and reference values for different assays used to measure MGP.
Assay dp-ucMGP dp-cMGP t-ucMGP t-dpMGP

Method Dual-antibody ELISA Dual-antibody ELISA Mono-antibody ELISA Mono-antibody ELISA

Reference Values* 447 ± 188 pM 1763 ± 478 pM 4704 ± 1053 nM 14 ± 3 nM

Note: *Reference values according to Cranenburg et al. "Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species." 
Thrombosis and haemostasis 104.10 (2010): 811-822. dp-ucMGP: Dephosphorylated-Uncarboxylated MGP, dp-cMGP: Dephosphorylated-Carboxylated MGP, 
t-ucMGP: total Uncarboxylated MGP, t-dpMGP: total Dephosphorylated MGP.
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carotid artery [67]. Supplementation with MK-7 improves arterial 
stiffness measured by PWV in healthy patients and different 
subgroups [63,68-70].

Endothelial dysfunction is a predictor of worse outcomes [71]. 
Vitamin K2 is thought to regulate endothelial function, and some 
of its protective properties are due to its role in the regulation of 
endothelial function [72]. MGP inhibits the osteogenic properties 
of vascular endothelial cells in animal models [73]. Moreover, 
supplementation with MK-2 improves endothelial function in 
genetically driven mice models with hypercholesterolemia [74].

Cardiovascular outcomes and heart failure: There is a debate 
on whether vitamin K deficiency is associated with worse 
cardiovascular outcomes, with some studies correlating elevated 
dp-ucMGP levels with cardiovascular morbidity and mortality 
[16,57,75-79], and others showing no correlation [80,81].

Levels of dp-ucMGP are involved in both the systolic and diastolic 
functions of the heart. On the cellular level, MGP has a role in 
cardiac hemodynamics unrelated to calcification inhibition. MGP 
levels are seen during the rapid myocardial response to pressure 
overload [82-84], including the setting of acute myocardial 
infarction even before left ventricular remodeling [83].

Vitamin K deficiency, suggested by elevated dp-ucMGP levels, 
correlates with unfavorable echocardiographic parameters in 
patients with heart failure and concomitant severe AS [57,76]. 
Therefore, dp-ucMGP can be used as a pre-procedural marker for 
risk assessment in patients undergoing aortic valve replacement 
[3,76]. In addition, levels of dp-ucMGP correlated with Left 
Ventricular Ejection Fraction (LVEF), N-terminal pro-brain 
natriuretic peptide (NT‐proBNP), and mortality [46]. Elevated 
levels of dp-ucMGP also correlated with elevated NT-proBNP, 
CRP, LVEF, and diastolic dysfunction in patients with chronic 
heart failure [57].

Vitamin K2 has a significant role in producing mitochondrial ATP. 
Cardiac muscles are abundant in mitochondria and therefore, 
vitamin K2 can impact the function of cardiac muscles [85]. One 
study found that vitamin K supplementation for 8 weeks correlated 
with increased maximal cardiac output, stroke volume, heart rate, 
and decreased blood lactate during exercise [86].

Many studies explored the impact of vitamin K intake on 
cardiovascular outcomes. A lower incidence of CAD was found 
in patients with more intake of food rich in vitamin K1 [16,87]. 
Prospective cohort studies found that intake of vitamin K2 and 
not K1 decreased the incidence of severe aortic valve calcification, 
coronary artery disease, and mortality [35,88,89]. Another study 
found that patients who increased their vitamin K1 or K2 intake 
over time had lower mortality rates [90].

Microvascular function: MGP is thought to contribute to the 
microvascular integrity of the heart, kidneys, and retina [47-49]. 
Since diastolic dysfunction can be related to inflammation of the 
coronary microcirculation, MGP can be involved in the disease 
process [50]. One study correlated dp-ucMGP with diastolic 
dysfunction assessed by higher Left Ventricular (LV) filling 
pressures and a higher E/e’ ratio [47]. The study also found a 
higher prevalence of dp-ucMGP in cardiac biopsies of hearts with 
ischemic or dilated cardiomyopathies than in normal hearts [47]. 
Therefore, activated MGP, with its role in preventing calcium 
deposition, protects the heart microcirculation and preserves LV 
diastolic function [3].

Markers of vitamin K deficiency are also associated with diabetes, 
kidney function, adiposity, and inflammation [51]. A randomized 
clinical trial found that low levels of carboxylated osteocalcin, 
indicating vitamin K deficiency, were associated with waist 
circumference and higher fat mass at different sites in the body 
[51]. More than 60% of patients with Chronic Kidney Disease 
(CKD) have a deficiency in vitamin K [51]. Markers of vitamin K 
deficiency, including elevated dp-ucMGP, were associated with a 
greater risk of developing advanced CKD and a lower Glomerular 
Filtration Rate (GFR) [52,53]. Functional vitamin K deficiency is 
also prevalent among kidney transplant recipients and patients on 
hemodialysis [54]. Although vitamin K levels improve following 
kidney transplantation, elevated levels of dp-ucMGP in kidney 
transplant recipients were associated with a greater risk of long-
term mortality [55]. Some studies even suggested a correlation 
between MGP and serum creatinine levels in patients with CKD 
[56,57].

Vitamin K deficiency is also related to the microcirculation of the 
retina. Elevated levels of dp-ucMGP were associated with a lower 
retinal arteriolar diameter [58]. Retinal microvascular diameter 
narrowing was found to correspond to worse cardiovascular 
outcomes at 10 years [59].

Metabolic syndrome and diabetes: Studies have shown that 
supplementation with vitamin K2 decreases the incidence of 
type 2 diabetes [60]. A randomized clinical trial also showed 
that vitamin K2 supplementation increases insulin sensitivity 
[61]. Another clinical trial found that healthy postmenopausal 
women supplemented with vitamin K2 had a greater reduction 
in abdominal and visceral fat than those receiving a placebo [62].

Arterial stiffness: Markers of vitamin K deficiency including 
higher levels of dp-ucMGP have been correlated with aortic 
stiffness assessed by carotid-femoral Pulse Wave Velocity (PWV), 
augmentation index, and central pressure [27,63-65]. A significant 
reduction in arterial stiffness (by brachial-ankle PWV) was noted 3 
months after switching warfarin to rivaroxaban [66]. Vitamin K1 
and MK-7 were both found to decrease the arterial stiffness of the 
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Extrahepatic VKDPs: Assessment of the utilization of vitamin K by 
extrahepatic tissues is possible. This is mainly done by determining 
the degree of carboxylation of osteocalcin and MGP [26].

As previously discussed, many methods and assays to assess vitamin 
K status and function exist. However, the common practice 
relies on using PIVKA-II and vitamin K1 in tandem [91]. Low 
concentrations of vitamin K1 in the serum indicate inadequate 
tissue stores in general. On the other hand, PIVKA-II indicates 
whether tissue stores are not enough for the hepatic carboxylation 
of factor II. When there is a low serum vitamin K1 concentration 
with normal PIVKA-II levels, it could be due to the susceptibility 
of extrahepatic to low vitamin K status [91]. Additionally, elevated 
PIVKA-II with normal vitamin K1 levels could be found in 
patients with hepatocellular carcinoma [91].

Conclusion

The role of vitamin K in cardiovascular health is an area of growing 
interest. While vitamin K2 is known for its role in vascular 
calcification, recent studies have shown an impact on heart 
failure, endothelial dysfunction, metabolic syndrome, and the 
progression of arterial stiffness. Vitamin K deficiency is associated 
with worse outcomes. Additionally, vitamin K2 supplementation 
is safe and has been the focus of numerous studies and randomized 
clinical trials. While some trials have shown no significant effect 
of supplementation in mitigating coronary artery or valvular 
calcification, the overall findings remain promising. Vitamin 
K1 levels are utilized in tandem with PIVKA-II to assess the 
status and function of vitamin K. Further research is needed to 
increase our understanding of the additional roles of vitamin 
K2 on cardiovascular health, and the benefits of vitamin K2 
supplementation on cardiovascular outcomes.
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