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ABSTRACT

Background: Diabetes Mellitus is a metabolic defect that has the ability to produce an 
irreversible injury, abnormality of function and defect of several organs. Stem cell treatment 
posses a fantastic hope for the remedy damaged tissues or organs, and it is one of the utmost 
hopeful remedy for diabetic people. Thus, the current research direct to highlights of the 
potency function of MSCs of diabetic female rats. Methodology: Male albino bone marrow 
mesenchymal stem cells have been isolated and confirmed by their adhesion, spindle shape 
and also by cluster differentiation marker. Streptozotocin-induced diabetic female rats were 
intravenous injected by 1 x 105 MSCs (cell/rat). Results: MSCs group is capable of lowering blood 
glucose level, the activities of α-amylase, and S. L-MDA. However, hepatic glycogen contents 
showed an incredible increase when compared with the STZ-diabetic female non-treated rats. 
The histopathological and immuno-histochemical photo results confirmed that MSCs group 
noteworthy diminutive the degenerative alteration in pancreatic β-cells islet. Conclusions: 
Using bone marrow MSCs in remedy of STZ-diabetic female rats have the ability to recover 
odd biochemical parameters to normal or near normal level in STZ-induced diabetes model. 
But, MSCs needs more research and it may be more effective by injection more than one dose.
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Introduction

Diabetes is a metabolic defect which appear 
as a result of a deficiency in insulin secretion, 

action, or together. The incurable blood glucose 
level, which produced as a result of diabetes, 
has the ability to produce an irreversible injury, 
abnormality of function and defect of several 
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organs [1]. Oxidative stress plays a considerable 
role in the diabetic pathophysiology [2]. 
Likewise, oxidative stress is the main factor 
Oxidative stress sport a considerable role in the 
diabetic pathophysiology [2]. Likewise, oxidative 
stress is the main factor the advancement of 
diabetic complications, that relate to insulin 
resistance and reduce insulin secretion that cause 
the evolution of diabetes mellitus [3]. Oxidative 
stress creates reactive oxygen species (ROS) 
that generate toxic effect on cell growth [4]. 
In hyperglycemia, oxidative stress is generated 
by the forming of proceeding glycation end 
(AGE) product that has a potential relation of 
the complications of diabetes like nephropathy, 
neuropathy, retinopathy and cardiovascular 
diseases [5]. Insulin medication has improved 
serum glucose concentration in type 1 diabetic 
person. However, the method does not totally 
monitoring the moment-to-moment alteration 
in systemic blood glucose [6]. Moreover, 
involving cells that are genetically dissimilar and 
hence immunologically incompatible has various 
hurdles, requirement for numerous donor of 
pancreas and transplants, hardness preserve 
insulin independence, and injurious side effects 
from immune suppressants [7]. These limitations 
have led to the studding of other sources of β 
-cells. So, many studies have been aiming to treat 
diabetic people with cellular therapies which 
circumvent the need for exogenous insulin 
delivery by traditional injection or via newest 
pump technology [8]. Stem cell treatment 
possess a fantastic hope for the remedy damaged 
tissues or organs, and it is one of the utmost 
hopeful remedy for diabetic people [9]. Stem 
cells can improve the supplying of pancreatic 
islet cells [10]. It could be differentiated to 
pancreas β cells to raise β cell supply ameliorative 
the microenvironment of islet to support β cell 
function and survival [11]. So, this research 
aimed to discuss the role of MSCs that has been 
harvested from the male albino Wistar bone 
marrow on STZ-induced-diabetic female rats. 

Methodology

 � Protocol of BMSCs

Male albino rat’s bone marrow has been 
harvested as the method described by [12] with 
some modification. The tibiae and femurs of 
male albino rats has been flushed with dulbecco’s 
modified eagle’s medium (Gaithersburg) 
completed with foetal bovine serum (GIBCO/
BRL). Mononuclear cell has been separated 
and recultured in complete medium. Then, the 

culture cells were incubated in CO2 incubator 
for 14 days. The cultures were washed two times 
with saline, and then the cells were treated with 
trypsin. After that, cells have been collected and 
centrifuge and it resuspended again in serum 
supplemented medium. Mesenchymal stem cells 
were confirmed by adhesiveness and fusiform 
form [13], likewise, cluster of differentiation.

 �  Experimental animals

White female Wistar albino rats, 3-4 months 
old and average body weight 200-230 g were 
purchased from academy of Ophthalmology, 
Nasser Eye institution, Egypt. Rats were live in 
a chamber, temperature has been controlled, 
a 12 h light-dark cycle without control their 
water drinking and chow. Rats were handled 
in accordance to the suggested National ethical 
guidelines instruction as the Animal Ethics 
Committee (IAEC) of Faculty of Science, 
Tanta University, Tanta, Egypt. Diabetes in 
female albino rats was induce via injection of 
streptozotocin. 

 �  Experimental design

Rats were divided into control normal group, 
group (CN), diabetic group (CD), which 
injected once by STZ,40 mg kg-1B.wt. Diabetic 
group which treated with MSCs (ST), that 
injected via tail veins with (1 × 105 cells/rat). 
MSCs group treatment was started after thirty-
five days from STZ-induction once. Serum has 
proceeded for biochemical analysis. Liver tissues 
were homogenized (10% w/v) in 0.9% saline, 
centrifugation at 4000 rpm for 20 min, and the 
homogenate were used for analysis.

 �  Biochemical parameters in serum

Blood glucose level was enzymatically measured 
and the activity of S. α-amylase was determined 
by using kits obtained from spectrum diagnostics, 
Egypt [14,15]. Lipid profile, S. total cholesterol 
and S. triacylglycerol were enzymatically 
measured [16,17]. Serum VLDL-C values has 
been calculated using the formula described 
by Bauer [18]. Also, serum urea levels was 
determined enzymatically [19] and S. creatinine 
was measured by kinetic method [20] using kit 
of Spectrum diagnostics, Egypt. Serum L-MDA 
were determined according to the method 
adapted by Mesbah [21]. 

 � Liver and pancreas

The liver tissue has been collected at the end of 
duration four and six weeks. Liver homogenate 
(10%) was prepared by using a chilled glass-
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Teflon porter-Elvehjem tissue grinder tube. 
Then, centrifugation has been done at 4ºC to 
separate supernatant which has been used to 
determine the liver catalase activity. Moreover, 
pancreas tissue were taken from all groups and 
directly fixed in 10% formalin for 24 hours.

 �  Biochemical parameters in tissues 

Catalase activity has been determined in liver 
homogenate, briefly, 10 μl of liver homogenate 
were added to the working buffer, the zero time 
was recorded and the decrease of the activity after 
one min. at 250 nm [22]. Glycogen has been 
determined in hepatic according to [23]. 

 � Histological examination

The pancreas tissues were promptly fixed in 
neutral formalin for 24 hours. The tissue were 
dried, clarfied and estiblish in paraffin and 
cut. Some of the slices were preserved in wax, 
rehydrated and stained with hematoxylin and 
eosin. 

 � Immunohistochemistry

Pancreas portion were washed with distilled 
water, after that it washed with phosphate 
buffered saline for 10 minutes. Then the sections 
were incubated with insulin guinea pig-human 
antiserum for 120 min. at room temperature 
then it rinsed again in phosphate buffered saline. 
After that, the sections were incubated with 
guines pig immunoglobulin conjugated with 

peroxidase for 60 min. at room temperature then 
rinsed again in phosphate buffered saline. The 
reaction was developed as a brown color using 
3-3ˋ diaminobenzidine tetrahydrochloride in 
40 ml phosphate buffered saline, pH 7.2 that 
containing hydrogen peroxide in a dark place. 
The pancreas section was rinsed in distilled 
water and countered stained with Mayer’s HX, 
hydrated in ascending grades of alcohol, cleared 
and mounted [24]. 

 � Statistical analysis

The acquired results were analyzed by one-
way analysis of variance followed by Duncan 
multiple tests All analyses were performed using 
the statistical package for social science. Values of 
P<0.05 were theorize significant.

Results

 � MSC culture and identification

The isolated undifferentiated MSCs that reached 
70–80% confluent after fourteen days of 
culturing was confirmed by inverted microscope. 
MSCs were identified by their adhesion and 
spindle shaped, in addition to surface markers 
CD34−ve and CD105+ve which are identified by 
immune staining 

 �  Serum biochemical parameter in 
different group

The acquired results in TABLE 1 showed an 
increment in blood glucose levels in control 
diabetes female rats (CD) after duration four 

Table 1. Serum glucose, α-amylase and hepatic Glycogen parameters between the different 
groups under study

Animal 
groups

Glucose (mg/dl) α - amylase (U/L) Hepatic Glycogen (µg/mg tissue)

4 weeks 6 weeks 4 weeks 6 weeks 4 weeks 6 weeks
CN 

Range

Mean ± 
SE

    67.3-75

70.16 ± 1.85b

     65-77

74.40 ± 2.14c

204.26-348.84

280.01 ± 23.25a

228.65-310.54

276.977 ± 16.238b

0.066-0.151

0.088±0.03b

0.079-0.11

0.095 ± 0.01b

CD

Range

Mean ± 
SE

    334-386

378.80 ± 9.68a

329.5-465

399.90 ± 
22.43a

240.98-339.66

290.32 ± 16.47a

429.17-688.5

550.50 ± 44.022a

0.071-0.138

0.078 ± 0.02b

0.064-0.103

0.088 ± 0.01b

ST

Range

Mean ± 
SE

  363.65-386

371.95 ± 4.16a

275-355

300.00 ± 
14.39b

270.81-308.69

281.207 ± 6.712a

201.96-262.47

230.14 ± 13.083b

0.199-0.216

0.23 ± 0.005a

0.20-0.252

0.24 ± 0.015a

S.E=Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).
Control normal group (CN), diabetic group (CD), and diabetic MSCs (ST). 
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and six weeks in comparison with (CN) control 
group. Also, S. glucose level has been increased 
after duration four week in MSCs (ST) group as 
compared to both diabetic rats (CD) and normal 
rats (CN). Otherwise, diabetic MSCs (ST) 
treated-group reveled a lowering S. glucose levels 
after experimental six weeks of in comparison 
with the STZ-diabetic female group (CD), 
however, normal level not achieved in comparing 
with normal group (CN) (TABLE 1). The 
results of serum α -amylase activity exhibit a no- 
change in the activity of diabetic groups (CD), 
and MSCs (ST) group after experimental four 
when compared to normal group (CN). in case, 
duration of six weeks a significant increase in 
diabetes female rats (CD) as compared to the 
normal group (CN). Conversely, MSCs group 
(ST) significantly decrease the activity of S. 
α-amylase activity as compared to diabetic group 
(CD) and a non-significant change as compared to 
control normal group (CN) (TABLE 1). Hepatic 
glycogen in all groups had a non-significant 
alteration in STZ-diabetes female group (CD) all 
over the duration period of the experiment when 
compared with normal group (CN). Meanwhile, 
diabetic MSCs (ST) group had an increment of 
hepatic glycogen level in comparing with the 
diabetic group (CD) (TABLE 1). Lipid profile 
as serum total cholesterol, triacylglycerols and 
VLDL levels were significantly increased after 
duration four weeks in STZ- diabetic female rats 
(CD). Otherwise, diabetic MSCs group (ST) 
showed a significant reduction of lipid profile 

level as S. total cholesterol, TAG and VLDL-C 
concentration when compared with diabetic 
female group (CD). Duration of six weeks 
experiment displayed a significant reduction 
in lipid profile level as S. total cholesterol, 
triacylglycerols and VLDL level in STZ-diabetic 
female group (CD) as compared to normal group 
(CN). In contrast, MSCs group (ST) showed a 
non-significant change in S. total cholesterol in 
comparing with diabetic group. Otherwise, STZ-
diabetic rats that treated with MSCs group (ST) 
significantly increased both TAG and VLDL 
in comparing to STZ- diabetic group (CD) 
(TABLE 2). Kidney function test as serum urea 
presented in TABLE 3 showed an increament in 
STZ- diabetic female rats group (CD) all over the 
time of the experiment when compared to those 
of the control normal group (CN). Otherwise, 
diabetic MSCs groups (ST) were significantly 
decreased the elevated serum urea level after 
duration of four weeks but normal value has not 
achieved as compared with normal rats group 
(CN). Meanwhile, a non-significant change was 
observed in S. urea in diabetic MSCs group (ST) 
when compared with STZ- diabetic female group 
(CD). In addition, S. creatinine levels showed 
no- change in all experimental groups after 
duration four in comparison to normal group 
(CN). However, second duration of experiment 
showed an increament of S. creatinine in diabetic 
non treated group rats (CD) as compared to CN 
group. Otherwise, diabetic group that treated 
with MSCs group (ST) significantly reduced S. 

Table 2.Serum lipid profile between the different groups under study

Animal 
groups

Cholesterol (mg/dl) Triacylglycerol (mg/dl) VLDL (mg/dl)

4 weeks 6 weeks 4 weeks 6 weeks 4 weeks 6 weeks
CN

Range

Mean ± 
SE

35.4-50

46.18 ± 2.55c

68-75.4

71.11 ± 1.67a

50.14-64.5

52.09 ± 2.54c

56.21-62.5

54.81 ± 1.06a

10.03-12.9

10.55 ± 0.509c

11.242-12.5

10.86 ± 0.205a

CD

Range

Mean ± 
SE

109-120

109.85 ± 1.91a

   36-50

44.39 ± 2.42b

230-339.3

290.89 ± 18.90a

 20-37

32.11 ± 3.59b

46-67.86

60.23 ± 3.780a

4-7.4

4.49 ± 0.718b

ST

Range

Mean ± 
SE

64.03-84.9

70.00 ± 3.86b

37-52

40.23 ± 2.89b

148-230

185.10 ± 15.74b

  38-71.1

55.43 ± 5.79a

29.6-46

33.23 ± 3.147b

 7.6-14.22

11.35 ± 1.158a

S.E=Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).
Control normal group (CN), diabetic group (CD), and diabetic MSCs (ST). 
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Table 3. Serum kidney function test between the different groups under study

Animal 
groups

Urea (mg/dl) Creatinine (mg/dl)

4 weeks 6 weeks 4 weeks 6 weeks
CN

Range

Mean ± SE

39.5-64.53

44.11 ± 4.343c

38.21-49.4

40.11 ± 2.103b

0.676-1.27

0.89 ± 0.103a

0.798-1.18

0.89 ± 0.564b

CD

Range

Mean ± SE

107.4-125.2

109.26 ± 2.999a

65.4-87

70.04 ± 3.924a

0.985-1.278

1.01 ± 0.056a

1.43-1.454

1.41 ± 0.004a

ST

Range

Mean ± SE

86.6-124.61

98.07 ± 6.425b

56.3-92.82

71.04 ± 7.066a

0.864-1.18

1.00 ± 0.055a

0.929-1.27

1.05 ± 0.065b

S.E=Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).
Control normal group (CN), diabetic group (CD), and diabetic MSCs (ST). 

Table 4. Serum L-MDA level and liver catalase activity between the different groups under study

Animal 
groups

SerumMDA (µmol /L) Hepatic catalase (mmol/min/mg protein)

4 weeks 6 weeks 4 weeks 6 weeks

CN

Range

Mean ± SE

0.0057-0.0.012

0.0085 ± 0.002b

0.0178-0.01889

0.010 ± 0.0004b

1.98-2.27

2.02 ± 0.08a

2.0-2.14

2.10 ± 0.04a

CD

Range

Mean ± SE

0.021-0.024

0.025 ± 0.001a

0.033-0.041

0.039 ± 0.003a

2.02-3.7

2.81 ± 0.50a

0.6-1.34

0.89 ± 0.22b

ST

Range

Mean ± SE

0.0189-0.019

0.016 ± 3.33a

0.0045-0.0159

0.0084 ± 0.004c

0.75-0.87

0.92 ± 0.04b

1.18-1.83

1.46 ± 0.19ab

S.E=Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).
Control normal group (CN), diabetic group (CD), and diabetic MSCs (ST). 

creatinine levels when compared with diabetic 
femlae group (CD) (TABLE 3). Serum L-MDA 
in STZ- diabetic female rats non treated group 
(CD) were increased in comparison to normal 
group (CN) all over the time of the experiment 
(TABLE 4). Conversely, diabetic MSCs group 
(ST) significantly reduced elevated serum MDA 
level after second duration when compared to 
the diabetic group (CD). Hepatic catalase had a 
non-significant change in diabetic group (CD) 
after duration of four weeks in comparison 
to normal group (CN). Conversely, diabetic 
MSCs group (ST) had significantly lowered 

catalase activity when compared with diabetic 
non treated group (CD). Meanwhile, duration 
of six, the activity of catalase of diabetic rats 
significantly reduced in comparing with the 
control normal (CN). Otherwise, diabetic MSCs 
group (ST) significantly increase the activity of 
catalase as compared to diabetic group but a no 
change was noticed in the activity of catalase in 
comparing with normal group (CN) (TABLE 
4). Liver, kidney, heart and spleen tissues weight 
in the different treated groups indicated an 
increment in liver and kidney weights together 
all over the time of the experiment in diabetic 
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Table 5.Organs weight between the different groups under study

Animal 
groups

Liver weight (g) Spleen weight (g) Kidney weight (g) Heart weight (g)

4 weeks 6 weeks 4 weeks 6 weeks 4 weeks 6 weeks 4 weeks 6 weeks

CN

Range

Mean ± 
SE

5.04-5.7

5.47 ± 
0.12b

5.84-6.23

6.02 ± 
0.07c

0.45-0.60

0.53 ± 
0.04a

0.599-0.687

0.64 ± 0.03a

1.32-1.45

1.39 ± 0.03b

1.48-1.64

1.57 ± 0.03c

0.567-0.663

0.60 ± 0.03a

0.665-0.70

0.68 ± 0.01a

CD

Range

Mean ± 
SE

6.33-
6.63

6.48 ± 
0.07a

7.98-10

9.33 ± 
0.36a

0.275-
0.33

0.31 ± 
0.02a

0.32-0.41

0.37 ± 0.03b

1.598-1.796

1.70 ± 0.04a

2.2-2.5

2.36 ± 0.07a

0.441-0.48

0.46 ± 0.01b

0.57-0.98

0.73 ± 0.13a

ST

Range

Mean ± 
SE

6.44-
6.55

6.49 ± 
0.03a

6.55-7.85

7.45 ± 
0.24b

0.19-0.51

0.32 ± 
0.07a

0.39-0.5

0.46 ± 0.03b

1.54-1.6

1.57 ± 0.02a

1.89-2.13

2.01 ± 0.05b

0.449-0.469

0.46 ± 0.01b

0.397-0.685

0.53 ± 0.06a

S.E=Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).
Control normal group (CN), diabetic group (CD), and diabetic MSCs (ST). 

group (CD). Otherwise, a no change in spleen 
weight has been noticed after duration four 
and on heart weight after six weeks, second 
duration. Moreover, a significant decreased in 
spleen weight noticed after duration six and in 
the heart weight of diabetic group (CD) after 
duration four in comparing with the control 
normal (CN). Diabetic MSCs (G. V) had a 
non-significant change in liver, kidney, heart 
and spleen weight after four weeks. Otherwise, a 

Figure 1. (CN): Normal rats group displayed natural fit 
of Langerhans’ islets (IL) established in the acinar cells 
(AC). (CD): Diabetic female rats which were injected I.P. 
with streptozotocin showing degeneration of islets of 
Langerhans. (ST): Diabetic female rats after injection 
with MSCs, the Langerhans’ islets (IL) had some 
apoptotic cell  and a great number of cells with vesicular 
nuclei.

Figure 2. (CN) normal rats pancreas displayed a normal 
allocation of β-cells in the periphery of the islets (yellow 
arrow) which showing a strong immunoreactivity of 
insulin in beta-cells, which occupy most of the islet, (CD) 
STZ-diabetic female pancreas which showing evident 
decline in the immunohistochemical of insulin in beta-
cells (diminution of β-cells yellow arrow) and the last 
two photo for (ST) STZ-diabetic female rats pancreas 
that intravenous injected by male bone marrow. MSCs 
displayed some normal of β-cells with apparent marked 
increase in the number and area of beta-cells is evident 
in comparison with CD group (yellow arrow). 

Note: G. CN, CD cited from EL Barky (30). 

significant decrease was observed of liver, kidney 
and a no change of both heart and spleen weight 
after duration of six weeks as compared to the 
diabetic group (CD) (TABLE 5).

Histopathological findings
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secretion. Diabetic pancreas which was stained 
with insulin antisera displayed a profound 
reduction in the β-cells. The pancreas section 
of diabetic rats that treated with MSCs (ST) 
repaired comparatively the normal appearance 
of the beta cell Langerhans’ islets. Moreover, 
the pancreas portion which were stained with 
insulin antisera displayed normal detection with 
β-cells though their numbers were still minimal 
as compared to normal control islets (FIGURES 
1 AND 2).

Discussion

Mesenchymal stem cells injection resulted in 
decrease the concentration of blood glucose 
in diabetic group that treated with 1 x 105 
cell/ rat after duration of 6 weeks. These 
results are almost identical to El Said [25] they 
demonstrated that STZ-diabetic rats which were 
received a subcutaneous injection of BMMSCs 
significantly reduced blood glucose level, but 
normoglycemia was not achieved. Also, Aali [26] 
reported that primary intravenous injection of 
MSCs during the initial 3 weeks not improved 
blood glucose level, but the second injection 
after one month exactly can significantly lower S. 
glucose as compared to the diabetic non treated 
group. MSCs might include islet regeneration, 
including direct differentiation into functionally 
competent β -cells [27]. MSCs is capable of 
differentiations and producing insulin in T1DM 
that treated with STZ, also, can improve and 
relief diabetic troubles, These cells express various 
genes concern the development and function of 
pancreatic beta cells including high expression of 
pancreatic and duodenal homeobox 1, insulin, 
and glucagon and have the ability to secrete 
insulin that led to amendment the diabetes [28]. 
MSCs group significantly diminish S. alpha-
amylase activity as compared to diabetic group 
(CD). This suggests that homing ability of MSCs 
due to the severity of injury. Hepatic glycogen 
content had an incredible increase in MSCs 
group (ST) after duration of four and six weeks 
by comparing with both normal rats group (CN) 
and diabetes female non treated group (CD). 
Glycogen and glucose are the two forms of sugar 
utilized by the body as a means of storing and 
providing energy at the cellular level. The liver 
excrete glucose into the bloodstream as a major 
mechanism to hold blood glucose levels steady. 
Glycogen is the main intracellular storable 
shape of glucose in different tissues and its level 
in such tissues especially the liver is a direct 
reflection of insulin activity [29]. The ability 
of MSCs to increase liver glycogen content 

may be due it raising the synthesis of glycogen 
through modulatory effect on the activities of 
glycogen synthase and glycogen phosphorylase 
or increase the insulin level that encourage 
glycogenesis. Decrease glycolysis, and expanded 
gluconeogenesis are a progressive part of glucose 
synthesis in diabetic liver [30].The increment 
of hepatic glycogen in MSCs treated group 
supposedly refer to the more utilization of glucose 
in the hepatic rather than insulin excretion. This 
study showed an incredible increase in lipid 
profile as S. total cholesterol, TAG, and VLDL 
concentrations after duration four in the diabetic 
non-treated groups (CD). Otherwise, all of lipid 
profile which analyses had a significant decrease 
in the serum of diabetic non-treated group (CD) 
after duration six weeks by comparing with 
normal group (CN). The diminution of serum 
lipid profile possibly due to rats that suffering 
from diabetes requirement need more food so, it 
search of other sources as lipid, so it break lipids 
to get their need of energy which in matching 
with EL Barky [31,32]. Meanwhile, MSCs 
diabetic group (ST) treatment had a significant 
increases of all lipid profile parameter which 
analyzed which resemble the results of Jung [33]. 
Remediation rats suffering from diabetes by 
MSCs had significantly diminish the increment 
of lipid profile as serum total cholesterol, 
triacylglycerols and VLDL after duration four. 
While, duration of six weeks had a significant 
increment of serum lipid profile by comparing 
with the diabetic group (CD), the obtained data 
were in agreement with Pan [34]. The decrease of 
lipid profile perhaps is related with mesenchymal 
stem cells which mend the hyperglycemia and 
so have the ability to increase serum insulin 
that is able of activate lipoprotein lipase [34]. 
Otherwise, the noticed increase of lipid profile 
second duration of the experiment might be due 
to the diminish of glucose level and increase level 
of insulin and thus prevent rats need any sources 
of carbohydrate from other sources like lipid 
source and this not lead to increase cholesterol 
and TAG from other sources. The obtained data 
showed a significant increase in both sera urea and 
creatinine levels in STZ- induced diabetes. The 
high concentration levels of urea in STZ-diabetic 
female rats is related to much protein catabolism. 
Mesenchymal cells can improve kidney function 
test for instance Castiglionea [35]. Mesenchymal 
cells have the ability to stop renal damage and 
beta cell pancreas islet degenerative because 
of the normalization of glucose in the body as 
a result of restoration pancreatic beta cell islets 
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