The link between physical activity and bone strength

across the lifespan

Weight-bearing physical activity plays an important role in bone health across the lifespan. During
childhood, short bouts of high-impact activity augment bone-mass accrual and enhance bone’s structural
characteristics that contribute to overall bone strength. Along the age continuum, physical activity in
adulthood serves to maintain bone mass and strength and in later life, to diminish bone loss. While the
specific exercise prescription for bone strength in women and men is not known, a combination of
resistance training and impact exercise may offer the best strategy to promote bone health in older adults
and ultimately, reduce fracture risk. In this review we discuss the central role that physical activity plays
in promoting bone health across the lifespan. Specifically, we focus on the adaptations in bone structure
and strength to weight-bearing physical activity.
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“Lack of activity destroys the good condi-
tion of every human being, while movement
and methodical physical exercise save it and
preserve it.”
— Plato

We have known for some time that bone has a
remarkable capacity to adapt in order to achieve
mechanical competence. In 1638, Galileo
described how bone structure is configured
to be as light as possible (a hollow diaphysis)
without compromising its strength [1]. By 1892,
Julius Wolff and others had linked mechani-
cal loads to bone architecture [2], but the
clinical relevance of this relationship was not
yet understood. More recently, Harold Frost
espoused the mechanostat — not unlike a room
thermostat — where in theory, bone adapts its
strength in response to strain thresholds that
turn the ‘bone building machinery’ on or off
(3.4]. Frost contended that the strength of load-
bearing bones is a result of their response to the
largest voluntary loads the bones experience
and that:

“healthy bones must be stronger than the
minimum needed to keep voluntary loads from

breaking them suddenly or from fatigue” (4).

The most unfortunate consequence of an
imbalance between bone strength and imposed
loads is fracture.

Fractures are a significant cause of morbid-
ity and mortality, particularly in developed
countries [5], and are associated with enormous
healthcare costs [6]. In light of this disease bur-
den and current evidence that indicates rising
fracture rates among the elderly [s.7), inter-
ventions that aim to reduce the risk of fracture
warrant attention [8]. In clinical settings, bone-
specific medications may be the intervention
of choice; however, physical activity may be
an effective, nonpharmacological strategy to
prevent osteoporosis [8].

There is a substantial body of evidence to sup-
port the role of physical activity in augmenting
bone mass during the growing years, to conserve
it during adult life and to diminish its decline in
later life. The majority of exercise intervention
trials have monitored changes in bone mineral
content (BMC [g]) or areal bone mineral den-
sity (aBMD [g/cm?]) using dual-energy x-ray
absorptiometry (DXA). However, it is now well
known that DXA is unable to assess changes in
bone geometry or to identify specific adaptations
in cortical and trabecular bone compartments.
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Importantly, DXA is also unable to identify small
changes in bone dimensions that translate into
substantial increases in bone strength.

With the advent of three-dimensional imag-
ing technologies, such as peripheral quantita-
tive computed tomography (pQCT), the more
complex adaptation of bone structure to physical
activity in the growing, adult and aging skele-
ton can now be assessed. Importantly, these
tools also permit us to identify the mechanisms
that underpin the bone strength adaptation to
weight-bearing physical activity. However, the
specific exercise programs that best promote
bone-mass or strength accrual across the lifespan
have yet to be clearly defined.

Therefore, in this review, we first aim to intro-
duce the mechanisms by which bone adapts
to load-bearing physical activity in the grow-
ing, adult and aging skeleton. Second, we will
describe the imaging tools that quantify changes
in bone geometry structure and strength in
response to weight-bearing regimens. Third, we
summarize the current literature and focus on
physical activity programs designed to enhance
bone strength during growth and with aging.
Finally, we share our perspective on how the field
of physical activity and bone health may evolve
over the next decade.

Bone adaptation to physical activity
Physical activity is a comprehensive term that
includes any body movement that expends
energy [9]. Categories of physical activity include
work- and leisure-time physical activity (LTPA) —
LTPA includes household tasks, activities of daily
living, exercise and sport [9]. Current recommend-
ations suggest that children and adolescents
should engage in 60-90 min/day of moderate-
to-vigorous physical activity (MVPA) [201,202],
and older adults should engage in 30 min or
more of moderate physical activity 5 days/week
to achieve health benefits [10]. Although the spe-
cific physical activity prescription for bone health
is not well-defined for all age groups, we know
that loads associated with weight-bearing activity
play a critical role in shaping the architecture of
the skeleton across the lifespan.

Functional adaptation — matching bone mass
and architecture to functional demands — is
determined by strain or deformation of bone
tissue [11]. During voluntary activities, muscle
forces are thought to produce the greatest loads
on the skeleton and to be the primary source of
mechanical strains [12]. In turn, strain character-
istics, including magnitude, distribution and rate,
influence mechanically adaptive bone modeling
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and remodeling through feedback loops [3].
For example, an increase in strain magnitude
beyond a customary level, or setpoint, leads to
modifications in bone structure (i.e., periosteal
apposition). These adaptations lead to enhanced
mechanical competence and return bone strains
at the skeletal site back to the ‘customary’ strain.
This regulatory system controlled by the strain
environment is commonly referred to as the
‘mechanostat’ [3]. The customary strain level and
the ability of the skeleton to respond appropri-
ately to changes in the strain environment are
determined, largely, by genetics [13]. However,
other factors, such as nutrition and hormones,
also influence skeletal adaptations during growth
and with aging.

Importantly, the growing skeleton has a
greater capacity to adapt to loads associated
with weight-bearing exercise than the mature
skeleton. This was clearly demonstrated in sev-
eral studies of racquet-sport athletes, where age
at training initiation significantly influenced
the structural differences between playing and
nonplaying arms [14]. Specifically, female ath-
letes who began their training prior to menarche
demonstrated significantly greater side-to-side
differences in bone strength (bone strength
index [BSI], measured by pQCT) than ath-
letes who began their training after menarche
(Ficure 1). During growth, bone can adapt its
strength in response to mechanical stimuli via
several mechanisms; bone cross-sectional area
can increase owing to the addition of new bone
on the periosteal surface (periosteal apposition),
cortical thickness can increase owing to both
periosteal apposition and reduced endocortical
resorption and tissue density can increase
through modifications to cortical and/or tra-
becular microarchitecture (i.e., increased tra-
becular thickness) [15,16]. By contrast, the adult
skeleton adapts primarily through changes in
material properties such as increased cortical
or trabecular density or altered bone-mass dis-
tribution [17.18]. However, in response to a loss
of bone mass at menopause, bone may undergo
periosteal expansion as a mechanism to maintain
bone strength and resist fracture [19].

Measurement of bone strength

As outlined above, skeletal adaptations to weight-
bearing physical activity involve more complex
structural and architectural changes than simply
an increase in bone mass. Ultimately, changes
in the bone’s material and structural properties
influence whole bone mechanical competence or

strength [20. BMC and aBMD obtained using
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Side-to-side difference

Young starters
Total CSA 12.3 5.3
Cortical CSA 20.0 9.2
Cortical BMD -0.8 -0.7
Bone strength 26.5 10.2

Old starters

Controls

3.4
3.1
-0.9
4.0

Figure 1. Demonstrates mean side-to-side differences in humeral midshaft
total-bone cross-sectional area, cortical cross-sectional area, (volumetric)

cortical bone mineral density and bone strength (bone strength index;
density-weighted polar section modulus) between the playing and
nonplaying arm of female racquet-sport athletes as measured with

peripheral quantitative computed tomography. The solid line represents the
playing arm (or dominant in controls) and the dashed line represents the
nonplaying arm (or nondominant in controls). Players who began playing before

puberty accrued significantly more bone strength compared with players who

began playing after puberty and controls.

BMD: Bone mineral density; CSA: Cross-sectional area.

Adapted from [14] and [16].

DXA are commonly used clinical surrogates for
bone strength. However, these two-dimensional
DXA measures are unable to assess bone geom-
etry and microarchitecture, which directly influ-
ence overall bone strength in the trabecular and
cortical bone compartments. This was clearly
illustrated in a study of postmenopausal women
by Adami and colleagues [17). Exercise-induced
changes in BMC or aBMD were minimal or
nonexistent, yet modifications to pQCT-derived
cortical bone area of the ultradistal radius were
observed in the exercise group. Owing to the
limitations of DXA, there has been a paradigm
shift and the focus of bone research has broad-
ened beyond bone mass to encompass the key
concept of bone strength and the bone properties
that underpin it.

A number of imaging modalities and soft-
ware applications are available to more accu-
rately capture bone structural adaptations to
physical activity and estimate the effects of
physical activity on bone strength. These include
pQCT, MRI and hip structure analysis (HSA)
from DXA images. The most recent evolution,
high-resolution pQCT (XtremeCT [Scanco
Medical AG, Bruettisellen, Switzerland]), evalu-
ates bone microstructure in the growing [21.22]
and adult [23] skeleton and together with finite
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element analysis, estimates bone strength of
the distal radius and tibia [24]. Together, these
innovative tools allow researchers to address
more complex questions and help to further our
understanding of bone adaptations to physical
activity during growth and with aging.

Across these modalities, investigators use a
number of parameters to describe bone struc-
ture, or cross-sectional geometry, at various
skeletal sites including bone cross-sectional area,
periosteal and endosteal circumferences, corti-
cal thickness and the cross-sectional moment
of inertia (CSMI). In HSA studies, section
modulus (Z) is commonly used as a measure of
bone’s resistance to bending forces at the femo-
ral neck (FN). In pQCT studies, common esti-
mates of bone strength include the BSI, which
incorporates cross-sectional area and volumetric
BMD (vBMD) and estimates bone strength in
compression at distal sites [14,25], and the polar
strength—strain index (SSIp), which is a density-
weighted section modulus and estimates bone’s
resistance to torsion at shaft sites (Ficure 2) [26].
The CSMI is also used as an indicator of bone
strength in bending or torsion at shaft sites [27].
Importantly, since bone strength cannot be
measured directly in clinical studies, these out-
comes are all used as estimates of bone strength.
In the present review, we use the term ‘bone
strength’ and provide the specific variable that
was used to estimate bone strength in brackets.

Physical activity programs for
children’s bone health

In has been almost two decades since childhood
was recognized as a crucial time to adopt life-
style habits known to prevent osteoporosis [28].
There is now a substantial body of evidence to
support the influential role of weight-bearing
physical activity for optimizing bone-mass and
strength accrual during growth [29]. This con-
tention is well supported by numerous excel-
lent reviews that have been published in the last
several years [16,30,31], since all concluded that
appropriate physical activity positively influences
the normal pattern of bone-mass and strength
accrual. Despite this body of knowledge, we still
do not know the optimal exercise prescription
to enhance bone strength in children, nor do
we know the precise timing of the ‘window of
opportunity’ when the growing skeleton is most
responsive to exercise-induced loads.

To effectively enhance children’s bone health,
physical activity programs must be evidence-based
and reflect what is known about bone’s response
to loading. The majority of the school-based

Int. J. Clin. Rheumatol. (2009) 4(4)

interventions conducted to date were comprised of
high-impact activities designed to incur ‘physiol-
ogical loads’ on the growing skeleton [3). A number
of jumping-based programs [32-38] were also based,
in part, on Charles Turner’s ‘three rules for adapt-
ation’ [39): adaptation is driven by dynamic load-
ing; short bouts of loading are more osteogenic
than long bouts; and adaptation is ‘error-driven’,
meaning that abnormal strains drive structural
change. In addition, the design of jumping pro-
grams [38,40) was based on results from animal
studies that suggested short bouts of dynamic
activity followed by rest periods were more effect-
ive than longer bouts of activity [41]. These jump-
ing- or circuit-based programs were most often
implemented in schools and were incorporated
into physical education (PE) or the regular class-
room where large numbers of children could be
reached. Importantly, if an exercise program is to
be sustained, it must be simple and deliverable by
trained or untrained individuals (often generalist
teachers). The Bounce at the Bell component of
Action Schools! British Columbia (BC) provides
one example of a successful school-based pro-
gram. Since the jumps took only a few minutes,
they could easily be incorporated into the daily
classroom routine, did not require additional
equipment or space and were associated with
low teacher burden. An alternative school-based
approach was to modify the PE curriculum or
increase the time devoted to PE. These strategies
were effective for enhancing bone-mass accrual
in boys and girls [42-44]; however, further study is
required to determine if this approach is an effect-
ive means to augment bone strength. In addition,
the demands placed on teachers and schools to
adapt and deliver a modified school curriculum
may limit the feasibility and sustainability of these
programs in many countries.

Most of the evidence that supports the
effectiveness of the various physical activity pro-
grams in enhancing children’s bone health comes
from DXA-based trials [31]. These studies ranged
from 3—-48 months and the children assigned to
exercise intervention groups gained significantly
more bone mass at several skeletal sites, including
the FN and lumbar spine, compared with child-
ren in control groups [15,34-36,38.40]. However, as
discussed, the limitations of DXA do not permit
the investigation of bone structural adaptations.
Of the intervention trials conducted in the last
10 years that evaluated exercise, only six used
technologies such as HSA, MRI and pQCT
to evaluate exercise-induced changes in bone
geometry, vBMD and estimated bone strength
(TaBLE 1) [15,34-38,40,43,45].
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In the longest school-based randomized,
control trial (RCT), MacKelvie and colleagues
reported that after 20 months of the Healthy
Bones Study (HBS) high-impact circuit train-
ing program, boys in intervention schools
demonstrated a significantly greater increase in
EN cross-sectional area compared with boys in
control schools (35]. This structural adaptation
suggests that periosteal apposition had increased
and this explains the associated greater gain in
EN bone bending strength (section modulus).
Interestingly, the intervention-related gains in
EN bone strength were not observed in boys
after only 7 months [McKay H, UNIVERSITY OF BRITISH
CoLUMBIA, VANCOUVER, BC, CANADA, UNPUBLISHED DATA]
but were observed in girls [15]. The difference
in timing of structural adaptations to the HBS
intervention between sexes is likely to be related
to maturity status. Whereas the majority of boys
were prepubertal at baseline, 60% of the girls
were early pubertal and it was in this group
that the greater gains in FN bone strength
occurred [15]. Thus, the advanced maturity status
of boys over the second year of the study and/or
the prolonged intervention may explain the later
adaptation at the FN. The absence of exercise-
related gains in bone strength (and bone mass) at
the FN in prepubertal boys and girls is in agree-
ment with findings from other school-based
studies 38,43 and suggests that although exercise-
related periosteal apposition is thought to occur
during prepuberty when the bones undergo
rapid expansion owing to normal growth [16,46),
early puberty may be a window of opportunity
for structural adaptations at the FN. It is also
possible that a more intense intervention may
be required to elicit an osteogenic effect at the
hip during prepuberty. Fuchs and colleagues [32]
observed significantly greater gains in total-hip
BMC in exercising prepubertal boys and girls
than in controls following 7 months of a jump-
ing program that was associated with ground
reaction forces nine times that of body weight.
This is considerably higher than the two to five
times body weight across other studies (35,38]. It
is not known whether this high-impact activity
also results in significant structural changes at
the FN or other skeletal sites.

Although HSA estimates bone strength
at the clinically relevant FN, deriving three-
dimensional properties from two-dimensional
DXA images has known limitations. Thus, HSA
results must be interpreted with these in mind. In
order to more accurately capture exercise-related
changes in bone cross-sectional geometry and

vBMD, several intervention studies used pQCT
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DXA: BMC and aBMD
calculated from planar
‘ ‘ X-ray attenuation data

pQCT:

CSMI = £ (A x d?)

Z =CSMI
d

max

Neutral axis

@)

SSI, = Z * (CoD/ND)

Figure 2. Long bone that demonstrates the difference between
two-dimensional measures of bone mineral content and areal bone
mineral density by dual energy x-ray absorptiometry calculated from
planar x-ray attenuation data and the three-dimensional measures of
bone cross-sectional geometry, and estimates of bone strength obtained
with peripheral quantitative computed tomography. The CSMI (mm?*)
describes the distribution of bone material about a specific axis and is calculated as
the integral sum of the products of A and d? of the corresponding voxel to the
bending (x, y) or torsion (z) axes. Z (mm?) estimates bone’s resistance to bending
and is calculated as the CSMI divided by the maximum distance from the bending
axis to the outer surface (d__ ). The SSIp (mm?) is a density-weighted estimate of
bone strength in torsion and is calculated as the product of the section modulus
and the ratio of CoD and the ND (SSIp = 1200 mg/cm?) [26].

A: Area of each pixel; aBMD: Areal bone mineral density; A;: Area of each voxel;
BMC: Bone mineral content; CoD: Cortical bone density; CSMI: Cross-sectional
moment of inertia; d?: Squared distance; d : Distance of the pixel from the
corresponding bending axis; d,: Distance of the pixel from the corresponding
torsion axis; ND: Normal physiological bone density; pQCT: Peripheral quantitative
computed tomography; SSlp: Polar strength—strain index; Z: Section modulus.
Adapted from [27].

at the weight-bearing tibia [34,36,40.45). Of these
studies, Action Schools! BC was the first RCT to
demonstrate that short bouts of classroom-based
physical activity significantly impact tibial bone
strength (36.40]. At the distal tibia, prepubertal
boys in the intervention group had greater gains
in the estimated bone strength (BSI) than boys
of the same maturity in control schools. This was
mainly due to exercise-related gains in vBMD as
opposed to an increase in cross-sectional area.
This finding is consistent with resistance to the
primarily compressive loads at this site being a
function, in large part, of trabecular density [21]
and agrees with pQCT results from a jumping
intervention [34] as well as cross-sectional ath-
lete studies [47]. At the tibial midshaft where
bending and torsional loads predominate [48],
we applied a novel method of pQCT analysis to
further explore observed trends for greater gains
in torsional bone strength (SSIp) in intervention
boys (3640]. The moderate gains in bone strength
(SSIp) were associated with an approximately
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3% greater gain in the biomechanically relevant
maximum second moment of area. In addi-
tion, changes in cortical area and thickness in
the anterior, medial and posterior quadrants of
the bone cross-section tended to be greater in
intervention boys (Ficure 3), reflecting the pre-
dominantly anterior—posterior bending loads
at the tibial shaft 48]. These region-specific
adaptations were consistent with those reported
in animal studies [41] and highlight how three-
dimensional imaging techniques advance our
understanding of bone structural adaptations
to physical activity.

Although jumping programs appear to
enhance tibial bone strength in boys, it is not clear
whether girls benefit to the same extent. Neither
the Action Schools! BC [36], nor a more intensive
drop-jumping program (4], resulted in significant
structural adaptations at the tibia in peripubertal
girls. The lack of an osteogenic effect at the tibia
in girls may be related to increased estrogen levels
that are thought to modulate the bone response
to physical loads by: increasing bone stiffness (via
increases in cortical vBMD) [49] which, in turn,
leads to a decrease in the amount of deformation
for a given load; or inhibiting periosteal appo-
sition [s0]. Thus, it is possible that in girls, the
window of opportunity for bone strength gains
at the tibia occurs during prepuberty or earlier.

Together, the aforementioned studies pro-
vide convincing evidence that physical activ-
ity positively influences the normal trajectory
of bone-mass accrual in children, although
the bone response appears to be sex, maturity
and site specific. In addition to intervention
trials, results from well-designed prospect-
ive, observational studies also highlight the
important role of physical activity in ensuring
optimal skeletal development during childhood
[51-53]. By contrast, bone structural adaptations
to weight-bearing activity during adolescence
and young adulthood are understood to a lesser
degree. In a recent school-based RCT, Weeks
et al. [37] found that 8 months of a classroom-
based jumping program did not significantly
augment DXA estimates of FN bone strength
(CSMI and BSI) in adolescent girls and boys
(13.8 years of age at baseline). It is not clear
whether the lack of an intervention effect
was due to an insufficient stimulus, limita-
tions associated with the two-dimensional
estimates of bone geometry and strength or
the more advanced maturity status of the par-
ticipants. Results from athlete studies indicate
that the latter two explanations may be most
appropriate in this adolescent cohort.

future science group

In female racquet-sport athletes, side-to-side
differences in pQCT-estimated bone strength
(BSI) of the mid-humerus were 14% greater in
women who began their training prior to, or
at, menarche (‘young starters’) compared with
women who began training after menarche (‘old
starters’) [14]. This result provides further sup-
port for the window of opportunity occuring
during pre- and early puberty when the skeleton
is most responsive to loading. Furthermore, it is
possible that structural adaptations to weight-
bearing activity during the later stages of puberty
may differ from those observed during the early
pubertal years. In the study of racquet-sport ath-
letes, the bone strength advantage in the young
starters was due to a larger cortical area that is
likely to result from greater periosteal expan-
sion than in the old starters [14]. By contrast,
Bass er al. [54] reported that exercise initiated
after puberty was associated with endocortical
apposition at the mid-humerus that would con-
fer little benefit to bone bending strength. As
discussed, rising estrogen levels in girls are likely
to mediate these geometric modifications and
the resultant changes in bone strength. Further
study is required to determine the optimal tim-
ing during puberty when exercise-related gains
in bone strength are maximized in both boys

and girls.

Figure 3. Peripheral quantitative computed tomography images of the
tibial midshaft from the Action Schools! BC study. (A) Representative
baseline pQCT image of an intervention boy’s left tibia with the CA__ and CA
superimposed. (B) Superimposition of the baseline (solid) and follow-up (dashed)
bone surfaces demonstrates the primary anatomic sites where bone was formed in
response to the intervention. The alignment of these images was based upon
minimization of pixel greyscale differences. The apparent trend for greater
periosteal apposition on the anterior and posterior surfaces lead to a significantly
greater gain in bone bending strength (I__ ) in intervention boys compared

with controls.

CA_..: Maximum centroidal axis; CA . : Minimum centroidal axis; | _ : Maximum
second moment of area; pQCT: Peripheral quantitative computed tomography
Adapted from [40] with permission from Springer.
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Whether these activity-related gains in bone
mass and strength are maintained into adulthood
and lead to reduced fracture risk is unknown.
Owing to methodological challenges, no long-
term prospective trials have been (and may never
be) conducted, with fracture as an outcome, that
demonstrate a definitive link between childhood
and adolescent bone mass and strength and
decreased fracture risk. However, athlete studies
and observational studies of leisure-time activity
suggest that bone gains achieved from weight-
bearing activity during childhood are maintained
into young adulthood [s5:56) and may reduce
fracture-risk later in life [57]. In addition, the
longest follow-up study of a school-based inter-
vention [58] found that almost 8 years after cessa-
tion of the jumping program, children from the
intervention group maintained a 1.4% benefit in
total-hip BMC compared with the control group.
Thus, children should be encouraged to adopt
and maintain a physically active lifestyle during
growth and adolescence and into adulthood.

Physical activity & bone health

in adults

The role of physical activity in adult bone health is
primarily to conserve bone mass and strength and
in later life, to diminish bone loss. In this section
we highlight evidence that addresses the relation-
ship between physical activity and bone strength
in pre- and postmenopausal women and men.

Premenopausal women
The effects of physical activity on bone health in
premenopausal women are less studied than in
postmenopausal women [59]. Despite this, meta-
analyses of RCTs highlight a small, protective role
of impact and nonimpact exercise [59] and resis-
tance training for lumbar spine aBMD assessed
by DXA [60]. High-impact exercise and resistance
training may also conserve bone mass at the FN;
however, further study of premenopausal women
is required to confirm the benefits of exercise on
bone mass at this site [59,60].

Questions also remain regarding the influence
of impact exercise or resistance training on bone
structure and strength at the FN in premeno-
pausal women. In a recent 10-year prospective
observational study, premenopausal women who
reported more physical activity at baseline main-
tained greater BMC at the trochanter than their
inactive peers over the entire study period [61].
Despite the greater bone mass, FN bone strength,
estimated using HSA (section modulus), was not
significantly different in active versus inactive
women. By contrast, bone mass and strength
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(section modulus) at the FN was 6-10% greater
in active compared with inactive postmenopausal
women [61]. Thus, it is possible that the benefits of
physical activity on proximal femur bone strength
may not become apparent until older age when the
rate of decline in FN bone strength is greater [61].

As discussed above, the inherent limitations
of HSA may not permit us to clearly identify
relationships between physical activity and
bone structure. However, only one RCT evalu-
ated the effects of an exercise intervention on
bone structure and strength in premenopausal
women using a three-dimensional imaging
tool. Vainionpii and colleagues in Finland [62]
randomized women aged 35-40 years to carry
out either 12 months of bone loading activi-
ties (step patterns, jumping, running, walking
etc.) or normal daily activity (control group).
Upon completion of the intervention, the bone
structural response (by spiral QCT) to the
intervention varied by skeletal site. At the mid-
femur, the exercise group demonstrated a small,
but significant, increase in bone circumference
compared with the control group [62]. Although
bone strength (assessed as CSMI) was not sig-
nificantly impacted by the intervention, it is
possible that with a longer intervention, further
changes in bone circumference may translate
into gains in bone bending strength at this site
[62]. By contrast, at the proximal tibia, positive
changes in bone geometry were only appar-
ent in those women who were more compli-
ant with the exercise program. Specifically, a
1.2% improvement in bone circumference was
achieved in the most compliant group as well as
a 0.5% increase in cortical cross-sectional area.
These structural adaptations resulted in a 2.5%
increase in estimated bone strength (CSMI) (63].
Thus, structural adaptations to weight-bearing
physical activity enhanced bone strength in pre-
menopausal women. However, as in all exercise
intervention trials, there is a need to ensure good
compliance if strength gains are to be achieved.

The Vainionpii ez al. study was also unique
in that they used accelerometry to capture physi-
cal activity patterns across the l-year study [62].
Most commonly, adult studies use subjective
physical activity measurement techniques such
as self-report questionnaires. It is a clear advance
that these researchers used accelerometers to
objectively measure exercise intensity. In addi-
tion, they estimated the number of daily impacts
from acceleration data to describe the level of
impact loading associated with common physi-
cal activities [62]. Pooled control and intervention
accelerometry data demonstrated that 12-month
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changes in the CSMI at the mid-femur were
positively associated with acceleration levels of
1.1 g or more (i.e., stepping). Changes in cortical
thickness were associated with acceleration levels
of 3.9 g or more (i.e., jumping and running) [62).
Furthermore, in multiple regression analyses,
the number and intensity of impacts accumu-
lated over the study were significant predictors of
change in mid-femur bone geometry. These data
suggest that even relatively low-impact exercise
(1.1 g) may be associated with improved bone
structure in premenopausal women. They also
highlight that accelerometry may be an impor-
tant tool to determine the intensity of activity that
stimulates bone strength adaptation.

Based on available evidence, we do notyet know
the specific (or optimal) exercise prescription to
enhance bone strength in premenopausal women.
Further study is required to determine whether
resistance training or a combination of resis-
tance training and impact exercise preserves or
enhances bone strength at the clinically relevant
EN, lumbar spine or the peripheral skeleton.
In addition, we need to better understand how
changes in muscle mass, strength and power as a
result of exercise relate to bone structural adapta-
tions in premenopausal women. This new knowl-
edge would serve to guide the design of effective
exercise programs for this population.

Postmenopausal women

Several systematic reviews [60,64-66] summarize
the considerable body of evidence that supports
a protective effect of physical activity on bone
mass (assessed by DXA) at clinically relevant
sites in postmenopausal women. Specifically,
resistance training and impact activities, alone
or in combination, effectively prevented bone
loss at the proximal femur and lumbar spine
in older women. In the most recent systematic
review [66], the largest intervention-related effect
sizes for aBMD at both the lumbar spine and FN
were associated with exercise protocols that com-
bined jogging with low-impact activities such as
walking and stair-climbing. Exercise programs
that combined diverse and high-impact activi-
ties, such as running and aerobics, with high-
intensity resistance training were effective at the
lumbar spine only [66]. Together, these findings
suggest that effective exercise programs for bone
health in postmenopausal women should include
a mixed-loading regimen [67].

More recent studies have assessed bone struc-
ture, vBMD and bone strength in postmenopausal
women and, together, they support the beneficial
effects of physical activity on bone strength in this
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population (Taece 2) [18,68-72]. Karinkanta and col-
leagues assessed bone strength at the tibial shaft
(BSI by pQCT) in postmenopausal women of
70-79 years of age who trained at least 2 days
per week [71]. They found that a combination of
resistance training and balance—jump training
maintained tibial bone strength in those women
who trained at least two times per week. This was
a function of a smaller decrease in cortical area
in the exercise group compared with controls.
The combined exercise program may have main-
tained cortical thickness, either through reduced
bone resorption on the endocortical surface, or
increased periosteal apposition. Notably, approxi-
mately 50% of the bone strength advantage was
maintained in the training group 12 months
after study completion [73]. Exercise-related
adaptations in cortical bone properties were also
observed at the distal tibia following 12 months
of a high-impact jumping intervention in early
postmenopausal women [68], and at the tibial mid-
shaft after 25 weeks of agility training in women
aged 75-85 years [69). In addition, a recent cross-
sectional study of postmenopausal women aged
45-65 years found that leisure-time physical activ-
ity was positively associated with cortical bone area
and thickness at the femoral midshaft [74]. Future
studies that undertake a region-specific analysis
of cortical bone across bone quadrants or sectors
would better represent the structural adaptation in
the plane of bending related to the loading inter-
vention [75,76]. Furthermore, analysis techniques
that identify the polar distribution of bone mass
would determine whether exercise-related main-
tenance of bone strength is a result of the redistri-
bution of bone mass. This structural adaptation
was reported following 12 months of resistance
training in early postmenopausal women [18].

It would be ideal if maintenance of bone
strength owing to exercise training in post-
menopausal women was also evident at the clini-
cally relevant proximal femur and lumbar spine.
However, in the relatively few studies conducted,
data were equivocal. A RCT that reported change
in bone structure at the FN (by HSA) following
resistance training suggested that this regimen
may benefit bone strength (section modulus) in
older postmenopausal women [71]. Conversely,
high-impact jump training did not maintain FN
bone strength (section modulus, by HSA) in early
postmenopausal women [68]. It is possible that the
loads associated with jump training were insuffi-
cient to elicit osteogenesis at the FN whereas resis-
tance training that involves large muscle groups
may be a more effective means to enhance proxi-
mal femur bone strength. That said, much less
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intense exercise (general LTPA) was positively
associated with FN bone strength (section modu-
lus) in a large population-based prospective cohort
and cross-sectional studies of older women [77.78].

Very little research has been conducted regard-
ing bone structural adaptations to exercise at the
lumbar spine. This is, in part, due to the imag-
ing tools most commonly used in research and
the challenges associated with assessing vertebral
bone structure without a significant dose of ioniz-
ing radiation from QCT. In the Erlangen Fitness
Osteoporosis Prevention Study (EFOPS) (701,
3 years of low-volume, high-magnitude resis-
tance training with high-impact aerobics was an
effective means to increase lumbar spine cortical
vBMD and maintain trabecular vBMD (by spi-
ral QCT) in early postmenopausal women who
demonstrated acceptable compliance with the
intervention (less than two exercise sessions per
week) (Fieure 4). Owing to the spatial resolution
of spiral QCT, it was not possible to determine
whether the increase in cortical BMD was due
to a change in cortical thickness [70]. However, it
is likely that the adaptations in both the cortical
and trabecular bone compartments contribute
to enhanced bone strength at the lumbar spine,
which may become evident with the application
of finite element modeling to QCT scans.

In summary, exercise protocols that combine
resistance training with impact activity may be
our best strategy for maintaining bone mass and
strength in postmenopausal women. We have
yet to clearly define the effect of a mixed load-
ing program on bone strength at various skeletal
sites. That said, the evidence to date suggests
that physical activity preserves bone strength in
older women at both the weight-bearing proxi-
mal femur and tibia. Importantly, exercise pro-
grams that positively affect bone structure and
strength may also benefit muscle function and
balance [71.79] and in turn, reduce the risk of falls
in postmenopausal women [80]. The challenging
question for future investigations is whether any
bone strength advantage associated with exercise
in older women reduces fracture risk. In address-
ing this question, investigators must consider the
wide variation in age, but more importantly, fac-
tors such as physical condition, presence of disease
and life history among postmenopausal (and per-
haps all) women. The considerable variability in
these factors may influence the outcome of inter-
vention trials. For example, an exercise protocol
that has been proven effective in maintaining
bone strength in healthy, early postmenopausal
women may not be effective in an older and/or
frailer population. Therefore, a ‘one size fits all’

Int. J. Clin. Rheumatol. (2009) 4(4)

approach to exercise prescription for bone health
in postmenopausal women may be inappropriate
and more customized prescription models that are
suited to the unique needs and characteristics of
the population should be considered.

Men

By contrast to the extensive literature on the bene-
fic of exercise for bone health in women, very
few exercise intervention studies have evaluated
this relationship in men only. In a meta-analy-
sis that included eight studies, Kelley and col-
leagues [81] concluded that site-specific exercise
may improve or maintain aBMD in men. The
average treatment effect for aBMD was 2.6%.
Although the specific exercise prescription that
might enhance bone mass and strength in older
men is not known, resistance training inter-
ventions are most commonly administered [67].
Resistance training programs were undertaken
for 3—12 months and the exercise intensity was
moderate-to-high [67]. Overall, bone mass in exer-
cising men was either maintained or improved,
most notably, at the proximal femur. The posi-
tive bone-mass response to training was of similar
magnitude to the response observed in women
of the same age [67]. To our knowledge, no study
has, as yet, evaluated bone structural adaptations
to exercise in men.

A few prospective observation studies provide
additional evidence that habitually active elderly
men (and women) have a decreased rate of bone
loss compared with inactive elderly individu-
als [82]. Furthermore, older adults who maintained
a moderate level of physical activity over 10 years
demonstrated better preservation of balance than
inactive adults. Despite these apparent benefits,
Daly et al. did not find that a physically active life-
style was protective against fractures [82]. However,
as with the majority of exercise intervention trials,
this study was not adequately powered to evaluate
group differences in fracture incidence.

Results from cross-sectional and retrospective
studies demonstrate that both current and past
physical activity levels are associated with bone
strength in men. Among men (and women)
over the age of 50 years, current participation in
strenuous (or ‘heavy’) physical activity was associ-
ated with a significantly greater FN bone strength
(section modulus) and cross-sectional area (by
HSA) than adults who reported participating in
only light activity levels [77]. Furthermore, life-
time (15-50 years) physical activity was positively
associated with a greater sub-periosteal diameter
at the intertrochanteric and shaft regions of the
proximal femur. Although the difference in bone

future science group
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diameter between groups was relatively small
(1.5-3%), it translates into a more substantial
bone bending strength since resistance to bending
forces increases exponentially as bone is distrib-
uted further from the centre of mass [83]. More
recently, Daly and Bass reported a similar rela-
tionship between men’s lifetime physical activity
and mid-femur bone strength (polar moment of
inertia, by QCT) (84]. They categorized long-term
participation (13—50 or more years) in sport and
leisure activities based on an osteogenic index
(OD); lifetime OI was a significant determinant
of bone area and estimated strength at the mid-
femur (Fieure 5). Importantly, lifetime OI was not
significantly associated with aBMD by DXA at
the mid-femur or other measured sites. This find-
ing highlights the possibility that bone strength
advantages may not be adequately represented by
aBMD (by DXA) and emphasizes the need to also
assess the geometric and structural properties that
contribute to bone strength.

The role of physical activity in the
prevention of falls

The propensity to fall is the strongest predictor
of fracture at any site [85]. Thus, there is a need,
in seniors or other vulnerable populations, to
integrate an evaluation of falls and fall risk with
an assessment of bone health or bone fragility.
Furthermore, fall prevention should be a key
element of any prevention strategy that aims to
reduce fracture [86]. A third of seniors experience
a fall each year and the proportion increases with
age [87). Fall-related injuries are significant — 1%
of all falls result in a proximal femur fracture [87]
and 90% of all proximal femur fractures are the
result of a fall (88]. There is compelling evidence
from RCTs, systematic reviews and meta-analyses
that exercise, and in particular balance training,
reduces fall risk by 15-50% in older, community-
dwelling adults [85.89.90]. For example, the home-
based Otago Exercise Program introduced bal-
ance training that was feasible and safe for elderly
men and women (aged 6597 years) to perform at
home. The program effectively reduced falls and
fall-related injury by up to 35% [91). Importantly,
falls are complex events with multiple risk factors
(including balance, muscle strength, coordina-
tion, proprioception and cognition) that are posi-
tively affected by regular physical activity (92.93].
Ultimately, the key question is whether fall
reduction results in fracture prevention. To date,
fall prevention studies have not been adequately
powered to detect an effect on fracture rates.
However, several RCTs that evaluated fall pre-
vention also reported a reduction in the number
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Figure 4. Quantitative computed tomography results of the lumbar spine
from the Erlangen Fitness Osteoporosis Prevention Study. The exercise
group (solid line and circle, n = 48) demonstrated a significantly greater

percentage change from baseline in (A) cortical and (B) trabecular (volumetric)

bone mineral density of the lumbar spine (L1-L3) compared with the control
group (dashed line and triangle, n = 30). The exercise group includes those

women who attended two or more exercise sessions per week averaged over the
entire study period. Significance levels are indicated for within-group differences
relative to baseline and for between-group differences at year 2 and year 3. QCT

scans were not acquired at year 1.

CON: Control group; EX: Excercise group; QCT: Quantitative

computed tomography.
Adapted from [70] with permission from Springer.

of fractures [94,95). There is an urgent need for
large, multicentre RCTs to determine whether fall
prevention strategies also reduce fractures.

Does physical activity reduce

fracture risk?

Despite the well-documented beneficial effects
of physical activity on bone mass and strength
and also on fall risk, we do not have sufficient
proof that physical activity reduces the risk of
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Adapted from [84] with permission from Springer.
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fractures. This is largely due to methodological
challenges associated with conducting RCTs
with fracture as the primary end point. In par-
ticular, the required sample size for such a study
is substantial owing to the low incidence of hip
fractures in the population (i.e., in a RCT of
high-risk women, 7000 subjects in two groups
would be required assuming a hip fracture-rate
ratio of 75%) [96). The challenges of fracture-
based studies have prompted some to raise the
issue of surrogate end points [97], similar to those
used in other areas of medicine such as cardio-
vascular disease [98]. Examples of surrogate end
points for fracture include trabecular micro-
architecture by high-resolution pQCT, bone
strength estimated with finite element analysis
and vBMD by QCT, among others [97]. However,
further study is required to determine whether
these outcomes explain a significant proportion
of the antifracture efficacy of specific treatments,
including physical activity. There are no RCTs
that have specifically addressed whether physical
activity decreases fractures in older adults. We
then look to evidence from large, well-designed
prospective cohort studies that investigated the
association between physical activity and frac-
ture risk. In a recent meta-analysis of 13 cohort
studies with proximal femur fracture as an end
point, Moayyeri [9¢] found that moderate-to-
vigorous physical activity was associated with a
38 and 45% reduction in proximal femur frac-
ture risk in men and women, respectively. Even
a relatively low level of physical activity (2—4 h
per week) was associated with a 25% reduction
in proximal femur fracture risk (99]. Conversely,
older adults who became more inactive with
age approximately doubled their risk of proxi-
mal femur fracture compared with those who
remained moderately active [100].

Fewer cohort studies have investigated the
relationship between physical activity and ver-
tebral fracture risk. However, both the European
Vertebral Osteoporosis Study (EVOS) [100) and
the Study of Osteoporotic Fractures (SOF) [101]
found that daily physical activity reduced verte-
bral fracture risk by 20-33%. Thus, the strength
of the association between physical activity
and fracture risk, particularly for fractures at
the proximal femur, suggests that older adults
should be encouraged to maintain a physically
active lifestyle.

Conclusion & future perspective

In summary, there is a wealth of evidence to
support an important role of physical activity
in enhancing bone-mass and strength accrual
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during growth and to maintain bone health with
aging. However, numerous questions remain. For
example, what specific exercise prescription is
most effective to augment bone strength? How
does this vary at different critical time points
across the lifespan, across skeletal sites and with
varying doses of exercise? What is the response
in bone sectors to weight-bearing physical activ-
ity? Does a program of weight-bearing physical
activity prevent fractures in older populations?
Clearly, there is much to do and these questions
provide exciting avenues for future investigations.
There have been tremendous advances in
imaging tools that are able to define the specific
geometric, structural and microstructural bone
properties that adapt to weight-bearing physical
activity. It is likely that the next decade will fur-
ther advance imaging technologies so as to extend
our understanding of the complex nature of bone’s
response to physical activity across the lifespan.
In addition, advances in finite element modeling
and more powerful computers will provide an
increased opportunity to model bone morphology
and bone adaptations in three-dimensions.
Although prevalent in the cardiovascular
literature, assessing physical activity using
accelerometry is uncommon in the bone health
field. In the future, more advanced accelerom-
eters will be able to represent more intricate
measures of physical activity such as intensity,
frequency and daily impacts. These tools can

Three-dimensional imaging technologies provide accurate & reliable estimates of bone strength
Two-dimensional dual energy x-ray absorptiometry measures of bone mass do not capture exercise-related modifications to bone

then be used in intervention trials to custom-
ize physical activity based on the desired load.
Accelerometers may serve a dual purpose and
may be developed to also capture an individual’s
loss of balance or a fall.

There is likely to be not just one physical
activity intervention to promote bone strength
across the lifespan, but a host of programs spe-
cific to the sex, age, maturity or fragility of the
population being studied. Thus, there is still a
great need for well-designed randomized, con-
trolled, physical activity trials to address this.
Ideally, these trials would also evaluate the
influence of mediating factors such as nutri-
tion, hormones and pharmaceutical therapies.
Finally, exercise intervention trials often suffer
from high attrition rates — up to 30% in stud-
ies of postmenopausal women [18,68]. Studies of
behavioral strategies and incentives that could
potentially enhance compliance and sustain an
individual’s participation in physical activity
programs would be of great benefit.

Researchers should be encouraged to con-
tinue to investigate the specific role of physi-
cal activity in bone health across the lifespan
using novel tools, approaches and rigorous study
designs. However, given the positive relation-
ship between physical activity and the health of
many biological systems, including bone, indi-
viduals of all ages should be encouraged to adopt
and maintain an active lifestyle.

geometry, volumetric bone mineral density or bone microarchitecture.

Future studies would benefit from using three-dimensional imaging tools, such as peripheral quantitative computed tomography,
high-resolution peripheral quantitative computed tomography and MRI, to investigate bone structural adaptations to physical activity

across the lifespan.

Short bouts of high-impact exercise enhance bone strength accrual in children
School-based programs that include short bouts of high-impact jumping or circuit programs are effective for optimizing bone strength

accrual in pre- and early pubertal children.

Bone structural adaptations to weight-bearing physical activity vary according to sex, maturity status and skeletal site.

Exercise is an effective means to maintain bone mass & strength in adults
High-impact exercise and resistance training, alone or in combination, are effective for maintaining bone mass at the femoral neck and

lumbar spine in postmenopausal women.

Well-designed randomized, controlled trials using imaging technologies other than dual energy x-ray absorptiometry are needed to
determine the optimal exercise prescription for bone strength in pre- and postmenopausal women and men.

Physical activity reduces fall risk in older adults & may reduce the risk of hip fracture
Balance training reduces fall risk in community-dwelling, older adults by 15-50%.

Moderate-to-vigorous physical activity is associated with a significant reduction in hip fracture risk in men and women.
There is a need for randomized, controlled exercise intervention trials with fracture, or fracture surrogates, as the primary end point.

Conclusion

Weight-bearing physical activity enhances bone mass and strength accrual during growth and maintains bone health with aging.

Further study, using three-dimensional imaging technology, is required to determine the optimal exercise prescription to enhance bone

strength across the lifespan.
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Activity evaluation: where 1 is strongly disagree and 5 is strongly agree.
1 2 3 4 5

The activity supported the learning objectives.

The material was organized clearly for learning to occur.
The content learned from this activity will impact my practice.
The activity was presented objectively and free of commercial bias.

and their assessment is most accurate?

microarchitecture

1. Which of the following statements about bone changes over different life stages

[0 A Nutrition is the primary variable determining the skeleton’s ability to respond to strain
[0 B Adult skeletons adapt to strain primarily through periosteal apposition

[0 C Dual-energy x-ray absorptiometry (DXA) is unable to assess bone geometry and

O

D High-resolution peripheral quantitative computed tomography (pQCT) is limited to the
assessment of bone strength at the hip in adults

children is most accurate?

O N w

O
O
O

2. Which of the following statements about physical activity and bone strength in

[0 A Sustained, long-duration exercise is more osteogenic than short bouts of exercise
Jumping programs may be more effective in increasing bone strength among boys vs girls
The best results from exercise training occur in late adolescence

The optimal exercise prescription for increasing bone strength in children involves
low-impact physical activity for at least 60 min per day
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3. Which of the following statements about physical activity and bone health in
adults is most accurate?

[0 A Exercise clearly increases bone strength at the femoral neck among
premenopausal women

[0 B High-impact aerobic exercise alone appears most effective at increasing bone mineral
density among postmenopausal women

[0 C Exercise preserves bone strength in the proximal femur and tibia among
postmenopausal women

[0 D Exercise has not been demonstrated to affect bone mass among men

4. All of the following statements about research into physical activity and the risks
for falls and fracture are accurate, except:

[0 A Randomized trials have demonstrated that exercise can reduce the risk for falls among
older adults

[0 B Randomized trials have demonstrated that exercise can reduce the risk for fracture among
older adults

Cohort studies have found that exercise can reduce the risk for proximal femur fractures

C
D Cohort studies have found that exercise can reduce the risk for vertebral fractures
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