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Abstract

A correct understanding of the DNA evolution of drug resistance is critical in developing strategies for 
suppressing and preventing this process. The Kishony Mega-Plate Experiment demonstrates this important 
phenomenon that occurs in the practice of medicine, that of the evolution of drug-resistance. The 
evolutionary process which the bacteria in this experiment are doing is called a Markov Process or Markov 
Chain. Understanding this process enables clinicians and researchers to predict the evolution of drug-
resistance and develop strategies to prevent this process. This paper will show how to apply the Markov 
Chain model of DNA evolution to the Kishony Mega-Plate Experiment and why the experiment behaves the 
way it does by contrasting the Jukes-Cantor model of DNA evolution (a stationary model) with a 
modification of the Jukes-Cantor model that makes it a non-stationary, non-equilibrium Markov Chain. The 
numerical behaviors of the stationary and non-stationary models are compared. What this analysis shows is 
that DNA evolution is a non-stationary, non-equilibrium process and that by using the correct non-
stationary, non-equilibrium model that one can simulate and predict the behavior of real evolutionary 
examples and that these analytical tools can give the clinician guidance on how to use antimicrobial 
selection pressures for treating infectious diseases. This in turn can help reduce the numbers and costs of 
hospitalization for sepsis, pneumonia and other infectious diseases.
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Introduction
The Kishony Mega-Plate Experiment is described in 
the paper Spatiotemporal microbial evolution on 
antibiotic landscapes [1]. A description of how to 
make a Mega-Plate Experiment can be found in 
reference [2]. Many videos of the experiment can be 
found on the internet, a good example can be found 
here [3]. The next paragraph gives a simple 
explanation of the experiment. 

The experiment consists of the following. A large 
petri dish is constructed. Growth media is placed on 
this petri dish, and in this growth media, different 
concentrations of an antimicrobial agent are placed 
in bands in the growth media. In the left and right-
hand bands in the petri dish, no antimicrobial agent 
is used. In the next adjacent bands to these zero 
concentration bands, the lowest concentration of the 
drug is used. As one move to the center of the petri 
dish, increasing concentrations of the drug are 
placed in each band until in the middle of the dish 
that contains the highest concentration of the 
antimicrobial agent. Then a motile “wild-type” 
bacteria (founder) is introduced into the petri dish 
that has no resistance initially to the antimicrobial 
agent used and is only able to grow in the drug-free 
region. As these colonies in the drug-free regions 

grow, mutations occur in some members of these 
colonies. Occasionally, some member gets a 
beneficial mutation that enables it to grow in the next 
higher drug-concentration region. That new variant 
with the first resistance mutation now forms a new 
colony that can grow in the lowest drug 
concentration region. As that new colony grows, one 
of its members gets another beneficial mutation that 
allows it to grow in the next higher drug-
concentration region. This process continues until 
finally there is a variant that can grow in the high 
drug-concentration region.For this experiment to 
work in this size petri dish, the increase in 
concentration for adjacent bands must be limited so 
that it only requires a single beneficial mutation to 
occur on some member of the drug-sensitive variant 
population in the next lower drug-concentration 
band to grow in the next higher drug-concentration 
band. As the population increases in a particular 
band, descendants are getting mutations in their 
DNA as replications occur. This is a random walk 
process where the number of members taking their 
particular random walk increases as the population 
grows in number and as different variants occur. 
Some variants on their own particular random walk 
accumulate particular mutations that give improved 
fitness to the antibiotic selection pressure allowing 
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Materials and Methods
Statistical Analysis

This study aims to investigate the dimensionality, 
reliability, and construct validity of the SAS scale 
among elderlies 60+ in Turkey who participate in an 
Active Senior Center.

The statistical analysis used in this study is based on 
the Markov process. A Markov process is a 
stochastic or random process where future outcomes 
can be predicted based solely on the present state of 
the system. A Markov process for discrete events is 
called a Markov chain. When formulated correctly, a 
Markov chain that models DNA evolution gives the 
theoretical distribution of frequencies of the 
different variants in a growing population based on 
the population size, the mutation rate, and the 
known initial state of the population. The 
formulation of such a model consists of the 
following steps.

The first step is to identify the possible states in 
which the system can be. When modeling DNA 
evolution, a given site in a genome can be in one of 
four possible states (one of the four possible DNA 
bases). When considering two sites simultaneously 
in a genome, those two sites can be in 16 possible 
states (42 possible combinations of bases). When 
considering three sites, the number of possible states 
for the system is 64 possible states (43 possible 
combinations). As one considers more sites in the 
genome, the number of possible states goes up 
exponentially. Once the number of sites that are to 
be considered is determined, the number of possible 
states for each of those sites and the number of 
transitions between one state and another needs to 
be determined when a replication of those sites 
occur.

When DNA is replicated, it is not a perfect process, 
occasionally errors occur. The frequency of error can 
be based on a single replication, and for this analysis, 
that is how the mutation rate is considered. Upon 
replication, the base at a given site can be replicated 
with fidelity giving the same base as the original 
copy, or the base can be replicated incorrectly and 
replaced with a different base, a mutation has 
occurred. Each of those possible transitions on 
replication has a probability associated with that 
transition. When considering a single-site DNA 
evolutionary process, each state will have four 
possible transitions, and since a single-site DNA 
evolutionary process has four possible states, it will 
have 16 (42) possible transitions. When considering 
a two-site DNA evolutionary process, the 16 possible 
states will have 256 (162) possible transitions. And 
when considering the three-site DNA evolutionary 
process, the 64 possible states will have 4096 (642) 
possible transitions. Once the number of sites in the 
genome is determined to be analyzed, the number of 
states and state transitions can be determined, and 
the states and transitions can be organized into 
matrices. The state matrix is a 1 x number of states 
matrix where the elements of this matrix are the 
frequencies of each of the possible states of the 
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these variants to grow in the higher drug-
concentration regions. This process can be 
mathematically modeled as a Markov Process. A 
variety of different Markov Models of DNA 
evolution have been proposed. One of the earliest 
models is the Jukes- Cantor model presented in 
1969 [4]. Many derivative models have been 
proposed such as the K80 and K81 (1980 and 1981 
Kimura models respectively), the F81 Felsenstein 
model presented in 1981, HKY85 model model, the 
T92 model, and the TN93 model [5-10]. The Jukes-
Cantor and derivative models are commonly used 
in an attempt to compute the evolutionary distance 
between different sequences of homologous genetic 
code. Some recent examples of applications of the 
Jukes-Cantor and derivative models can be found in 
the following references, [11-15]. The main 
difference between the Jukes-Cantor model and the 
derivative models listed above is derivative models 
allow for different mutation rates for the different 
elements of the transition matrix, for example, to 
address the fact that base trans versions can have a 
different mutation rate than for base transitions. 
However, the transition matrix is still constant over 
time.
Huelsenbeck and his co-authors wrote: “At present, 
a universal assumption of model-based methods of 
phylogenetic inference is that character change 
occurs according to a continuous- time Markov 
chain. At the heart of any continuous-time Markov 
chain is a matrix of rates, specifying the rate of 
change from one character state to another. For 
many phylogenetic analyses using DNA sequence 
data, it is assumed that there are four states (the 
nucleotides A, C, G, T/U) with a 4 x 4 matrix of 
rates among the 12 possible nucleotide 
substitutions. A few standard models of DNA 
substitution have been proposed. These include 
those first described by Jukes Kimura [16]. The 
intention here in this paper is to give a proposed 
modification of the heart of the Markov chain 
model that is demonstrated to correlate with the 
experimental model, the Kishony Mega-Plate 
experiment.
The Jukes-Cantor and derivative models listed 
above have a property in common. These models 
assume that the elements of the Markov transition 
matrix are constant with each replication. It is 
shown this implicit assumption gives a model 
constrained to constant population size, and that 
constant population size is 1. This assumption gives 
a model that fails to correctly model the evolution 
of antimicrobial resistance. A modification of the 
Jukes-Cantor model is presented that allows for 
modeling DNA evolution in different population 
sizes and that the population can vary at each 
evolutionary transitional step (replication). The 
mathematics for these two Markov models are 
described in the next section. The results are 
compared and the Markov model which takes into 
account population size is shown to compare 
favorably with the experimental results of the 
Kishony Mega-Plate experiment.
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system at a particular time. The matrix of transitions 
will be a square dimension equal to the number of 
possible states where each element of this matrix is 
the probability of transition from one state to another 
possible state. These transition probabilities depend 
on the mutation rate but also depend on the 
population size. If one assumes that the population 
size remains constant, the transition matrix will 
remain constant over time and, a “stationary” 
transition matrix is obtained and, the transition 
probabilities remain constant over time. However, if 
the population size is changing over time, a “non-
stationary” transition matrix is obtained and, the 
transition probabilities will change over time as the 
population size changes. This is demonstrated by the 
derivation of the one and two-site DNA evolutionary 
models for a stationary Markov chain (the Jukes-
Cantor model) and the non-stationary variable 
population model. The evaluation of these Markov 
chains over time to obtain the frequencies of the 
different states after each replication is done by 
simple matrix multiplication.

The Markov Process

A Markov chain is a stochastic or random 
mathematical model describing a sequence of 
possible events where each event depends only on the 
state attained in the previous event. Continuous- time 
Markov chains are called Markov processes and are 
named after the Russian mathematician Andrey 
Markov [17]. The relationship between this 
mathematics and the Kishony Mega-Plate experiment 
is that with every replication of the bacteria, the 
offspring potentially get a random mutation that in 
some cases will allow that variant to make a transition 
and grow in the next higher drug-concentration 
region. A well-known Markov model of DNA 
evolution is the Jukes-Cantor Markov Chain model of 
DNA evolution [4]. There are many derivative 
models based on the Jukes-Cantor model but none of 
these models correctly describe the Kishony Mega-
Plate experiment. The reason is that the Jukes-Cantor 
model is based on a stationary transition matrix that 
gives a Markov process that rapidly reaches 
equilibrium. The DNA evolutionary process is a 
highly non-stationary process which does not readily 
reach equilibrium. An alternative non-stationary 
transition matrix based on a small modification of the 
Jukes-Cantor model is presented and the results 
contrasted with the Jukes-Cantor model.

The State Transition Markov Model for a single-
site in a Genome

DNA evolution can be mathematically modeled as a 
discrete Markov Chain. The way this is done for the 
Kishony Mega-Plate Experiment is as follows. E1, E2, 
E3, are the states of the Markov Chain. The way to 
understand these states for this experiment, consider 
the first evolutionary step. The wild type bacteria do 
not have any variants with a mutation which would 
give them some resistance to the drug these bacteria 

are challenged. Some site in the bacterial genome 
lacks the correct DNA base at that site. 
Replication of a bacterium is the random trial at 
each transitional step of this Markov process. 
There are four possible bases for that site, adenine 
(A), guanine (G), cytosine (C), and thymine (T). 
Each of those possible bases represents a Markov 
state. Figure 1 is a diagram of the possible state 
transitions for this Markov process. The letter μ is 
the mutation rate that is assumed constant for 
each of the possible transitions. The state, 
transition diagram for this Markov process is 
illustrated in Figure 1.

Figure 1: State Transition Diagram for a single 
mutation at a particular site in the genome.

When replication of the bacterium occurs, if the 
base at the particular site is T, its descendant can 
get a T at that site, no mutation occurs, or an A, C, 
or G base can occur at that site, a mutation occurs. 
If the base at that site is not a T (that is A, C, or G), 
then any of the possible bases at that site can be 
mutated to give a T for that descendant at that 
particular site. A transition matrix that describes 
the evolutionary change in time t is

P t( )

AA AC AG AT

CA CC CG CT

GA GC GG GT

TA TC TG TT

p p p p
p p p p
p p p p
p p p p

 
 

= 
 
 
 

   

P t( )

AA AC AG AT

CA CC CG CT

GA GC GG GT

TA TC TG TT

p p p p
p p p p
p p p p
p p p p

 
 

= 
 
 
 

  
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Where nA, nC, nG, and nT are the number of 
members (replications) with the A, C, G, and T base 
at the particular site in the population respectively, 
and n is the total number of members (replications) 
in the population. For example, if A is assumed to be 
the variant with the beneficial mutation for the drug 
and the initial wild-type bacterium has T at that site, 
then, initially, nA, nC, and nG, are 0, and nT and n 
are 1. However, with the first replication, there is a 
small probability that nA, nC, or nG, is 1, a much 
higher probability that nT is 2, and n will be 2.With 
each additional replication, there will be a small 
probability that nA, nC, or nG, will increase by 1, but 
a much higher probability that nT will increase by 1, 
and n will increase by 1. With each additional 
replication, the frequencies of the A, C, and G 
variants will slowly increase while the frequency of 
the T variant will very slowly decrease. This effect is 
not taken into account in the standard Jukes-Cantor 
stationary model. The probabilities for a variable 
population model is written:

P = (pij) where the pij gives the probabilities of 
change from the state Ei to Ei+1 at time t + Δt where 
Δt is a replication (for the Jukes-Cantor stationary 
model, it is also a generation). If insertions, deletions, 
transpositions, and other types of mutations are 
neglected (that is substitutions only), the transition 
matrix would look as follows:

1 / 3 / 3
µ / 3 / 3 / 3

/ 3µ       µ / 3    1     µ µ / 3
/ 3    1

P
    µ µ      µ

/ 3µ       / 3     µ µ − µ

 −     µ / 3     µ µ µ     
     1− 

= 
 − 
 
 

The subscripts on p represent each of the possible 
transitions. For example, an AA subscript means on 
replication, the adenine base was replicated by 
another adenine base, no mutation occurs. A CG 
subscript means that on replication a cytosine base 
was replaced by a guanine base (a mutation has 
occurred) and so on. Based on the assumption that the 
mutation rates are constant, the pij elements in terms 
of the mutation rate can be written as follows and 
gives the Jukes-Cantor stationary model:
Implicit in the Jukes-Cantor model is the assumption 
that only a single member of the population is 
considered. That bacterium replicates, and the Jukes-
Cantor model is correct for that first replication. 
However, for the next replication there are two 
members of the population, and because of that 
increase in population size, the change in the relative 
frequency of the variants must decrease, and that 
decrease in probabilities for a transition to a different 
base will not follow the pattern presented by the 
Jukes-Cantor model. The distribution of variants for 
the single drug is written as:

A C G Tn / n n+ / n n /+ + =n n / n 1   (3) 

/ (3*n) ,ijp µ= i j         ≠  wheren =1,2,3,...              (4) 

n is the total number of replications (the total 
population size) in the colony of bacteria. The 
expected number of members with the mutation A is 
nA=A*n where A is the frequency of the A variant 
after the population has done n replications and so on 
for the other possible variants. And the corresponding 
non-stationary Jukes-Cantor transition matrix 
becomes:

3∗( ) / 3( / 3(
) / 3(1− µ / (/ 3

1− µ / /
µ ) ∗n)

3 n( ) / 3(
3

n n ∗ )nn
p µ / 3( ∗n nn

3( )n 3∗( )n n ( )∗n
n

1 /− µ
µ

/µ /µ µ
1− /µ


 /µ µ µ )∗ 

=  ∗
 ∗ 
 ∗∗ /µ µ )∗ / 3µ ( )n n 


The initial state for either the stationary Jukes-Cantor 
model or the non-stationary Jukes-Cantor model is 
written:

( )0 0 0 0 0E = A C, ,G ,T

 (5) 

 (6) 

Where the A0, C0, G0, T0 terms are the frequencies of 
the particular variant in the initial state. (When A, C, 
G, or T are italicized indicates the frequencies for the 
particular variants with that base at that site.) And the 
state of the system at the time ti is:

)i i i i iE = (A C, ,G ,T (7)

At time ti, the Markov Chain is in state Ei, then the state 
of the system at time ti + Δt, where Δt is one replication, 
it will be in state Ei+1 depends only on i, and t. The 
state of the system at time ti+1 is computed by doing 
the matrix multiplication using the following equation:

+1i i=E  E P  (8) 

The matrix multiplication for the Jukes-Cantor model 
is:

i 1+ i 1+ +i 1( =) ( ),C  ,G , ,C  ,G ,i i i iA T A Ti 1+

/ 3( )
)/ 3( / 3(

/ 3( / 3( (

1− µ /
1− µ /

n nn 3∗( )n
µ ∗n 3( )∗nn 3( )∗n

n 3∗( )n n ∗ )n
n n n

1 /− µ / 3µ ( ) / 3∗ ∗µ ( ) /µ
/µ /µ

µ /µ µ
µ )n µ ) / 3∗ ∗µ ) 1− /µ

∗


 


∗



 





(9)

And the matrix multiplication for the non-stationary version 
of the Jukes-Cantor model is:
Carrying out the matrix multiplication gives us the four 
recursion equations which describe this evolutionary Markov 
process for the stationary and non-stationary models 
respectively:

( )+1 1i i i i iA = A − +C *µ µ / 3+G * / 3µ +T *µ / 3               

(+1 1i i i i iC *A / 3µ +C= − ) +G *µ µ / 3+ *T µ / 3               

(+1 1i i i i iG *A / 3µ +C * / 3µ +G= − ) +µ µ*T / 3               

( )+1i i i i iT *A / 3+C *µ µ / 3+G * / 3µ T= + 1− µ                     

    (10) 

    (11) 

    (12) 

     (13)
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And 

( ) ( ( )+1 1 /µ n C+ *i i i i iA A= − / 3µ * )n G+ * / 3µ *n +T * / (µ 3*n)       

( ) ( ) (3*n)+1 1 /µ n G+ *i i i i iC = −A * / (3*µ )n C+ / 3*µ n +T * /µ           

( G ( )+1 / (3* * 1 /i i i i iG = A *µ )n C+ −/ 3*µ n) + n +T *µ µ / (3*n)      

( ) (3* )n T ( )+1 *µ / (3* )n C * / 3*µ n G+ *i i i i iT A /µ 1− /µ= + + n                      

  (14) 

  (15) 

  (16) 

 (17) 

The initial condition for either version using 
equation (6) is:

( ) ( )0 0 0 0 0E = A ,C ,G ,T = 0,0,0,1   (18) 

It is assumed that for the Jukes-Cantor model, T is 
the base at the particular site and for the Kishony 
Mega-Plate experiment that the initial inoculate at 
time = 0, the bacterium has a T base where an A base 
is needed to give resistance. The fundamental 
difference between the stationary and non-stationary 
models is that as the population size grows, n is 
increasing in the non-stationary model. The 
stationary process assumes that the population size is 
constant (n=1) for all time.

FORTRAN computer programs were written to 
evaluate both stationary and non-stationary versions 
and compared for two different mutation rates, μ = 
1E-5 and μ = 1E-9 and, are presented in the Results 
section. An equivalent calculation was carried out 
based on two-site models for stationary and non-
stationary Markov processes.

The Markov Process for Two Sites, the Jukes-
Cantor stationary model and the Modified 
Jukes-Cantor non-stationary model.

The analysis for the DNA evolutionary process for 
two sites begins with the construction of the state 
transition diagram for the evolution at two sites 
(Figure 2). This diagram is much more complex in 
that there are 16 possible states. (Note that only the 
transition lines to and from state A1A2 to the other 
states are included in this figure. Transition lines 
from the other states would appear similarly). In 
Figure 2, the possible state transitions are drawn for a 
member of the population which has an A base at site 
1 and an A base at site 2 and the possible transitions 
that can occur on replication. An A1A2 member can 
replicate and produce another A1A2 member, or an 
A1C2, or a C1A2, or any of 13 other possible 
transitions.

Before conducting the study, institutional approval 
was obtained from the director of the Active Senior 
Center. Research Ethics Committee approval was 
obtained from the Clinical Research Ethics 
Committee of XXXX University in Turkey, Faculty of 
Medicine (Approval No: xxxx). The research is 
conducted in line with the principles of the 
Declaration of Helsinki.

Figure 2: The two-site Transition Diagram, only 
A1A2 transition lines shown, similar transition 
lines for other states apply but not shown.

The illustration in Figure 3 gives the diagram for a 
single state with the understanding that equivalent 
states exist for the other possible combinations of 
bases. The number following the base letter 
indicates the site.

Figure 3: Possible state transitions for two sites 
from an A at site 1 and an A at site 2 to all other 
possible transitional states.

In contrast with the single-site model which has 4 
possible states and 4 possible transitions from each 
state, the two-site (second-order) model has 16 
possible states with 16 possible transitions from 
each state to the other possible states. 

The list of possible transitions for the A state for the 
single-site model gives 4 probabilities, pAA, pAC, 
pAG, and pAT. The transition probabilities for the 
A1A2 state for the two-site model is, pA1A2A1A2, 
pA1A2A1C2, pA1A2A1G2, pA1A2A1T2, 
pA1A2C1A2, pA1A2C1C2, pA1A2C1G2,  
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displayed in equation.

The Jukes-Cantor two-site non-stationary model has the 
following transition probabilities based on the Sam 
reasoning for the single-site model. The probabilities for 
the A1A2 state are written as:

( )2 1A1A2 1A C = − *µ µ / 3  

( )2 1A1A2 1A G = − *µ µ / 3  

( )A1A2 A T1 2 1= − *µ µ / 3  

( )2 1A A1 2C1A

p

p

p

p = − *µ µ / 3  

= µ 2
A A1 2C C1 2p / 9  

= µ 2
A1A2C T1 2p / 9  

)
µ 2

µ 2

µ 2

µ 2

 µ 2

 µ 2

 µ 2

A1 2G A1 2

2

A A1 2G G1 2

2A1A2G T1

A1A2G T1 2

2

2

2

p *µ µ / 3

/ 9

/ 9
/ 9

/ 9

/ 9

/ 9

/ 9

A

A1A2 1G C

A A1 T2 1C

A A1 T2 1G

A A1 T2 1T

p

p
p

p

p

p

p

= (1−
=

=
=

=

=

=

=

1

pA1A2C1T2, pA1A2G1A2, pA1A2G1C2, pA1A2G1G2, 
pA1A2G1T2, pA1A2T1A2, pA1A2T1C2, pA1A2T1G2, 
and pA1A2T1T2.

Similar probabilities are obtained for the other 240 
possible state transitions in the two-site model. A 
pA1A2A1A2 transition means that an A base is at site 1 
and an A base is at site 2 in the parent, and that on 
replication, the descendant will also have an A base at site 
1 and an A base at site 2, no mutation has occurred on 
replication at either site. A pA1A2A1C2 transition means 
that an A base is at site 1 and an A base is at site 2 in the 
parent and that on replication, the descendant will also 
have an A base at site 1 but a C base at site 2, no mutation 
has occurred on replication at site 1 but a C mutation has 
occurred at site 2. A pA1A2C1G2, transition means that 
an A base is at site 1 and an A base is at site 2 in the 
parent and that on replication, the descendant will have a 
C base at site 1 and a G base at site 2, a C mutation has 
occurred on replication at site 1 and a G mutation has 
occurred at site 2. And so on for the other possible 
transitions.

For the evolution of two sites, a 16×16 transition matrix is 
obtained which is partially displayed in equation.

If n is assumed constant and equal to 1, the first row of 
the two-site transition matrix in terms of the mutation 
rate give the Jukes-Cantor stationary version of the two-
site model:

pAA1  2 AA1  2 ( 1 (− )−µ  µ  )

The other rows of the transition matrix from the 240 
other possible state transitions will have similar 
probabilities. These values are substituted into the two-
site transition matrix for the Jukes-Cantor two-site 
stationary model. This 16×16 matrix is partially 

( )( )
( )
( )
( )
( ) ( )

)

(
(3*n)

A A1 2 A A1 2

A A1 2 A A1 2

2

2A1A2 A T1

2

2
A A1 2C C1 2 2

2
A A1 2C G1 2 2

2
A1A2C T1 2 2

2

2
2 2

A A1 2G G1

1

1 n/ )( − µ1 /

1 / µn)* / (3*

1 / µn)* / (3*

1 / *µ µ / 3*

/ (3*

/ (3*

/ (3*

/ )*µ µ / (3*

/

A1A2 1A G

A A1 2C1A

A A1 2G1A

A1A2 1G C

p n/µ µ1 /− n
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The other rows of the non-stationary transition matrix 
from the 240 other possible state transitions have similar 
probabilities. These values are substituted into the two-site 
transition matrix for the Jukes-Cantor two-site non-
stationary model. This 16×16 matrix is partially displayed 
in equation.

In a similar manner as with the single-site model, the state 
transition equation is:

+1i i=E  E  P  (19) 

Equations are used for the stationary and non-stationary 
models (and the 15 other equivalent transition equations) 
and the two-site transition matrix to compute the Markov 
chain recursion equations

(Note that when X1Y2 where X and Y can be A, C, G, or T 
are italicized indicates the frequencies of those variants 
with X at site 1 and Y at site 2.) The recursion equation for 
the A1A2 state Jukes-Cantor stationary model is:

*µ µ / 3 C+ C( 1 2 3+ 61     1T 2 G+ 1C2 G1G2 G+ T1 T2 1C+ +T2 1G T2 1+ T 2 * 2µ / 9)i i i i i i i i iC1G2 +C +

(1 )− 2 (+1A1 2 2 * µ + A C1 2 + A G1 2 A+ 1T 2 2i i i ii i i iA A1A C+ A1 2 G A1 2 T+ 1A= + )*(1 )−

Equivalent equations are obtained for the other 15 states. 
The equivalent recursion equation for the A1A2   state 
Jukes-Cantor non-stationary model is: 
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the probability of having an A, C, or G mutation at that 
site. Each replication of the following descendants will 
decrease the probability of T occurring at that site and 
increase the probability of an A, C, or mutation at that site 
until the evolutionary process reaches equilibrium where 
the probability of any of the four possible bases occurring 
at that site will be 0.25. For the mutation rate of 1E-5, this 
occurs at about 4E5 replications (generations). After 4E5 
replications, the probability of finding any of the four 
bases at that site remains constant at the value of 0.25. This 
evolutionary model has reached equilibrium.

) (2
+1A1 2 2 )*(1− / n)*µ µ / (3*i i i i i i i iA A1A A C1 2 + A G1 2 A+ 1T 2 C+ A1 2 G A1 2 T+ 1A= 2 *(1− /µ n + +

) ( ( n))2
1C2 C+ 1G2 C1T 2+ +G1C2 G1G2 G+ 1T 2 T1C2+ +T1G2 T1T 2 * /µ 3*i i i ii i i i in) (C+ + +

 (21) 

The A1A20,..,T1T20 terms are the frequencies of the 
particular variant in the initial state. 

It is assumed that in the initial state, the wild type variant 
inoculated on the plate for a two-drug experiment has bases 
T at site 1 and at site 2 such that T1T20 = 1 (that is the 
frequency of that variant is 1) and the other 15 possible states 
A1A20,.,T1G20 = 0 gives an initial condition of: 

( )0E = 0,0,0,0,0,0,  0,0,0,  0,0,0,0,  0,  0,1  (22) 

The stationary and non-stationary two-site models were 
evaluated similarly as the single-site models and compared for 
two different mutation rates, μ = 1E-5 and μ = 1E-9, and 
presented in result section 2. 

Results
FORTRAN computer programs were written to compute the 
values for equations (11-14) stationary model and equations 
(15-18) non-stationary model for two mutation rates, 1E-5 
and 1E-9. The FORTRAN source code is supplied in the 
supplemental documentation as well as the data derived from 
these programs. The results are shown in the graphs below for 
the Jukes-Cantor stationary and non-stationary models for 
two mutation rates. The first two figures are for the single site 
stationary systems (mutation rates 1E-5 and 1E-9 respectively.

Figure 4: Base frequencies for A and T variants, Jukes-Cantor 
stationary model, single- site, as a function of number of 
replications and mutation rate 1E-5

The base frequencies for the C and G variants are not included 
in Figure 4 because these basefrequencies are identical to the A 
frequency curve. This is because of the symmetry of the Jukes-
Cantor model. The mutation rate for base transitions is the 
same for base transversions. Each Markov transition in the 
Jukes-Cantor stationary model is both a replication and a 
generation. Each element in the transition matrix is the 
mutation rate for a particular mutational change in a single 
replication for a single member of a lineage. Therefore, each 
replication is also a generation.

The way to correlate the curves in Figure 4 to the genetic 
transformation is to consider some founder bacterium of a 
lineage in the population with a T base at a particular site in 
the genome. That bacterium replicates, and its descendant will 
have a slightly reduced probability of a T base at that site and a 
slightly increased probability of having an A, C, or G base 
(mutation) at that site. When that descendant replicates, its 
descendant will have another slight decrease in the probability 
of a T base occurring at that site and another slight increase in 

Figure 5: Base frequencies for A and T variants, Jukes-
Cantor stationary model, single- site, as a function of 
number of replications and mutation rate 1E-9

Figure 5 demonstrates the result of the Jukes-Cantor 
stationary model similar to Figure 4 except with a lower 
mutation rate. As with Figure 4, Figure 5 does not include 
the C and G frequency (probability) curves because these 
base frequencies are identical to the A frequency curve. 
The same Markov DNA evolutionary process described in 
Figure 4 is occurring with the case whose result is 
illustrated in Figure 5. The only difference is that the lower 
mutation rate (1E-9 vs. 1E-5) results in a slower approach 
to equilibrium (4E9 vs. 4E5 replications), but either case

converges on the same equilibrium values for the base 
frequencies, 0.25.

Figure 6: Base frequencies for A and T variants and 
expected number of A, Jukes-Cantor non-stationary model, 
single-site, as a function of number of replications and 
mutation rate 1E-5.

Figure 6 gives the result of the Jukes-Cantor non-stationary 
model of DNA evolution. It is this model that is proposed 
to be the correct simulation of the Kishony Mega-Plate 
experiment. As with the Jukes-Cantor stationary model, as 
described in Figures 4 and 5, the frequencies (probabilities) 
for the C and G variants are not plotted because these base 
frequencies give identical curves to the A frequency curve. 
In this case, each replication is not a generation. To 
understand this graph (and mathematics) in the context of 
the Kishony Mega-Plate experiment, consider what 
happens from the start of the initial condition of the 
experiment.
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28 doublings or generations) vs. 3E4 replications (about 15 
doublings or generations)). The following four figures 
show the results for the two site Jukes-Cantor model, the 
first two of these four are for the stationary two sites 
model, mutation rates 1E-5 and 1E-9 respectively, and the 
last two figures for the two sites non-stationary model, 
mutation rates 1E-5 and 1E-9 respectively. Fortran 
computer programs were written to compute the values for 
equation (25) (plus the 15 other equivalent equations) 
stationary model and equation (26) (plus the 15 other 
equivalent equations) non-stationary model for two 
mutation rates, 1E-5, and 1E-9. The results are shown in 
the following two graphs below for the two sites Jukes-
Cantor model (mutation rate 1E-5 and 1E-9 respectively). 
Source code and computed data are included in 
supplementary documentation.

Kleinman

Initially, a non-drug resistant bacterium is inoculated into 
the drug-free region of the petri dish. In this case, it is 
assumed that the base at the site of interest is T. Initially, 
the frequency of that variant is 1, and the frequency of any 
variant with an A, C, or G base at that site is 0. That 
bacterium double for the first generation. The Markov 
transition matrix for that single replication gives a small 
probability that an A, C, or G mutation occurs, and the 
probability that a T occurs is slightly less than 1. These 
two bacteria double for the second generation. It requires 
2

Markov transitional steps to compute the frequencies of 
the different variants for this generation. Each of these 
Markov transitional steps slightly reduces the frequency of 
the T variants and slightly increases the frequencies of the 
A, C, and G variants. The next generation consists of a 
doubling of these four bacteria to 8 bacteria that requires 4 
Markov transitional steps to compute the frequencies of 
each of the different variants for this generation. This 
DNA evolutionary process continues until the frequency 
of A, and the total population size is sufficient to give an 
expected occurrence of an A variant (nA=n*A). For a 
mutation rate of 1E-5, this occurs at about a population 
size of 3E4 (about 15 doublings or generations). Another 
consideration is that this Markov process is occurring at 
every site in the genome of the bacteria used by the 
Kishony team. Two different antimicrobial agents were 
used (not simultaneously) in the experiment, 
Ciprofloxacin, and Trimethoprim. The occurrence of 
resistance mutations to either drug occurs in a single 
colony which is demonstrated by the use of either drug in 
the experiment. The experiment does not work when both 
drugs are used simultaneously [18]. In order for the 
experiment to work with 2 drugs requires that a single 
variant have resistance mutations for both drugs. The 
mathematical requirement for this to occur is 
demonstrated by the 2 sites non-stationary Markov 
process.

Figure 7: Base frequencies for A and T and expected number  
of variant A, Jukes-Cantor non-stationary model, single-site,  
mutation rate 1E-9.

Figure 7 demonstrates the results of the Jukes-Cantor non-
stationary model similar to Figure 6 except with a lower  
mutation rate. As with Figure 6, Figure 7 does not include  
the C and G frequency (probability) curves because these  
base frequencies are identical to the A frequency curve. The  
same Markov DNA evolutionary process that is described in  
Figure 6 is occurring with this case whose result is illustrated  
in Figure 7. The only difference is that the lower mutation  
rate (1E-9 vs. 1E-5) results in a slower approach to an  
expected occurrence of variant A equal to 1. (1.5E8 (about 

Figure 8: Base frequencies for A1A2, A1T2, and T1T2 
variants, Jukes-Cantor stationary model, two sites, as a 
function of number of replications and mutation rate 1E-5

The base frequencies for the X1Y2 variants where neither X 
nor Y is a T base are not included in Figure 8 because these 
base frequencies are identical to the A1A2 frequency curve. 
The base frequencies for the X1T2 and T1Y2 variants where 
neither X nor Y is a T base are not included in Figure 8 
because these base frequencies are identical to the A1T2 
frequency curve. This is again because of the symmetry of 
the Jukes-Cantor model. The mutation rate for base 
transitions is the same for base trans versions. Each Markov 
transition in the Jukes-Cantor stationary model is both a 
replication and a generation. Each element in the transition 
matrix is the product of the individual mutation rates (that is 
the joint probability) of the particular mutational change at 
each site in a single replication for a single member of a 
lineage. Therefore, each replication is also a generation. The 
way to correlate the curves in Figure 8 to the genetic 
transformation is to consider a bacterium in a population 
with a T1 base at one particular site and a T2 base at another 
particular site in the genome. That bacterium replicates, and 
its descendant will have a slightly reduced probability of 
either a T1 base at the one particular site or a T2 base at the 
other particular site and a slightly increased probability of 
having an A1, A2, C1, C2, G1, or G2 base (mutation) at their 
particular sites. When that descendant replicates, its 
descendant will have another slight decrease in the 
probability of a T1 or T2 base  occurring at their particular 
sites and another slight  increase in the probability of having 
an A1, A2, C1, C2, G1,  or G2 mutation at their particular 
sites. Each replication of  each of the following descendants 
will decrease the  probability of T1 or T2 occurring at the 
particular sites and  increase the probability of an A1, A2, 
C1, C2, G1, or G2  mutation at their particular sites until the 
evolutionary  process reaches equilibrium where the 
probability of any of the eight possible bases (4 possible bases 
at each site) 
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occurring at that site will be 0.0625. For the mutation rate of 
1E-5, this occurs at about 4E5 replications (generations). 
After 4E5 replications, the probability of finding any of the 
eight possible bases at the two particular sites remains 
constant at the value of 0.0625. This evolutionary model has 
reached equilibrium.

Figure 9: Base frequencies for A1A2, A1T2, and T1T2 
variants, Jukes-Cantor stationary model, two sites, as a 
function of number of replications and mutation rate 1E-9

Figure 9 demonstrates the result of the Jukes-Cantor two-
site stationary model similar to Figure 8 except with a lower 
mutation rate. As with Figure 8, Figure 9 does not include 
most of the base frequencies for the same reason, as 
described in Figure 8. The only difference is that the lower 
mutation rate (1E-9 vs. 1E-5) results in a slower approach to 
equilibrium (4E9 vs. 4E5 replications (generations)), but 
either two sites stationary case converges on the same 
equilibrium values for the base frequencies, 0.0625.

Figure 10: Base frequencies for A1A2, A1T2, and T1T2 
variants, and expected number of A1A2 variants, Jukes-
Cantor non-stationary model, two sites, as a function of 
number of replications and mutation rate 1E-5.

Figure 10 gives the result of the Jukes-Cantor two-site non-
stationary model of DNA evolution. The base frequencies for 
the X1Y2 variants where neither X nor Y is a T base are not 
included in Figure 10 because these base frequencies are 
identical to the A1A2 frequency curve. The base frequencies 
for the X1T2 and T1Y2 variants where neither X nor Y is a T 
base are not included in Figure 10 because these base 
frequencies are identical to the A1T2 frequency curve. This is 
again because of the symmetry of the Jukes-Cantor model. 
The mutation rate for base transitions is the same for base 
trans versions. Each Markov transition in the Jukes-Cantor 2 
site non- stationary model is only a replication, not a 
generation. Each element in the transition matrix is the 
product of the individual mutation rates (that is the joint 
probability) of the particular mutational change at each site 
in a single replication where the change in frequencies of the 
different variants now depends on population size. Consider 
the math presented here in the context if the Kishony team 
tries to perform the experiment with two drugs (or if the step 
increase in drug concentration is so large that two mutations 

are required for adaptation to the next higher drug 
concentration region). Initially, a single non-drug resistant 
bacterium is inoculated into the drug-free region of the petri 
dish. In this case, it is assumed that the base at one site of 
interest is T1 and for the second site of interest the base is T2 
so that the frequency of that T1T2 variant is 1 and the 
frequency of any variant with combinations A1, A2, C1, C2, 
G1 or G2 base at sites 1 and 2 are 0. That bacterium double 
for the first generation. The Markov transition matrix for that 
single replication gives a small probability that an A, C, or G 
mutation occurs at either site and the probability that a T 
occurs at either site is slightly less than 1. These two bacteria 
double for the second generation. This requires 2 Markov 
transitional steps to compute the frequencies of the different 
possible variants. Each of these Markov transitional steps 
slightly reduce the frequency of the T1T2 variant and very 
slightly increase the frequencies of the A1A2, A1C2, A1G2, 
C1A2, C1C2, C1G3, G1A2, G1C2, and G1G2 variants and 
slightly increase the frequencies of the A1T2, C1T2, G1T2, 
T1A2, T1C2, and T1G2 variants. The next generation consists 
of a doubling of these four bacteria to eight bacteria which 
requires 4 Markov transitional steps to compute the 
frequencies of each of the different variants. This DNA 
evolutionary process continues until the frequency of A1A2 
(the assumed double drug resistant variant) and the total 
population size is sufficient to give an expected occurrence of 
an A1A2 variant (n A1A2 =n* A1A2). For a mutation rate of 
1E-5 this occurs at about a population size of 2.3E8 (about 28 
doublings or generations).

Figure 11: Base frequencies for A1A2 and A1T2 variants, and 
expected number of A1A2 variant, Jukes-Cantor non-
stationary model, two sites, as a function of number of 
replications and mutation rate 1E-9

Figure 11 gives the result of the Jukes-Cantor 2 site non-
stationary model similar to Figure 10 except with a lower 
mutation rate. As with Figure 10, Figure 11 does not include 
A1C2, A1G2, C1A2, C1C2, C1G2, G1A2, G1C2, and G1G2 
frequency curves because these base frequencies are identical 
with the A1A2 frequency curve. The base frequencies for the 
C1T2, G1T2, T1A2, T1C2, and T1G2 variants are not 
included in Figure 11 because these base frequencies are 
identical to the A1T2 frequency curve. The frequency of the 
T1T2 variant remains very close to 1, only very slowly 
decreasing as the number of replications increases so it is not 
displayed. The A1A2 frequency curve appears superimposed 
on the A1T2 curve because of the very small values (of the 
order of 1E-16 and 1E-respectively). The expected occurrence 
of an A1A2 variant is very slowly increasing and the 
computation was halted at 3E14 replications (about 48 
doublings (generations)). A linear interpolation of the data 
from Figure 11 gives the expected occurrence of an A1A2 
variant will occur at about 8E15 replications (about 53 
doublings of the original founder bacterium). For the Kishony 
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Mega-Plate experiment to work with two drugs (or a larger 
step increase in drug-concentration), a much, much larger 
petri dish will be needed than the “Mega-Plate”.

DISCUSSION
The mathematical behavior of the Markov process of DNA 
evolution is significantly different when assuming a 
stationary versus a non-stationary model. It is shown that 
the Jukes-Cantor model assumes a constant population 
size of 1 because of the elements used in the transition 
matrix. The Jukes-Cantor stationary model is physically 
modeling a single-site in the DNA in a lineage of a single 
member of a population. Because of this, each transition 
from one state to the next represents a generation. The 
initial state at that site, the probability (frequency) of that 
base is 1, and the probability of any of the other bases is 0. 
When that member replicates, the probability of the 
original base occurring is slightly less than 1 and the 
probability of any of the other substitutions now is slightly 
greater than 0. When that descendant replicates, the 
probability of the original base is again slightly decreased 
and the probabilities of any of the possible substitutions are 
increased. When the equilibrium state is achieved, the 
probabilities of finding any of the possible bases will be 
0.25 for all possible bases. And the number of replications 
to reach that state is approximately 1/(¼*μ). Once the 
equilibrium state is reached, with any further replications, 
the probability of finding any base at that site will be 0.25 
no matter how many further replications occur. The Jukes-
Cantor model for a single-site converges to a stationary 
value of 0.25 regardless of the mutation rate, and the two-
site model converges to 0.0625 (again regardless of the 
mutation rate). As with, the single-site Jukes-Cantor 
model, the equivalent two-site model also applies to the 
lineage of a single member where each transition 
represents a replication of that particular member, but that 
replication also represents a generation. When a constant 
non-unity population is considered with the model, each 
matrix multiplication still represents a single replication of 
that member, but now a generation is n matrix 
multiplications (replications). The non-stationary Jukes-
Cantor model takes into account the number of 
replications (population size) occurring in a lineage. This 
has a strong effect on the relative frequencies of the 
different variants in the population. This model does not 
reach equilibrium. The Kishony Mega-Plate experiment 
starts its evolutionary process with a single “wild-type” 
variant. As these wild-type replicates and the population 
size increases, the relative frequencies are changing, but 
very slowly, and most of the members of the population 
will have the original base at the site of interest. The 
probability of the correct mutation occurring is improving 
as the colony size grows, but its relative frequency will be 
very low because of the large population size, and this is 
demonstrated by the non-stationary Jukes-Cantor model 
as well as the Kishony Mega-Plate Experiment.

The single-site Jukes-Cantor stationary model with a 
mutation rate of 1E-5 reaches equilibrium and relative 
frequencies of all variants of 0.25 at about 4E5 replications, 
as shown in Figure 4. For the same mutation rate and the 
number of replications, the single-site Jukes-Cantor non- 
stationary model shows the relative frequency of the wild-
type to be very close to 1, and the relative frequency of the 
mutated variant to be 6E-5, but the expected number of 

the drug- resistant mutated variant will be about 1. 
Likewise, for a mutation rate of 1E-9, the single-site Jukes-
Cantor stationary model reaches an equilibrium of 0.25 at 
about 3E9 replications. This is the same number of 
replications that on average would give every possible base 
substitution at every site in a genome. And this is the 
approximate number of replications for the Kishony 
populations to get the next beneficial mutation for the next 
higher drug-concentration region.
The reason why such significant differences occur between 
the stationary and non-stationary models can be seen when 
equations (4) and (16) are considered, Ei = (Ai, Ci, Gi, Ti) 
for the single- site model that is identical for both 
stationary and non-stationary models. Ei is the state of the 
system at time (generation), i and Ai, Ci, Gi, Ti are the 
frequencies of the bases in that population at time i. If the 
total population size is n, and the number of members of 
the population of each of the variants is nAi, nCi, nGi, nTi 
respectively, then frequencies Ai, Ci, Gi, Ti at time i will be 
nAi/n, nCi/n, nGi/n, nTi/n, respectively. In the stationary 
formulation of the Jukes-Cantor model, n is implicitly 
assumed to be constant, and equal to 1. In the Kishony 
Mega-Plate experiment, n is not constant and varies with 
time. When n is considered to be a function of time as 
demonstrated above, the non-stationary Jukes-Cantor 
model will give accurate predictions of this experiment. 
This principle becomes even more apparent for Markov 
Chain models of DNA evolution when 2 sites are being 
considered simultaneously. The two-site stationary model 
with a mutation rate of 1E-9 also reaches equilibrium at 
about replications and a frequency value of 0.0625. This 
value under-predicts the number of replications in the 
Kishony experiment to accumulate the first two beneficial 
mutations sequentially by a factor of 2. Also, the frequency 
of the different variants will be nowhere close to 0.0625. In 
the actual experiment, the frequency of the wild-type is still 
very close to 1, and the mutated members of the 
population represent only a small portion of the total 
population. The non-stationary model with mutation rate 
1E-5 at 2.5E4 replications shows the wild-type variant still 
at very close to a relative frequency of 1, the mutant variant 
at the relative frequency of about 5E-5, and the expected 
number of 1 drug-resistant mutant variant in that 
population.
When the mutation rate is lowered to 1E-9, at 2E8 
replications still shows a relative frequency of  the wild-
type to be almost 1, and the relative frequency of the 
mutated variant is still less than 1E-8, but one would expect 
there would be one mutated drug-resistant variant in that 
population. This is demonstrated by the Kishony Mega-
Plate experiment. The vast majority of the members in a 
given colony are not mutated variants that can grow in the 
next higher drug region, these members are clones of the 
founder of that colony (at least at that particular site in the 
genome).
If the mutations in any evolutionary Markov process are 
accumulated sequentially as in the Kishony Mega-Plate 
experiment, the number of replications required to make 
the transition is  exponentially smaller than when the 
mutations must be accumulated simultaneously. The 
mathematical explanation for this is the multiplication rule 
of probabilities. This is the reason that the Kishony Mega-
Plate experiment can only operate with small increases in 
drug-concentration on the plate used. Any higher 
concentration of the drug or the use of two or more drugs 
will require a much, much larger plate to accommodate the 
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much larger colony size necessary for such an evolutionary 
process.

There are two significant points to consider when a single 
drug is used versus two drugs (or a higher drug-
concentration in the adjacent region) in the physical 
behavior and mathematical modeling of the Kishony Mega-
Plate experiment. When an evolutionary process such as 
the one drug experiment is carried out, the mutations can 
accumulate sequentially, one at a time. What that means 
biologically is that some member of the population gets the 
beneficial mutation that gives improved fitness in a 
particular colony (lineage). That member is then able to 
form a new colony in the next higher drug-concentration 
region and start a new Markov process. It doesn't matter 
what happens to its progenitor colony. It can continue to 
grow or go extinct. In the case where two drugs are used or 
when the drug-concentration in the adjacent band is too 
large (requiring more than one mutation to grow in that 
region), a second or higher-order Markov transition matrix 
is required. What this means numerically and biologically is 
that the variant with one of the beneficial mutations (after 
several hundred million replications in that colony) must 
continue to grow in that colony. That variant with the first 
beneficial mutation will have to do about 30 doublings 
(when the mutation rate is 1E-9) to get the second 
beneficial mutation necessary to grow in the next higher 
drug-concentration region. But the other variants will also 
be doubling at the same time instead of starting with just 
one member in that lineage it will be one of the other 
hundreds of millions of other members in that colony. This 
means the carrying capacity of that environment must be 
vastly larger to accommodate this much, much larger 
colony.

The importance of understanding DNA evolution cannot 
be overstated. The impact on the health care system of 
infectious diseases and the evolution of drug resistance is 
one of the greatest burdens on the medical system. 
According to the Healthcare Cost and Utilization Project 
(HCUP) on the most common medical reasons in 2003 for 
all hospitalizations that began in the emergency 
department, pneumonia was the number 1, urinary 
infections 12, skin infections 15, and sepsis 16 [19]. These 
statistics have not improved with time. According to recent 
HCUP data

(2018), excluding maternal and neonatal stays, the main 
reasons for hospital admission are, septicemia number 1 
and pneumonia number 4 [20]. That is only half the story. 
HCUP 2008 data for the most expensive hospitalization 
shows the septicemia is the number 1 most expensive cause 
for hospitalization [21].

How much of this problem is due to the way antibiotics are 
used in the outpatient environment is unclear. Conflicting 
signals are given to primary care physicians on the use of 
antibiotics. Primary care physicians are being warned in the 
overuse of antibiotics because of the selection of drug 
resistant variants and killing non-pathogenic bacteria [22]. 
On the other hand, the data from the previous paragraph 
would seem to indicate that delay or under-use of 
antibiotics may be occurring. Primary care physicians 
usually don't have access to stat laboratories to give 
objective evidence for a disease they are trying to treat in an 
ill patient. Primary care physicians must depend on the 
medical history and clinical examination with minimal  

data, usually just the patient's vital signs and perhaps a 
rapid in office test such as a rapid group A streptococcal 
orinfluenza test. Physicians working in the outpatient 
environment don't have the benefit of close patient 
observation such as what occurs with the hospitalized 
patient. Outpatient physicians must depend upon the 
patient or family members to report on condition changes 
and they may not be capable to recognize a worsening 
condition. In the case of early sepsis, even a 24 hour delay 
in the initiation of antibiotics can lead to life threatening 
infections.

The discussion does not end here. Drug-resistant infections 
are a bigger problem in the hospitalized patient than in the 
out-patient environment. It is well known that community 
acquired MRSA infections are still sensitive to more 
antibiotics than hospital acquired MRSA infections. This is 
most likely due to the fact that hospitalized patients tend to 
be sicker with weaker immune systems than the generally 
healthier out-patients. 

Based on the analysis of the evolution of drug-resistance in 
the Kishony Mega-Plate experiment, it is clear that the 
evolution of drug-resistance to a single drug selection 
pressure is much easier for a bacterial population to 
accomplish than evolution to two or more drugs 
simultaneously. This would seem to point to a better 
solution of using combination antibiotics rather than not 
using antibiotics to prevent the selection of resistant 
variants.

Conclusion
DNA evolution can be modeled as a Markov process, but 
the assumption that this Markov process is stationary leads 
to inaccurate predictions when doing phylogenetic DNA 
analysis, or using these models to predict the behavior of 
evolutionary experiments. The underlying problem with 
the Jukes-Cantor and derivative models is that in the 
formulation of these models, it is assumed that the 
evolutionary process is stationary, and these models don't 
take into account population size. Implicit in the derivation 
of the Jukes-Cantor and derivative models is that the 
substitution matrix does not change. The probabilities in 
the transition matrix are a function of population size. 
DNA evolution is not a stationary Markov process, and 
applying this stationary model selectively to only 
homologous portions of the genome ignores all the genetic 
differences that would defeat the accuracy of the 
predictions this model is capable of doing. By including the 
population size in the transition matrix, this model will 
correctly simulate and predict the evolutionary behavior of 
the Kishony Mega-Plate experiment.

The evolution of drug-resistance of microbes to drug 
therapies or cancers to targeted therapies requires an 
accurate understanding of the evolutionary process. The 
non-stationary Markov chain model of DNA evolution 
gives an important tool for understanding evolution. And 
that tool gives the ability to estimate the number of 
selection pressures (antibiotics or targeted cancer therapies) 
necessary to address and suppress the evolutionary process 
and have a greater probability of having treatment success.
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