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Nonhealing diabetic foot ulcers are a significant complication of diabetes. They develop 
due to peripheral neuropathy, and may take weeks or months to close. A failure to heal 
may necessitate lower limb amputation causing significant morbidity and mortality. 
Wound healing impairment in diabetic patients is associated with delays in immune cell 
migration and altered macrophage activation. These processes are orchestrated by the 
cytokine milieu in the wound manifested by an upregulation of proinflammatory cytokines 
and downregulation of anti-inflammatory cytokines. This review examines the current 
knowledge of cytokine expression (IL-1β, IL-6, IL-10, TNF-α, TGF-β, and C-reactive proteins as 
well as the chemokines CCL2 and CXCL12) and explores potential cytokine immunotherapy 
to aid healing.

Practice Points

 ●  The complex orchestration of events in normal wound healing is guided by the 
specific temporal and spatial expression of cytokines and chemokines in the wound; 
however, the exact coordination of these events is not completely understood.

 ●  The expression of cytokines and chemokines is altered in diabetic wounds, which 
results in persistent inflammation and impaired healing.

 ●  Blocking the activity of individual proinflammatory cytokines (IL-1β, TNF-α, 
C-reactive protein) has improved diabetic wound healing in both animal models and 
humans.

 ●  Diabetic wound healing may also be improved by increasing the expression of anti-
inflammatory cytokines (IL-10 and TGF-β).

 ●  The administration of chemokines (or drugs that induce chemokine expression) may 
improve leukocyte migration and healing in the wound.

 ●  Because of the complexity of wound healing, a multifaceted approach targeting 
multiple cytokines (thereby altering the cytokine milieu of the diabetic wound) may 
be most effective for improved healing.
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Background
Diabetes mellitus is a prevalent metabolic disease 
that is characterized by chronic hyperglycemia 
and long-term complications such as retinopa-
thy, hypertension and abnormal lipid metabo-
lism [1]. In addition, other complications such 
as peripheral neuropathy and impaired wound 
healing lead to chronic foot ulcers, a major cause 
of diabetes-associated lower limb amputations.

The wound healing process is a complex 
orchestration of events including inflamma-
tion, angiogenesis and extracellular matrix 
growth and remodeling [2]. The impaired heal-
ing observed in diabetic wounds correlates with 
decreased keratinocyte, fibroblast and immune 
cell migration into the wound and reduced 
endothelial cell angiogenesis [3,4]. The movement 
and function of these cells in the wound are 
controlled by the local cytokine milieu. In par-
ticular, the cytokine milieu plays an important 
role in differentiating macrophages into subsets 
that exist on a functional spectrum ranging from 
proinflammatory (classically activated M1) to 
anti-inflammatory and healing (alternatively 
activated M2) macrophages. Diabetic wounds 
have been linked to both increased proinflam-
matory cytokine production and an increased 
ratio of classically to alternatively activated mac-
rophages (M1/M2) [5]. This review focuses on 
cytokines that are differentially expressed in dia-
betic wounds, and it highlights research aimed 
at altering the cytokine milieu in the diabetic 
wound as an aid to healing.

interleukins
●● iL-1β

IL-1β is an important inflammatory molecule 
produced by blood monocytes and tissue mac-
rophages [6]. This cytokine is activated via cas-
pase-1 cleavage in the secretory lysosome, after 
caspase-1 activation by the NALP3 inflamma-
some. This cycle allows IL-1β to amplify its own 
secretion via its initiation of the assembly of the 
NALP3 inflammasome. Along with activat-
ing the inflammasome, IL-1β also stimulates 
inflammation via increasing mobilization of 
leukocytes from the bone marrow and secretion 
of acute-phase proteins from the liver [7].

Obese patients may have a sustained release 
of IL-1 β from adipose tissue, and this could 
have broad effects based on the wide distribution 
of the IL-1 receptor. Indeed, elevated IL-1β has 
been implicated in the development of insulin 
resistance and aberrant healing in diabetes [8]. 

Human diabetic foot ulcers have increased levels 
of IL-1β, and these levels decrease as the ulcers 
heal [9]. Using skin explants, topical treatment of 
IL-1 on normal tissue correlated with increased 
CXCR2 expression and delayed wound clo-
sure [10]. Isolated wound macrophages from dia-
betic humans and db/db mice display increased 
IL-1β and NALP3 inflammasome components 
through 10 days of healing, and blocking of the 
inflammasome correlated with improved healing 
in these wounds [11].

Over the past decade, researchers have aimed 
at blocking the effects of IL-1β in the hopes of 
decreasing the chronically inflamed condition 
of diabetic wounds. Anakinra (Kineret) is an 
IL-1 receptor antagonist (IL1Ra) commonly 
used for treating rheumatoid arthritis (RA). 
Due to the implications of IL-1β in pancreatic 
beta cell destruction, much work has been done 
in using IL1Ra to combat diabetic pathogen-
esis [12]. Indeed, IL-1Ra and anti-IL-1β antibody 
treatments have correlated with improved beta 
cell functionality in Type 2 diabetic patients, 
indicating the importance of this cytokine in 
this disease [13,14]. In wound healing, Anakinra 
was shown to be effective at decreasing IL-6 and 
TNF-α protein levels in wound tissue during 
the first 48 h postwounding of normal mice [15]. 
Similarly, both db/db mice injected with IL-1β-
neutralizing antibodies and IL-1R knockout 
mice display wounds with a decreased M1/M2 
ratio, decreased IL-6 and TNF-α gene expression 
and improved healing [16]. Thus, the blocking of 
IL-1β function in diabetic wounds with either 
neutralizing antibodies or the receptor antago-
nist may have potential in the improvement of 
diabetic wound healing.

●● iL-6
IL-6 is a cytokine secreted by T lymphocytes 
and macrophages and is critically important in 
host defense [17]. Adipose tissue, particularly vis-
ceral fat, is also a significant source of IL-6 [18]. 
IL-6 stimulates acute-phase protein release 
from the liver, production of neutrophils in the 
bone marrow and supports the proliferation of 
B lymphocytes. It also influences recruitment 
of leukocytes through the stimulation of IL-8 
and MCP-1 secretion from endothelial cells [19]. 
As such, this cytokine represents a significant 
portion of the inflammatory response.

Diabetic insulin resistance and β-cell inflam-
mation are associated with increased levels of 
IL-6 [20]. Rabbits treated with the toxic glucose 
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analog alloxan monohydrate display signifi-
cantly elevated blood glucose, delayed wound 
healing and significantly higher wound expres-
sion levels of IL-6 and its receptor GP130 com-
pared with controls [21]. Hyperglycemia has been 
shown to significantly elevate IL-6 expression 
in a dose-dependent manner in macrophages 
isolated from normal mice, and macrophages 
isolated from streptozotocin (STZ)-injected and 
db/db mice corroborate this effect [22]. Diabetic 
patients with foot ulcers displayed significantly 
higher levels of circulating acute-phase proteins 
and IL-6 than those without foot ulcers [23]. 
Both glucose concentration and wound chro-
nicity seem to have strong correlation with the 
increased IL-6 expression observed in diabetic 
foot ulcers.

IL-6-deficient mice have impaired mac-
rophage infiltration and delayed wound heal-
ing, which was not observed in mice lacking 
the α-subunit of the IL-6 receptor alone [24]. 
However, blocking the IL-6 receptor has been 
shown to successfully decrease inflammation 
in models of corneal alkali burns, indicating a 
potential benefit in its use in chronic wounds [25]. 
This may be explained by a need for some level 
of IL-6 in the normal wound healing process 
combined with deleterious effects when IL-6 is 
overexpressed in chronic wounds. Tocilizumab 
(Actemra) is an anti-IL-6 receptor antibody that 
has been effective in improving blood glucose 
levels in patients with Type 2 diabetes [26]. In 
a study of joint surgeries between RA patients 
treated with nonbiologic antirheumatic drugs 
and those treated with Tocilizumab, the latter 
group experienced significant depression of post-
operative fever and plasma C-reactive protein 
(CRP) [27]. This suggests an efficient suppression 
of the inflammatory effects of IL-6 in humans, 
but it has yet to be tested in a model of diabetic 
wound healing.

In addition to antibody treatment of IL-6, nat-
ural remedies may represent a potential option 
for lowering its expression in diabetic wound 
healing. Curcumin, one of the main ingredi-
ents in turmeric, has been shown to signifi-
cantly decrease circulating plasma levels of IL-6 
in STZ-injected mice over 7 weeks [28]. Indeed, 
use of curcumin-loaded poly (ε-caprolactone) 
nanofibers resulted in significantly lower levels 
of IL-6 release in vitro from lipopolysaccharide-
stimulated macrophages and improved wound 
healing in STZ-injected mice [29]. These results 
suggest that the reduction in circulating IL-6 

levels, whether by antibody-mediated or natural 
treatments, could be a key tool in the field of 
diabetic wound healing.

●● iL-10
Unlike IL-1β and IL-6, IL-10 is an anti-inflam-
matory cytokine. In vivo, it is mostly secreted by 
T helper cells, regulatory T cells, macrophages 
and dendritic cells [30,31]. The IL-10R is mainly 
expressed on immune cells, predominantly 
macrophages, where it will inhibit the release 
of proinflammatory mediators, suppress anti-
gen presentation and enhance phagocytosis [32]. 
IL-10R signaling is essential for the generation 
of anti-inflammatory macrophages that regu-
late mucosal defense in mice and humans [33]. 
Interestingly, regulatory T-cell-mediated sup-
pression of T helper 17 (Th17)-induced inflam-
mation is mediated by IL-10 secretion [34]. Due 
to the correlation between autoimmune diseases 
and Th17 cells, IL-10 involvement in diabetes 
with regards to this lymphocyte subset should 
be investigated.

There is an association between obesity, Type 
2 diabetes and low circulating levels of IL-10 [35]. 
IL-10 protein expression is lower in isolated mac-
rophages from db/db mice compared with db/+ 
mice over 7 days postwounding [36]. In addi-
tion, STZ-injected rats have shown significantly 
lower protein levels of this cytokine in the tissue 
through 7 days postwounding compared with 
controls [37]. Human diabetic foot ulcers have 
decreased expression of IL-10, particularly in the 
keratinocytes and endothelial cells at the wound 
margins [38]. Unlike the high expression of pro-
inflammatory cytokines, the expression of this 
anti-inflammatory cytokine in diabetic wounds 
is quite low, and its paucity may contribute to 
the development of chronic nonhealing wounds.

There are several methods available for 
increasing IL-10 expression. Highly purified 
eicosapentaenoic acid increased IL-10 expres-
sion in monocytes derived from obese patients 
with dyslipidemia [39]. Recently, the topical 
application of curcumin on wounds of STZ-
injected rats correlated with increased IL-10 
mRNA and protein, increased wound contrac-
tion and improved granulation tissue forma-
tion [40]. Lentiviral-mediated IL-10 overexpres-
sion in mice has been shown to correlate with 
decreased scar formation and reduced proin-
flammatory cytokine production, such as IL-6 
and MCP-1 [41]. Another potential gene delivery 
vector is N-acyl low-molecular weight chitosan. 
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Nanomicelles of this vector designed to express 
IL-4 and IL-10 were injected intramuscularly 
into STZ-injected mice, which resulted in sig-
nificantly higher serum levels of these cytokines 
and decreased proinflammatory cytokines [42]. 
Whether by topical treatments or gene therapy, 
increasing IL-10 in diabetic wounds suggests an 
interesting option in improvement of healing.

Noninterleukin cytokines
●● TNF-α

TNF-α is a proinflammatory cytokine that 
stimulates inflammation at low levels and inhib-
its extracellular matrix synthesis at high lev-
els [43]. While the main source of this cytokine 
is macrophages, it can also be produced by 
adipose tissue, neurons, mast cells and lym-
phocytes [44,45]. In combination with IL-1β and 
IL-6, it can stimulate the acute-phase response, 
act as a potent neutrophil chemoattractant and 
stimulate the classical activation of macrophages. 
This latter function occurs through its bind-
ing with TNFR2, which activates the MAPK 
and NF-κB signaling pathways [46]. In vitro, 
TNF-α also stimulates apoptosis of fibroblasts, 
keratinocytes and endothelial cells [47,48]. This 
occurs through its binding with TNFR1, which 
stimulates downstream mitochondrial cyto-
chrome C release, caspase 9 activation and apo-
ptosome formation. TNF-α frequently opposes 
the proliferative activity of TGF-β, presumably 
through the inactivation of Smad 2/3 [49]. While 
TNFR1 is fairly ubiquitous in distribution, 
TNFR2 is mainly relegated to immune cells, 
limiting its proinflammatory effects to leuko-
cytes. Consequently, TNF-α signaling is quite 
complex and sometimes antagonistic, allowing 
it to perform many functions in the process of 
wound healing.

STZ-injected rats displayed significantly 
higher levels of serum TNF-α by day 4 post-
wounding. Oral supplementation with camel 
undenatured whey protein reduced both TNF-α 
expression in the wound and time to wound 
closure [50]. Diabetic patients have also shown 
a significant upregulation in serum TNF-α dur-
ing high blood glucose events compared with 
a relatively little change observed in normal 
patients [51]. In addition, TNF-α has also been 
observed to be elevated in the serum of obese 
patients [52]. Acute hyperglycemia appears to trig-
ger a much stronger upregulation of TNF-α in 
diabetics, lending further credence to the overall 
chronic inflammatory state seen in this disease.

Anti-TNF-α neutralizing antibodies adminis-
tered to ob/ob mice significantly improved heal-
ing and reduced inflammation and the numbers 
of viable macrophages at the wound site [53]. 
Etanercept (Enbrel) is a TNF receptor:IgG1 F

c
 

fusion protein that has been shown to signifi-
cantly decrease TNF-α activity in the wounds 
of chronic leg ulcers [54]. It has also been effective 
in db/db mouse wounds, where it significantly 
decreased fibroblast apoptosis and increased new 
matrix formation [55]. Infliximab (Remicade) is 
an anti-TNF-α neutralizing antibody treatment 
that is used to treat autoimmune diseases such as 
RA and Crohn’s disease. It has been found to be 
successful at healing human chronic leg ulcers, 
healing 9 of 14 ulcers by more than 75% within 
just 8 weeks of use [56]. As of yet, Infliximab has 
not been tested in any model of diabetic wound 
healing [57].

●● TGF-β
TGF-β acts as a chemoattractant for neutro-
phils and monocytes early in healing, as well as 
stimulates monocyte-to-macrophage differentia-
tion, proliferation of fibroblasts and subsequent 
extracellular matrix synthesis later in the pro-
cess [58]. Upon injury, it is secreted by platelets, 
keratinocytes, resident macrophages and fibro-
blasts [59]. As such, TGF-β experiences a biphasic 
expression during normal wound healing that 
peaks within a few hours and again at 5 days 
postinjury [60]. This cytokine elicits its effects via 
binding, heterodimerization and phosphoryla-
tion of its receptor, which then phosphorylates 
Smad proteins that translocate to the nucleus 
and regulate expression of target genes by bind-
ing to the promoter elements [61].

A reduction in TGF- β expression has been 
observed in both human wounds and rodent 
models of wound healing. Human nonhealing 
venous ulcers have shown suppressed TGF-β 
signaling via downregulated TGF-βR and atten-
uation of Smad signaling, and STZ-injected mice 
have reduced wound tissue expression of TGF-β 
on day 4 postwounding [62,63]. In a rat model of 
Type 2 diabetes, decreased TGF-β signaling was 
associated with delayed wound closure. In vitro 
analysis of isolated diabetic dermal fibroblast 
demonstrated reduced TGF-β RII signaling 
and fibroblast migration [64]. Similarly, human 
diabetic foot ulcers have decreased expression of 
both TGF-β and its receptor in the wound [65]. 
Importantly, the concentration of this cytokine 
in the wounds of Type 2 diabetic patients 
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Figure 1. early events in normal wound healing include the production of chemokines: CCL2 by keratinocytes and CXCL12 
by endothelial cells. These molecules recruit polymorphonuclear cells and macrophages into the wound bed. At this stage, the 
macrophages have an M1 phenotype that is characterized by production of the proinflammatory cytokines IL-1β, IL-6 and TNF-α.
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correlates with decreased levels of matrix met-
alloproteinases and a concomitant increase of 
tissue inhibitor of matrix metalloproteinases [66]. 
As a consequence, the lower concentration of 
TGF-β found in diabetic wounds may delay 
wound healing by preventing the growth of the 
proliferative phase and allowing the disintegra-
tion of the extracellular matrix by the matrix 
metalloproteinases.

Studies have shown that intradermal injec-
tion of a TGF-β-expressing plasmid significantly 
improves wound closure, collagen synthesis and 
angiogenesis in db/db mice [67,68]. In a blinded 
study of human diabetic neuropathic ulcers, 
applications of TGF-β correlated with improved 
healing compared with controls alone [69]. It 
has been suggested that because the latent form 
TGF-β binds to the extracellular matrix, this 
form may be a more effective in vivo therapy than 

active TGF-β due to its increased half-life [70]. 
This would indicate that treatment with a drug, 
such as nitric oxide, that can activate the latent 
form may be a more appealing alternative. For 
instance, the application of ointment from the 
Momordica charantia fruit has improved wound 
closure, increased granulation tissue formation 
and increased TGF-β detection in STZ-injected 
rats [71,72]. Accordingly, drugs that could increase 
endogenous levels of active TGF-β may be more 
effective than gene therapy approaches.

●● C-reactive protein
CRP is a highly conserved acute-phase protein 
of hepatic origin that acts as a pattern recog-
nition receptor. Structurally, it consists of five 
identical protomers that each contains a phos-
phocholine binding site, which together form a 
pentraxin around a central core. Functionally, 
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Figure 2. in the later stages of normal wound healing there is reepithelialization, angiogenesis 
and the rebuilding of extracellular matrix fibers. The macrophages display a more M2 phenotype 
through the production of the anti-inflammatory cytokines IL-10 and TGF-β. Fibroblasts also produce 
TGF-β.
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it can activate the classical complement system, 
stimulate phagocytosis and bind to immuno-
globin receptors [73]. This occurs via its binding 
to phosphocholine expressed on the surface of 
dying cells and bacteria. It is also able to upregu-
late adhesion molecules expressed on endothelial 
cells and increase the release of proinflammatory 
cytokines such as IL-1β, IL-6 and TNF-α [74,75]. 
As CRP is regulated transcriptionally by IL-6 
and IL-1β, it can result in a cyclic amplification 
of inflammation.

Both Type 1 and Type 2 diabetic patients have 
significantly elevated CRP in their plasma [76,77]. 
In addition, Type 1 diabetic patients with micro-
vascular complications have higher CRP levels 
compared with otherwise healthy Type 1 dia-
betics [78]. Diabetic humans with foot ulcers 
also display significantly higher CRP in their 
serum when compared with wounded nondia-
betic patients or diabetics without foot ulcers, 

and CRP levels were significantly lower for 
those diabetic patients with healed ulcers [79]. 
This indicates the potential of CRP as a clinical 
biomarker for diabetic foot ulcer healing.

Statin therapy has been known to signifi-
cantly decrease circulating CRP levels, as well 
as improve normal wound healing [80,81]. Both 
injection and topical application of Simvastatin 
(Zocor) on db/db mice have correlated with 
enhanced angiogenesis and improved healing 
through the first week postwounding [82,83]. 
Likewise, Pravastatin (Pravachol) treatment of 
STZ-injected mice has resulted in significantly 
higher wound breaking strength, hydroxyproline 
content and eNOS expression over 10 days post-
wounding [84]. Finally, Atorvastatin (Lipitor) has 
improved healing in STZ-injected rats over 14 
days postwounding, as well as decreased serum 
CRP levels and prevented new diabetic foot 
ulcers in Type 2 diabetic patients [85,86]. In order 
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Figure 3. Normal events are impaired in the early stages of diabetic wound healing. Both 
chemokine production and recruitment of phagocytes to the wound are reduced.
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to reduce adverse systemic effects from statin 
treatment, topical application seems to be the 
optimal delivery route for improved diabetic 
wound healing.

Chemokines
●● CCL2 (MCP-1)

CCL2, or MCP-1, is a CC family chemokine 
that is secreted by keratinocytes and acts as a che-
moattractant for macrophages and T cells [87]. 
Along with its chemotactic function, this 
chemokine also stimulates growth factor produc-
tion from recently emigrated leukocytes, stimu-
lates fibroblast activity via mast cell-derived IL-4 
and increases motility of endothelial cells [88]. 
Within the wound, CCL2 displays the highest 
expression during the first 24 h postwounding, 
with levels dropping off after the first week [89].

CCL2-deficient mice exhibit delayed heal-
ing, decreased angiogenesis and collagen pro-
duction and delayed macrophage migration into 
the wound [90]. Db/db murine wounds have a 
lower expression of CCL2 than controls within 
24 h postwounding, but a higher expression of 

this chemokine after 13 days [91]. Bone marrow-
derived macrophages from db/db mice showed 
a significant decrease in chemotaxis to CCL2 
and impaired scratch wound closure compared 
with controls, despite expressing normal levels 
of CCR2, the receptor for CCL2 [92]. This sug-
gests that, in addition to expressing lower levels 
of CCL2, diabetic wounds may also contain 
immune cells that are less responsive to its signal.

Recently, it was observed that the local injec-
tion of CCL2 upon wounding restored its defi-
cient expression within 24 h, promoted re-epi-
thelialization and improved monocyte homing 
in db/db wounds [93]. Interestingly, low-intensity 
vibrational treatment of db/db mice resulted in 
improved healing, augmented angiogenesis and 
significantly increased CCL2 wound expres-
sion by day 7 postwounding compared with 
nonvibrated diabetic controls [94]. This type of 
mechanical treatment has been supported based 
on improved blood flow, but the exact mecha-
nisms have yet to be elucidated. STZ-injected 
mice have shown improved wound healing 
by day 5 postwounding, increased leukocyte 
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Figure 4. in the later stages of diabetic wound healing, there is persistent production of chemokines (CCL2 and CXCL12) and an 
associated continued recruitment of neutrophils and macrophages. The macrophages have reduced expression of M2 markers and 
continue to produce proinflammatory cytokines (IL-1β, IL-6 and TNF-α).
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intravasation and significantly increased CCL2 
expression within 24 h in conjunction with local 
administration of GM-CSF [95]. This study sug-
gests that CCL2 may be an intermediary for 
the improved leukocyte migration and healing 
observed in wounds treated with some growth 
factors.

●● CXCL12 (SDF-1)
CXCL12, or SDF-1, is a CXC family chemokine 
expressed by endothelial cells and fibroblasts [96]. 
Its receptor, CXCR4, is expressed by lympho-
cytes and monocytes [97]. CXCR4 signaling is 
involved in trafficking and homing of hemat-
opoietic stem and progenitor cells, as well as 
tumor metastasis [98]. Importantly, CXCL12 
is a potent angiogenic factor that stimulates 
endothelial migration in a VEGF-independent 
manner [99]. The recent discovery of CXCR7, a 

second receptor for CXCL12, has shed new light 
on potential additional functions. While not 
expressed on normal blood leukocytes, CXCR7 
has been found on macrophages in pathologi-
cal conditions. It may be involved in switching 
macrophages to a proinflammatory phenotype 
and increasing phagocytic activity [100].

STZ-injected mice show decreased expres-
sion of CXCL12 through 9 days postwounding 
compared with controls, and the injection of 
reconstituted CXCL12 has improved healing 
in these wounds [101]. Db/db mice also display 
decreased levels of this chemokine through 7 
days postwounding, and the insertion of a 
plasmid expressing CXCL12 correlated with 
improved healing [102]. In contrast, the use of a 
CXCL12 antagonist exacerbated impaired heal-
ing in db/db wounds. This was evidenced by 
decreased angiogenesis and granulation tissue 

Late diabetic response

CCL2
CCL2

CCL2

CCL2

TNF-α

TNF-α

TNF-α

IL-1β

IL-1β

IL-1β

IL-6

IL-6

IL-6

Mac Mac

Mac

PMN

PMN
PMN

PMN

PMN

PMN

CXCL12 CXCL12

Endothelium

TNF-α

IL-1β

IL-6

Mac
TNF-α

IL-1β

IL-6Mac



533

The cytokine milieu of diabetic wounds Review

future science group www.futuremedicine.com

formation, and increased IL-6 and MCP-2 
expression [103].

Topical application of carnosine to db/db 
wounds has correlated with increased CXCL12 
and improved healing [104]. Lentiviral adminis-
tration of CXCL12 to db/db wounds resulted in 
increased granulation tissue and improved epi-
thelialization [105]. The use of alginate scaffolds or 
hydrogel as CXCL12 delivery vehicles improved 
healing in normal murine wounds [106,107]. These 
delivery options have, as of yet, to be explored in 
diabetic wound healing. AMD3100 (Mozobil) 
is the first CXCR4 antagonist to enter clinical 
trials and is frequently used to mobilize hemat-
opoietic cells in cancer patients [108]. The disrup-
tion of the CXCL12–CXCR4 interaction by this 
drug increases endothelial progenitor cells in the 
periphery [109]. Topical application of AMD3100 
to db/db wounds has caused an increase in 
CXCL12 expression, improved healing and 
increased endothelial progenitors in the circu-
lation [110]. However, caution must be exercised 
when using this drug because it is entirely possible 
that there are conflicting effects through a sec-
ond receptor, CXCR7, through which AMD3100 
acts as an agonist [111]. Overall, murine diabetic 
wounds have demonstrated a decreased expres-
sion of the CXCL12, which may partially explain 
the lack of neovascularization observed in these 
wounds. Several treatment options show promise 
in reversing this pattern and improving healing.

Conclusion
Wound healing is a complex process and many 
of the normal wound healing events are impaired 
in diabetic wounds as illustrated in Figures 1–4. 
In the first hours and days, the initial recruit-
ment of inf lammatory cells to the diabetic 
wound is delayed compared with normal 
wounds [112]. This is likely due to a reduced or 
altered chemokine expression, but this mecha-
nism is incompletely understood (Figure 1 & 3). 
At later times, chemokines such as CCL2 and 
CXCL12 may persist in diabetic wounds [113]. 
In addition, other studies using db/db mice and 
Type 1 diabetic patients have measured signifi-
cantly higher levels of other chemokines such 
as CXCL2 (MIP-2) and CCL5 (RANTES) 
compared with healthy controls [91,114]. Thus, 
continued chemokine expression may sustain the 
presence of proinflammatory cells resulting in 
a persistent inflamed state of diabetic wounds.

Proinflammatory cytokines in the wound 
milieu are important in initiating normal 

wound repair, but increased expression levels 
are required only transiently before returning 
to baseline. Diabetic wounds manifest persis-
tently increased expression of these proteins, 
resulting in continued inflammatory cell emi-
gration into the wound. This is a major cause of 
the delay in the healing of diabetic foot ulcers. 
To date, researchers have identified the pro-
inflammatory molecules IL-1β, IL-6, TNF-α 
and CRP to be significantly upregulated and 
the anti-inflammatory cytokines TGF-β and 
IL-10 to be significantly downregulated in dia-
betic wounds (Figure 2 & 4). Thus, agents that can 
block proinflammatory molecules or increase 
anti-inf lammatory cytokines in the wound 
may be critical to shifting diabetic wounds to a 
healthy phenotype [114].

Future perspective
This review highlights cytokines and chemokines 
that are well characterized in the context of dia-
betic wound healing; however, there is still much 
that is not known about the intricate dynamics 
of cytokine expression in both normal and dia-
betic wound healing. In the future, it will also be 
important to consider that the cytokine milieu of 
diabetic wounds may be significantly impacted 
by the presence of the bacteria and biofilms in 
the wound. Chronic wounds, including diabetic 
foot ulcers, have shown higher levels of bio-
film than acute nondiabetic wounds; however, 
only a few studies have examined the diabetic 
wound microbiome to date [115,116]. db/db mouse 
wounds inoculated with P.aerugonosa biofilm 
displayed higher levels of IL-1β and IL-6 than 
control wounds at 4 weeks postwounding [117]. 
By contrast, in a mouse model of polygenic Type 
2 diabetes, wounds inoculated with planktonic 
Staphylococcus aureus unexpectedly had reduced 
expression of IL-1β, TNF-α and Toll-like recep-
tors [118]. Thus, future studies should also con-
sider the role of the microbiome in influencing 
the cytokine milieu and resident cells of the 
diabetic wounds.
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