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Abstract ‘omics and systems biology have led to paradigm shifts in biology and 
medicine. This success has drawn the attention of the bioprocessing industry where 
their application is increasingly more prevalent. systems biology uses system-level 
high dimensional data generated via ‘omics technologies to provide a holistic view 
of the production cell lines. We discuss how systems biology drives rational process 
improvement and cell engineering strategies, highlighting seminal studies in 
prokaryotes and mammalian cell lines that combined multi-‘omics and modeling to 
provide insights into the behavior of production cell lines. Despite its recognized 
potential, there are challenges and limitations to overcome to fully implement and 
realize benefits heralded by systems biology for biomanufacturing: increasing titer, 
yield, quality, process efficiency and stability.

The biopharmaceutical industry is a power-
house within the biotechnology sector, with 
tremendous technological and economic 
growth since its inception. Experts forecast 
continuous strong market growth, with biolog-
ics accounting for more than 50% of the top 
100 prescription sales by 2018 [1]. Over the past 
several decades, improvements in manufactur-
ing processes and product quality were mainly 
driven by increased sales and tighter regulatory 
requirements due to initiatives such as Quality 
by Design (QbD) and Process Analytical 
Technology (PAT). As a result, titers have 
jumped more than 100-fold, from subsingle 
digit yields (in gram per liter) to today’s dou-
ble-digit production levels [2,3]. From a regula-
tory perspective, this impressive achievement 
must be accompanied by a quality-driven bio-
manufacturing framework, founded on inte-
grative systems and data-driven methods that 
contribute to process understanding and where 
critical process parameters are identified, mon-
itored and controlled [4]. To keep up with ever-
increasing market and regulatory demands 
and the competition from biosimilars, the 
biopharmaceutical industry is continuously 
challenged to increase its efficiency and make 
better products cheaper.

Upstream methods for cell line development 
and process optimization are time consuming, 
expensive and labor intensive. These limita-
tions represent, perhaps, the most significant 
bottlenecks in bioprocessing. In addition, 
these upstream methods lack the mechanistic 
understanding of how and why process con-
ditions, or any implemented changes, bring 
about the desired outcome – be it increased 
titers, higher product quality or process stabil-
ity. This laborious effort must be repeated for 
every new production cell line and associated 
protein product. At best, it results in highly 
variable and unpredictable bioprocesses, both 
in terms of productivity as well as product 
quality. These process inconsistencies are com-
monplace and cannot support the expected 
growth in market demand nor the economic 
and regulatory challenges faced by manufac-
turers. The biopharmaceutical industry can 
greatly benefit from technological innovations 
that drive rapid and adaptive change, ulti-
mately providing a competitive advantage, and 
allowing it to focus on improving efficiency, 
flexibility, convenience and quality [2,5–9].

Biologics are complex molecules with 
unique quality attributes that require complex 
production systems. Mammalian cell lines are 



342 Pharm. Bioprocess. (2015) 3(4) future science group

Review    Benavente, Goldberg, Myburg, Chiera, Zapata III & van Zyl

ideally suited for this purpose due to their ability to gen-
erate complex human-like glycan profiles and other post-
translational modifications that are critical for product 
efficacy and safety. At the same time, this inherent com-
plexity of biological systems is also a primary contributor 
to process variability and inconsistency. This conflicts 
with the quality framework enforced by QbD and PAT, 
which is based on a better understanding of the bio-
manufacturing process. It is not possible to fully under-
stand the process(es) without considering the biology 
of the different cell line(s) used and their relationship 
to the products they synthesize. In order to overcome 
this variability and inconsistency, bioprocess scientists 
and engineers need to have a better understanding of 
the cells and their intracellular processes relevant to 
biomanufacturing, including protein translation, post-
translational modifications, folding, aggregation, traf-
ficking and secretion. Without this knowledge, any 
optimizations that lead to production gains observed for 
one cell line are not likely transferrable to another and 
cannot be fully implemented across the entire produc-
tion portfolio. Developing an in-depth understanding 
of the biology of these production cell lines is key for 
sustained biomanufacturing. systems biology is poised 
to tackle many of these challenges, particularly the areas 
of process optimization and cell line development.

What is systems biology?
Perhaps the simplest answer to this question is that sys-
tems biology is the application of systems theory to a 
biological system. As a unique field of study, systems 
biology grew in popularity in the latter part of the 
1990s with the work of Hood and Kitano  [10,11]. The 
application has been suggested as far back as the 1950s 
with the work of Mesarovic and Bertalanffy on general 
systems theory  [12–14]. This answer, however, immedi-
ately leads to the next question, what is a system? A sys-
tem is ‘a set of elements together with relations between 
them’  [15]. Of key importance to this definition is the 
relationship between the elements of the system; it is 
the interplay between the components of a system that 

make it functional. With no relationships, there sim-
ply is no system [15]. Hence, systems theory studies how 
the constituent parts of the whole system interact with 
one another and the subsequent attempt to generate a 
simplified model of how the system functions.

With this in mind, one definition for systems biology 
is the study and subsequent mathematical modeling of 
the components that constitute a biological system, their 
interactions and the system’s resulting emergent proper-
ties. Emergent properties are outcomes from the interac-
tions among the model’s constituent parts which are not 
obvious from looking at any of its individual components 
on their own. This contrasts with the traditional reduc-
tionist approach, of taking apart the system and study-
ing its parts in isolation in an attempt to simplify and 
understand it. While very successful for many years, and 
providing answers to focused biological questions involv-
ing a limited number of biological entities, reductionism 
has its limitations [16]. Conversely, instead of focusing on 
a single system component, or subset thereof, in systems 
biology a system-wide approach is taken. For example, 
by studying the entire transcriptome and proteome of 
a cell or organism, and more importantly, the interac-
tions between and across them, one can learn how sys-
tems behave under different, changing conditions and 
environments, both intra- and extra-cellular. It also seeks 
to understand the mechanisms employed by the cell to 
maintain its homeostasis and to prevent, or reduce, mal-
function and failure. Ultimately, by mathematical mod-
eling and simulation, systems biology aims to identify 
the basic functional biological circuits that give rise to the 
diver sity and complexity of biological phenomena [11,16].

There are currently different views on the principles, 
methodologies and implementation of systems biology, 
varying from a more pragmatic approach to a more 
theoretical one ([17,18] and references therein), but this 
falls outside of the scope of this review. Nevertheless, 
we believe that each view has its own merit, not neces-
sarily being mutually exclusive, and add value to biol-
ogy as the study of life. Since this review focuses on the 
applications of systems biology for biomanufacturing, 
we follow the more pragmatic line of thought in the 
discussion below as we feel it more immediately, and 
perhaps more appropriately, addresses the challenges 
and needs of this particular industry.

Systems biology & biomanufacturing: 
how can it help?
Biomanufacturing performance is determined by the 
interaction of its two components. The ‘bio’ compo-
nent comprises the host cells that actually synthesize 
the biomolecule, while the ‘manufacturing’ component 
comprises the physical production systems, media for-
mulations and process parameters. Instead of viewing 

Key terms

Quality by Design: A scientific, risk-based, holistic and 
proactive approach based on a deliberate design effort 
from product formation through product marketing.

Process analytical technology: Part of the QbD 
concept that provides tools to design, analyze and control 
pharmaceutical manufacturing processes through the 
measurement of critical process parameters (CPP) that 
affect critical quality attributes (CQA).

Biosimilar: A subsequent version of a biologic medical 
product whose active drug constituent was made by a 
living organism, or from a living organism by means of DNA 
recombinant or controlled gene expression methods.
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the cells as mere catalysts in the synthesis of the prod-
uct, systems biology recognizes the central role of the 
host cells in the overall biomanufacturing process. In a 
systems biology approach, the cells are viewed as com-
plex and dynamic systems that are constantly interact-
ing and responding to their environment, in this case 
the ‘manufacturing’ component. systems biology can 
thus provide a holistic view of biomanufacturing as a 
single, unified system. Ultimately, the aim is to attain 
three main goals sought by the industry: predictability, 
increased quality and higher titers.

In the following sections, we discuss examples of 
how a systems biology approach has been employed 
towards these goals. A common thread to these studies 
is the use of metabolic models. Notwithstanding the 
legacy of biochemical metabolic studies in biomanu-
facturing, metabolic models play a key role in systems 
biology. These models are the closest link to relevant 
cellular output phenotypes, such as growth and pro-
ductivity. Moreover, metabolic models are also useful 
scaffolds to integrate a variety of ‘omics data  [2,19,20]. 
By incorporating these additional layers of regulatory 
information (e.g.,  transcriptional, translational, post-
translational, signaling networks and allosteric mecha-
nisms), these models are constantly being refined for 
improved accuracy and predictability  [21–23]. We will 
highlight a few seminal studies in prokaryotes and 
then focus on mammalian cells, the primary factories 
for the production of biologics.

Systems metabolic engineering of industrial 
prokaryotes
Metabolic engineering approaches have been suc-
cessfully used in bioprocesses to produce high value 
chemicals and products in microorganisms  [19,24–26]. 
More recently this approach has expanded to systems 
metabolic engineering, such as the manipulation of 
entire metabolic pathways, facilitated by the develop-
ment of next-generation sequencing (NGS) and 
other high-throughput technologies and advances in 
computation  [27–30]. Systems metabolic engineering is 
intricately dependent on systems biology. By incorpo-
rating various genome-scale datasets and their respec-
tive regulatory component, systems biology allows for 
the creation of comprehensive predictive in silico mod-
els of the cells. In contrast to the traditional metabolic 
engineering approach of random mutagenesis and 
screening, these in silico models can then be used to 
guide rational engineering approaches at the cellular 
and metabolic levels.

In a less complex system such as Escherichia coli, the 
application of systems-based approaches can be quickly 
adopted due to the wealth of genomics, transcrip-
tomics, metabolomics and fluxomics information 

available for this model organism. As a result, E. coli has 
one of the most complete and detailed metabolic mod-
els comprising 1366 genes and 2251 metabolic reac-
tions and it is continually being updated [31]. Although 
the models are subject to continual revision, bacterial 
models have already reached the point in which they 
are used in calculating phenotypes such as growth 
rates, metabolic capacity and yield. For example, using 
known metabolic regulatory information, new data and 
in silico simulations, industrially relevant E. coli strains 
have been created that overproduced L-valine [32]. Addi-
tionally, in silico models were also used to reveal that 
increased amino acid availability would lead to increased 
recombinant human IL-2 production in E. coli [33].

The effective application of genome-wide recon-
structions is now within reach, as is the incorporation 
of quantitative ‘omics datasets into these reconstruc-
tions. Thiele  et  al.  [34] modeled the E. coli transcrip-
tion and translational network accounting for nucleo-
tide composition, operon association and sigma factor 
usage. The model was sufficiently detailed to correctly 
simulate ribosome production, a surrogate indicator 
for growth and has advanced the progress toward the 
genotype–phenotype correlations in microbial systems. 
More recently, integration of transcriptional and trans-
lational datasets with genome-scale metabolic networks 
produced a series of improved whole-cell models. In 
E. coli, these metabolism with gene expression (ME) 
models have been of particular benefit in elucidating 
codon usage [35] and to better predict cell growth, nutri-
ent uptake and by-product secretion  [36]. This model 

Key terms

Next-generation sequencing: High-throughput methods 
capable of sequencing DNA in a massively parallel fashion, 
yielding very large amounts of data compared with 
traditional methods (e.g., dideoxy or Sanger, sequencing). 
Generally encompasses a collection of methods that involve 
template preparation, the actual sequencing – including 
signal detection and processing, and data analysis. 
Platforms include Illumina, Pacific Biosciences (PacBio), 
Ion Torrent, Oxford Nanopore and others. NGS methods 
have been developed for several different applications, 
including targeted and whole genome (re-)sequencing, 
transcriptome profiling (RNA-seq), DNA–protein 
interactions (ChIP-seq), DNA methylation profiling 
(Methyl-seq) and many others.

Transcriptomics: The study of the transcriptome which is 
represented by all RNA molecules, including mRNA, rRNA, 
tRNA and other noncoding RNA transcribed in one cell or a 
population of cells.

Metabolomics: The study of the metabolome which refers 
to the complete set of small chemical molecules found 
within a biological sample.

Fluxomics: The study of metabolic reaction rates within a 
biological system.
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was recently updated to include membrane-driven pro-
cesses, including subcellular compartmentalization and 
protein translocation [37]. Many physiological and met-
abolic processes that are critical to recombinant protein 
production either take place at, or involve, the cellular 
membrane system. Yet only limited aspects of these 
processes have been included in previous genome-scale 
models. Altogether, this series of articles exemplifies 
the evolution of genome-scale models over time, incor-
porating additional biological knowledge to provide 
further granularity into E. coli cellular processes.

The ultimate goal of computational modeling is to 
predict phenotype from genotype. To date, a recently 
published model of Mycoplasma is the closest to accom-
plishing this goal  [29]. At one-eighth the genetic con-
tent (genes and nucleotides) of E. coli, Mycoplasma 
genitalium represents the most complete genome-scale 
reconstruction, incorporating molecular interactions 
into integrated mathematical representations to cre-
ate a whole-cell model of the bacterium’s life cycle [29]. 
This combined multiscale modeling was also recently 
employed to construct a genome-scale model of E. coli 
based on a compendium of gene expression, signal 
transduction and metabolism data along with their 
statistical associations [30]. Although these models rep-
resent the most advanced mathematical and statistical 
approaches for genome-scale reconstruction, they have 
mostly been described in a pure academic context, rather 
than directly applied to biomanufacturing. Within an 
applied context, this strategy has been employed for 
in silico modeling the growth-coupled production of 
commodity chemicals in E. coli via the design of opti-
mized pathways, and opens the door to the cell-based 
production of these chemicals in the near future [38].

Systems biology of industrial mammalian 
hosts
Systems biology approaches aim to understand four 
key aspects of a biological system: its structure, dynam-
ics, control and design principles [11]. However, most of 
the published ‘omics studies using industrially relevant 
eukaryote host cells however fall short of this. At best, 
current initial efforts in mammalian systems biology 
represent a compilation of one or more ‘omics datasets 
and the correlations among them and with measured 
phenotypes. Some studies also included a metabolic 
model, but regulatory aspects that ultimately control 
cellular and metabolic phenotypes are generally not 
included. Ultimately, the key aspects of a system’s 
dynamics, control and design are left unexplored. 

Without looking at these, one cannot claim to reach 
the core benefits of systems biology.

To our knowledge there are currently no peer-
reviewed reports of a predictive genome-scale mam-
malian model for industrial applications in biolog-
ics manufacturing. This is not surprising; the task of 
constructing and validating a genome-scale whole-cell 
model able to predict phenotype from genotype is by 
no means straightforward. Even for microbial spe-
cies, with much simpler intracellular structures and 
genomes, this has only been accomplished within the 
past few years [29,36,37]. The inherently greater complex-
ity of mammalian hosts poses a significant challenge for 
modeling. Nonetheless, progress is being made by sev-
eral groups working simultaneously with more than one 
‘Omic technology, while also constructing and refining 
metabolic models of specific mammalian host cell lines. 
Despite their limitations, these studies represent impor-
tant first steps toward a holistic understanding of host 
cells as production systems, and form the foundation to 
the application of systems biology approaches.

Multi-’Omic approaches & metabolic models in 
Chinese hamster ovary (CHO) cells
The Chinese hamster ovary (CHO) cell is the work-
horse of the biomanufacturing industry. Much effort 
is being dedicated to improve current CHO genom-
ics resources, such as building and updating a refer-
ence genome [39] and developing a co-expression data-
base  [40]. It is important to note that CHO cell lines 
have genetically diverged from the wild-type Chinese 
hamster and from one another  [41] to the extent that 
the various CHO cell lines are considered quasi-spe-
cies [42]. Recently, it has been announced that improv-
ing the assembly and annotation of the Chinese ham-
ster as the reference genome will be a priority within 
the CHO community  [43]. Once accomplished, this 
will be a major step forward for bioprocessing and will 
bring us closer to the CHO systems biology era.

Several peer-reviewed ‘omics studies in CHO 
have been published and extensively reviewed else-
where  [2,44–47]. A variety of genes and proteins have 
been associated or correlated with production pheno-
types of interest, with little overlap across the different 
studies. This is not surprising given the genetic diver-
sity of the divergent cell lines, the different molecules 
being synthesized by each production system, and 
the varying process conditions (e.g., media, scale and 
perfusion vs batch vs fed-batch, among others). Alto-
gether, these studies can point us in one direction. Each 
study attempts at understanding only a single source of 
biological information, whether that is DNA, RNA, 
proteins or metabolites. Studied in isolation any one 
‘omics approach will not be able to provide complete 

Key term

In silico modeling: Modeling or simulation performed on 
a computer.
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insight into the structure, dynamic, control and design 
principles of biological systems. As such, if the field of 
biomanufacturing wants to realize the promise of sys-
tems biology, it will be important to put an integrated 
multi-‘omics approach in practice.

Key aspects missing from CHO’s System Biology 
that are poorly explored are: interactions across differ-
ent levels of biological information; regulatory mecha-
nisms and a mathematical modeling framework to 
aggregate the inherently multiscale biological knowl-
edge. Very few studies employ more than two ‘omics to 
explore their production system (examples provided in 
Table 1). Little is known about the epigenetics, noncod-
ing RNAs, post-translational modifications, allosteric 
metabolic regulation and feedback and feed-forward 
control within and across these different layers of bio-
logical information. Modeling efforts have been mostly 
focused on metabolism (reviewed in  [47]; examples of 
more recent models are provided in Table 2). Specific 
to biomanufacturing, mathematical models used to 
describe and query the production systems must be able 
to account for both biological and process data as input 
variables [48].

Due to the incredible genetic diversity across the dif-
ferent cell lines, a single solution will not be applicable 
to all production systems. A more reasonable path 
forward would include a genome-scale model of the 
Chinese hamster that can be the basis for a model for 
each production system. To this aim, a standardized 
CHO metabolic network reconstruction is currently 
available that includes both a genome-scale network 
reconstruction (GENRE) and its derived genome-scale 
model (GEM), following the systems biology Markup 
Language (SMBL) and  The Minimum Information 
Required in Annotation of Models (MIRIAM) stan-
dards ([71]; see section: ‘Challenges, limitations, and 
solutions’ for definition of SBML and MIRIAM). 
Collaborative efforts within the community to fur-
ther develop genome-scale models of CHO have also 
recently been announced [43].

The role of post-transcriptional regulation in CHO 
cell growth was demonstrated using an integrated analy-
sis of the CHO transcriptome (mRNA and miRNA) and 
proteome in antibody-producing sister clones  [58]. The 
authors analyzed gene expression at both the mRNA and 
protein levels combined with in silico target prediction for 
the differentially expressed, growth-correlated miRNAs. 
Their analysis focused on a group of 158 differentially 
expressed proteins for which the levels of their coding 
mRNAs were not altered, when slow versus fast growing 
clones were compared. Evidence was found for potential 
miRNA-mediated translational repression for 41 out of 
those 158 differentially expressed proteins [58]. The inter-
actions between the respective coding mRNAs and their 

miRNAs were, however, not confirmed in vivo. This 
study highlighted the prevalence of regulatory mecha-
nisms controlling cellular phenotypes that are relevant 
to biomanufacturing. Roughly a quarter of the proteins 
associated with growth rate were putatively found to be 
regulated by classical miRNA-mediated translational 
repression, while the regulatory mechanisms for the 
remaining proteins were unaccounted for. In addition, 
the study was limited by the specific technologies cho-
sen (respectively, microarrays for mRNA assessment and 
LC-MS for proteomics) that yielded incomplete evi-
dence at both the mRNA and protein levels, with several 
molecules for which their functional counterpart was not 
present in the dataset. Despite its limitations, this study 
showcases the power of integrated multi-‘omics analyses 
to study mammalian cell lines in industry relevant sce-
narios that lead to the identification of engineering tar-
gets for genetic manipulation and cell line improvement.

Metabolic models have been used in cell culture 
development for some time primarily as a natural 
extension of traditional biochemical data (e.g.,  glu-
cose, lactate, ammonia, amino acids) collected dur-
ing process development and optimization. The topic 
has been thoroughly reviewed  [72,73], and herein 
we provide additional models published within the 
past 2 years to study and describe mammalian cell 
metabolism (Table 2). Some key aspects of the central 
metabolism of CHO cells were recently outlined in 
two publications. A comprehensive study by Wah-
rheit et al. characterized the different growth phases 
of CHO cells and their corresponding metabolic 
states using time-resolved dynamic metabolic flux 
analysis [74]. One key contribution of this study was 
the characterization of compartmentalized enzy-
matic activities, differentiating metabolic activities 
within the cytosol and the mitochondria. Combined 
with the coupled growth-metabolic state analysis per-
formed by the authors, this study effectively provided 
a functional, spatial and temporal resolution of the 
CHO metabolism. The authors further suggested 
that this information can be used as additional con-
straints in metabolic network reconstructions, poten-
tially leading to more accurate metabolic models [74]. 
The relevance of metabolism compartmentalization 
was subsequently confirmed using isotopic labeling 
and dynamic flux analysis. This follow-up study also 
showed the high degree of metabolic reversibility and 
exchange with the extracellular environment, partic-
ularly for alanine and pyruvate, of CHO-K1 cells in 
batch culture [69].

Key term

Proteomics: The study of the proteome which includes all 
proteins produced and modified by an organism or system.
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The Jolicoeur lab has also published a kinetic model 
of the CHO central carbon metabolism that was used 
to describe the metabolism of CHO clones produc-
ing a monoclonal antibody (mAb) using an inducible 
gene switch [75]. Comparing the parental line and two 
clones with variable mAb levels (low and high pro-
ducers), the authors found that differences in meta-
bolic flux were mostly related to clonal variation and 
not correlated with mAb production. A similar find-
ing was reported by another group working with vari-
ous CHO cell lines that found no correlation between 
mAb productivity and the overall transcriptomic and 
proteomic space when analyzed by principal com-
ponent analysis  [61]. The metabolic model from the 
Jolicoeur lab was further developed to study energy 
metabolism by including known regulatory mecha-
nisms of the glycolysis pathway as related to oxygen 
availability  [76]. The in silico model was utilized to 
simulate early responses to hypoxia under different 
metabolic regulation scenarios, including known pos-
itive and negative feedback and feed-forward loops 
affecting key glycolytic enzymes. In addition to these, 
the inclusion of a regulatory parameter to reflect the 
cell’s energetic state (AMP-to-ATP ratio) improved 
the model’s predictions of the responses of CHO cells 
to anaerobic conditions, and particularly the shift 
from aerobic (oxidative) to anaerobic metabolism [76]. 
The study highlighted the importance of accounting 
for metabolic regulation when developing in silico 
models in order to properly simulate, and predict, 
cell behavior in response to changing environmental 
conditions.

Multi-’omic approaches in HEK-293
Although commonly reported using other cell-based 
systems  [45–46,49,55,58], initial multi-’Omic, partial sys-
tems biology studies with HEK-293 cell lines are now 
appearing in the literature [59,60]. Evidence from these 
studies clearly demonstrates the benefits that could be 
gained by addressing a biological problem applying a 
systems biology approach. ‘omics technologies have 
advanced to the point where it will become routine to 
integrate various highly dimensional datasets in order 
to distill the results into comprehensible and relevant 
components.

In an early study with HEK-293, Lee  et  al.  [77] 
attempted to unravel significant metabolic changes 
between batch and low-glutamine fed-batch cultures 
using DNA microarray technology. The microarray 
data definitively characterized nutrient-related stress 
and captured the transcriptional changes occurring in 
both cultures. Significant transcriptional differences 
were observed mainly in the amino acid metabolism, 
tRNA synthetase, TCA cycle, electron transport chain 
and glycolysis pathways and led to the conclusion that 
fed-batch cultures were more efficient in amino acid 
metabolism and energy production. Lower expression 
for genes involved in glutamine/glutamate metabolism 
and serine/glycine/cysteine metabolism in combina-
tion with altered amino acid production and consump-
tion rates provided evidence that the fed-batch process 
increased efficiency in amino acid metabolism espe-
cially during the later phases. Increased efficiency in 
energy metabolism of fed-batch cultures was implied by 
the downregulation of TCA cycle genes and the upreg-

Table 1. Examples of multi-’omics studies in industrial mammalian cell lines.

Cell line Phenotype ‘Omics Ref.

CHO Metabolic shift Transcriptomics and proteomics [49]

CHO Low culture temperature Transcriptomics and proteomics [50]

CHO High productivity Transcriptomics and proteomics [51]

NS0 High productivity Transcriptomics and proteomics [52]

NS0 High cell density Transcriptomics and proteomics [53]

CHO Increased productivity Transcriptomics and proteomics [54]

CHO Cellular growth rate Transcriptomics and proteomics [55]

CHO High productivity Transcriptomics and proteomics [56]

CHO Growth and productivity Transcriptomics and epigenomics [57]

CHO Growth rate Transcriptomics, epigenomics and proteomics [58]

HEK-293 Productivity Transcriptomics, metabolomics and fluxomics [59]

HEK-293 Protein expression Transcriptomics and proteomics [60]

CHO Productivity, growth and cell size Transcriptomics and proteomics [61]

CHO Productivity Transcriptomics and epigenomics [62]

CHO: Chinese hamster ovary.
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ulation of genes in the electron transport chain. The 
conclusions relied on the assumption that decreased 
TCA gene expression and increased gene expression 
in components of the electron transport machinery 
was a direct indication of the TCA cycle and electron 
transport chain activities. Even with the lack of exten-
sive metabolic data in this study, by integrating it with 
the transcriptomic data provided strong evidence for 
the changes in the amino acid metabolism. On the 
other hand, the interpretation of an increased energy 
metabolism may very well be valid, but was based on 
more circumstantial evidence without the actual levels 
of energy-related metabolites.

The incorporation of data from multiple ‘Omic is 
becoming a necessity. The integration of these data-
sets provides more informative value than the indi-
vidual ‘omics technology. The complex biology of 
production cell lines can only be appreciated in light 
of integrating multiple ‘omics datasets as illustrated in 
Dietmair et al. [59]. The authors set out to identify tar-
get pathways for cellular engineering that could lead 
to higher productivity rates. Metabolic differences 
between a HEK-293 cell line, stably producing a fusion 
protein, and the parental cell line were investigated 
using metabolic data for 52 metabolites, transcriptomic 
data generated from microarrays, and metabolite con-
sumption and production rates revealed through a flux 
model. Neither cell line showed any outward pheno-
typic difference (growth, viability or morphology) and 
alleviated any potential confounding factors unrelated 
to recombinant protein production. The complexity of 
cell metabolism could only be revealed using a multi-
’Omic approach. For example, the metabolomic and 
fluxomic data showed that all the production cell lines 
used in this study were characterized with a decrease 
in glucose uptake rate, while the transcriptomic data 
indicated that the expression of glucose transport-
ers was actually increased in the same cell lines. This 
result suggested that glucose uptake rates were medi-
ated by other factors and were not limited by the 

decrease in expression of the glucose transporter genes. 
This finding may be unique to HEK-293 cells since 
studies in other cell lines [78,79] have found positive cor-
relations between glucose transporter expression and 
glucose uptake rates. In conjunction with the reduced 
glucose uptake, there was a corresponding reduction 
in the glycolytic flux. Analysis of the expression lev-
els showed that most of the glycolytic pathway genes 
were reduced in the production cell line. However, no 
correlation was found between the genes encoding the 
central rate-limiting glycolytic enzymes (i.e., HK, PFK 
and PK). Together these data indicated that at least 
a portion of the reduced glycolytic flux was regulated 
at transcript level and the reduced uptake could be a 
consequence of downstream regulation [59]. The com-
plexity of the regulation becomes clear when multiple 
‘omics datasets are integrated and included with the 
biological interpretation of the data.

More recently, Dumaual et al.  [60] applied a multi-
‘omics approach to gain a basic understanding of the 
molecular alterations associated with the expression of 
the PRL-1 gene. The PRL-gene family of enzymes is a 
potential tumor biomarker and a potential anticancer 
target. Increased expression of PRL-1 has a causal role 
in cellular transformation and tumor advancement, 
and although many interactions have been shown, lit-
tle is known about its biological function. By integrat-
ing transcriptomic and proteomic analyses, the current 
knowledge of interactions and the signaling network of 
PRL-1 in a stable PRL-1 overexpressing cell line and its 
parental HEK-293 cell line was expanded upon. Appli-
cation of functional enrichment analyses to the mRNA 
and protein datasets supported PRL-1’s putative role in 
cytoskeletal remodeling, cell adhesion and transcrip-
tion. In particular, they were able to identify a number 
of differentially expressed transcripts and proteins and 
focus on a few new high probability targets for future 
functional studies. Additionally, by integrating and 
comparing the two ‘omics datasets, Dumaual et al. [60] 
showed the coordinated regulation occurring at the 

Table 2. Examples of recently published metabolic models of industrial mammalian cell lines.

Cell line Analysis method Ref.

HEK-293 13C-MFA + isotopomer balancing [63]

HEK-293 Flux balance analysis [64]

CHO Constraints-based flux analysis [65]

CHO MFA [66]

CHO Flux balance analysis [67]

CHO Minimal elementary flux modes [68]

CHO Nonstationary 13C-MFA [69]

HEK-293 MFA [70]

CHO: Chinese hamster ovary; MFA: Metabolic flux analysis.
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mRNA and protein levels. In their study, 91% of the 
mRNA expression levels were changing in the same 
direction as their corresponding protein levels, sug-
gesting that protein abundance was directly related to 
mRNA levels in their system.

As with recombinant protein production, a myriad of 
virus-based biopharmaceutical products are manufac-
tured in mammalian cell based systems [80]. To gain a 
better understanding of the physiological changes dur-
ing recombinant viral biopharmaceutical production, 
the authors followed a functional genomics approach, 
including an integrated transcriptomic and metabo-
lomic analysis, to gain a better understanding of the 
molecular and metabolic events taking place during the 
transition of the human parental cell line to its producer 
cell line. The study also reported on a novel approach to 
mine large transcriptome datasets produced from high 
productivity systems. This approach entails comparing 
high versus low productivity in two human cell lines 
that were from different genetic backgrounds in order 
to identify the transcriptional changes due to retrovirus 
production and not intrinsic genetic cell line properties. 
Several genes were identified to be limiting factors in 
the low producer cell line and gene manipulations of 
these targets showed promising increases in infectious 
virus-specific productivity [80].

Multi-‘omics approaches in other mammalian 
cell lines
Many different mammalian cell lines are currently 
being used in the production of biopharmaceutical 
products including mouse myeloma lymphoblastoid-
like cells (e.g., NS0), [81,82], baby hamster kidney cells 
(e.g.,  BHK-21)  [83] and human retina-derived cells 
(e.g., Per.C6) [84–86]. Unlike CHO and HEK-293, little 
has been done to apply multi-‘omics approaches. Most 
of the current publications only evaluated a single 
‘omics dataset, investigating either the transcriptomic 
or sometimes proteomic analyses by itself.

Productivity of cell lines is an important factor in 
bioprocessing. Seth et al. [52] used a systematic approach 
to evaluate the production of the same antibody in 
11 different NS0 cell lines. These cell lines were catego-
rized into low-producing and high-producing groups. 
The systematic approach included transcriptomic data 
gathered from DNA microarray analysis and proteomic 
data derived from two-dimensional gel electrophoresis 
and Isobaric Tagging for Relative and Absolute Protein 
Quantification (iTRAQ). This integrated approach 
identified differentially expressed genes at both the 
transcriptomic and proteomic level for each of the low 
and high producing NS0 cell lines. Seth et al. [52] found 
that in the high producers, protein synthesis pathways 
were changed at both the transcriptome and proteome 

level while cell growth and cell death pathways were 
affected at the transcriptional level only. Ultimately, 
integrated transcriptomic and proteomic data will 
provide valuable information for understanding and 
designing high-producer cell lines.

In a similar fashion, Krampe et al. [53] combined gene 
and protein expression profiling to better understand 
intracellular responses of NS0 cells grown in perfusion 
culture. More specifically, factors such as growth rate, 
production rate, metabolic activity and cell viability 
were assessed as cell density increased. DNA microarray, 
real-time quantitative PCR and Western blot analysis 
revealed that a balance among factors involved in energy 
metabolism are responsible for fine tuning the choice of 
a cell to either go into survival mode or apoptosis. This 
simultaneous modulation of several physiological func-
tions was also observed by Charaniya  et  al.  [87] when 
the transcriptome of several NS0 cell lines with a broad 
range of antibody production levels were analyzed. Using 
Gene Set Enrichment Analysis, Gene Set Analysis and 
MAPPFinder between the high and low producers, they 
found that protein processing and transport, including 
protein modification, vesicle trafficking and protein 
turnover were significant. Also, mitochondrial ribosomal 
function, cell cycle regulation and cytoskeleton-related 
elements were altered in high-producing cell lines.

The safety and efficacy of biologics is tied to their 
quality, glycosylation being a key quality aspect for 
many classes of recombinant proteins [88–90]. A model-
ing framework comprising the in silico reconstruction of 
nucleotide sugar donor metabolism was developed for a 
hybridoma cell culture and linked to an existing glyco-
sylation model [91]. The in silico metabolic model consid-
ered cell growth (as a function of extracellular glucose 
and glutamine), nucleotide metabolism and nucleotide 
sugar donor metabolism. To link the extracellular envi-
ronment to antibody glycosylation profiles, the outputs 
of this metabolic network were fed to the glycosylation 
model and the simulation results obtained by this com-
bined approach were in agreement with experimen-
tal data  [91]. This study showcased how an integrated 
approach can be developed to address cell culture traits 
that are relevant to commercial biomanufacturing.

Next-generation sequencing has been a powerful 
tool to investigate the genome, transcriptome and epig-
enome of organisms. Johnson et al. [92] investigated the 
transcriptomic space of a recombinant BHK cell line 
using NGS with the aim to establish a well-character-
ized reference genome to assist future research projects 
with BHK cell lines. With the extremely high coverage 
that was achieved through RNA-seq of high abundant 
genes, the authors were able to identify low-frequency 
nucleotide variants in these genes that were not pre-
viously detectable at the genome level. Such studies 
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are providing the stepping stones for systems-based 
genome engineering of cell lines that are important to 
biopharmaceutical processes.

Challenges, limitations & solutions
A critical step for any systems-level analysis is to iden-
tify the components comprising the system and collect 
empirical data for each component. A system-wide bio-
logical model cannot be efficiently produced by only 
sequencing one gene or measuring the expression of one 
mRNA, protein or metabolite at a time. The ability to 
generate comprehensive quantitative datasets for the 
biological system in question is critical and a system-
wide measurement of all components is now possible 
with high-throughput quantification techniques. While 
great strides have been made in all areas of ‘omics data 
generation, there are still many technical limitations. 
RNA-seq analyses will measure many more unique 
genes than proteomics will measure of proteins, or 
metabolomics will of metabolites [93]. A complete view 
of the biological system will require the comprehen-
sive study of each of the different ‘omics components. 
There are technical challenges that must be overcome 
to ultimately accomplish this. For example, there are 
many proteins that have traditionally been problem-
atic to identify. From a sample preparation view point, 
membrane-bound or low-abundance proteins are 
known to be difficult to extract and purify [94]. Recent 
developments in shotgun proteomics are overcoming 
these limitations  [93]. Even as late as 2009, only a few 
thousand proteins were typically identified in any given 
proteomics study  [94]. Conversely, with technological 
advancements in proteomics, two recent studies identi-
fied approximately 10,000 proteins each from human 
cancer cell lines, which is considered to be nearly com-
plete coverage of the human proteome [95–97]. Though 
it is becoming increasingly higher-throughput, pro-
teomics is still lagging behind nucleotide sequencing in 
its ability to generate a system-wide expression profile. A 
similar problem exists in metabolomics where any single 
platform that is used to study metabolites is not capable 
of identifying all metabolites in a sample. This requires 
the use of multiple platforms to analyze samples, which 
increases not only costs but also adds the problem of 
how to combine data from these different sources [98].

After data generation, the next step in systems biol-
ogy is data integration, analysis and visualization. With 
the massive accumulation of ‘omics data, advanced 
computational software is required to make sense of it 
all [99]. Data integration requires unraveling the relation-
ships between the different levels of genetic information. 
A number of sophisticated statistical techniques have 
been developed to facilitate the analysis/integration of 
highly dimensional ‘omics datasets including regular-

ized canonical correlation analysis and sparse partial 
least squares regression [100]. Additional multivariate data 
analyses have been proposed for the integrated analyses 
of multiple ‘omics datasets, often originating from other 
areas such as translational research [101–105]. In addition 
to these techniques, a more standard Pearson correlation 
coefficient can be computed in order to find relationships 
between different ‘omics datasets. These coefficients can 
then be used to produce network maps or overlay the 
data on pathway maps such as KEGG or HumanCyc to 
visualize the relationships between the different compo-
nents [106]. The numerical results of data analysis alone 
may not be sufficient for obtaining biologically meaning-
ful information from the analyses, thus requiring addi-
tional visualization tools to help clarify their biological 
significance [100,107]. The integration, analysis and visual-
ization of these highly dimensional datasets is a current 
bottleneck in systems biology. A lot of effort is being ded-
icated to address this gap, with several public and com-
mercial software platforms available. In the short- and 
mid-term, there will be no single solution that applies to 
all possible scenarios. The best approach will be specific 
to each production platform and associated datasets.

As more and more data are being generated, and with 
improvements in NGS sequencing chemistry and tech-
nology, data storage capacity of both raw and analyzed 
data has to be taken into consideration when planning 
an experiment. Specifically for system-wide genom-
ics and transcriptomics, reads from next-generation 
sequencers can produce files that are many gigabytes in 
size and can easily close in on a terabyte worth of data 
from a single experiment. Moreover, systems biology is 
inherently multidisciplinary and the transfer and shar-
ing of these massive datasets bring their own unique set 
of challenges. This also requires the standardization of 
data reporting, storage and curation. For example, the 
minimum information about a microarray experiment 
(MIAME) standards have been implemented since 
2001  [108]. The concept has been expanded to other 
fields of study. Since 2012, this was applied to NGS 
with the establishment of minimum information about 
a high-throughput nucleotide sequencing experiment 
(MINSEQE) standards [109]. The proteomics equivalent 
is minimum information about a proteomics experi-
ment (MIAPE) [110] while for metabolomics, a few ini-
tiatives are under way. The minimum information about 
a metabolomics experiment (MIAMET) [111] standards 
have been proposed but are not widely adopted. The 
Metabolomics Standard Initiative [112] is a group under 
the umbrella of the Metabolomics Society that are 
examining standardization. Their goal is to ultimately 
make recommendations to researchers in the field.

Not only does the study of each molecule have its 
own set of standards, systems biology has begun to 
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develop a ‘language’ of its own in order to standardize 
the notation for biological modeling. There are a num-
ber of contenders for the standardization of systems 
biology models such as the SBML [113], CellML [114,115], 
the MIRIAM  [116] and the KEGG Genome Markup 
Language (KGML)  [117]. Without standards in place, 
data sharing becomes increasingly hindered such that 
each research facility would potentially have to recreate 
every experiment of interest.

Data usage
The systems biology approach addresses four key aspects 
of a biological system: its structure, dynamics, control and 
design principles [11]. Mathematical modeling is central 
to achieving these four goals. In general terms, a math-
ematical framework is employed to create in silico mod-
els that attempt to describe the structure and functional 
dynamics of biological systems. These models can then 
be used to simulate the system’s behavior, for instance, in 
response to external perturbations. This iterative process 
of simulation and validation allows scientists to identify 
and study the systems’ control mechanisms and design 
principles. For example, it seeks to answer questions such 
as, how does the system maintain its steady state? What 
are the systems’ functional modules?

The system-wide, preferably quantitative, data col-
lected are critical to create and refine the mathematical 
model representing a biological system [20]. For a biopro-
cessing system, data collected means not only measur-
ing expressed RNA, proteins, metabolites, sequencing 
the genome, etc., but also recording all other biologi-
cal and physical, process-related, information about the 
system. These can include, for instance, mutations in 
the genome, post-translational modifications to pro-
teins, media composition, flask type, feeding strategies 
and phenotypic outcomes, among others. These diverse, 
highly dimensional and rich datasets are a prerequisite 
to generate a model  [99]. After a model is created, it 
needs to be experimentally tested to verify and refine its 
accuracy. In silico predictions are thus compared with 
experimental observations or pre-existing knowledge. If 
the results predicted by the model being tested do not 
reflect what is found experimentally, the model needs to 
be updated with data collected from the test experiment 
to reflect the knowledge gained.

Based on this holistic understanding of their host-cell 
lines, the goal is that bioprocessing scientists and engi-
neers can manipulate current and/or design new pro-
duction systems (i.e., cell hosts) that outperform those 
currently in use in terms of titers, quality, process sta-
bility and predictability. Specifically to bioprocessing, 
the in silico experiments can be conducted to simulate 
the cell’s response to various process conditions. In tra-
ditional process optimization, these conditions might 

represent different media formulations, feed strategies, 
scale-up/-down processes or culture conditions. In cell 
line development, these same models can guide the 
design of optimized cell engineering strategies. Here, 
the goal is to guide targeted genetic manipulations 
to address genetic, metabolic or cellular processes to 
improve phenotypic outputs of interest (e.g., cell viabil-
ity, titer, glycosylation profile and by-product accumula-
tion, among others). One advantage of modeling is that 
it allows scientists to evaluate a greater number of vari-
ables at one time. Based on the model’s outputs, they are 
able to prioritize strategies that will yield greater ben-
efits, streamlining efforts and ultimately, saving time, 
effort and valuable resources. Overall, modeling is a 
very active area of research and we refer the interested 
reader to more in-depth reviews on this topic [118,119].

Conclusion & future perspective
Ultimately, individual ‘omics technologies will need 
to achieve parity with one another in terms of com-
prehensiveness, throughput and quantitativeness. 
Additionally, improvements in analytical software and 
hardware tools will become essential in order to handle 
increasingly larger datasets and we need to improve 
the ability to store and transfer these massive datas-
ets. More sophisticated statistical and bioinformat-
ics methodologies will also be needed to assist with 
improved data integration and system modeling, with 
better predictive capabilities.

However advanced our data generation, analyses, 
and storage abilities become, the biological interpre-
tation and utilization of the data will undoubtedly 
be the major bottleneck. This is due to our lim-
ited understanding of the cell as a system, and its 
structure, dynamics, control and design principles. 
Genome-scale models are important tools to formally 
aggregate the biological knowledge around these prin-
ciples within a mathematical framework designed to 
represent the cell as a complex system. These models 
are designed taking into account the variables that 
control cellular behavior and function, providing fur-
ther insights into the biology of the organism being 
studied. As these models are developed and refined 
over time, they will continue to improve in accuracy 
and predictive power.

In simpler prokaryotic organisms, such as 
Mycoplasma and E. coli that have an extensive knowl-
edge base, such established models have evolved 
incrementally. Information on additional cellular 
processes are being constantly incorporated, result-
ing in more sophisticated models. Mammalian cells 
are inherently more complex, both genetically and 
structurally, making modeling much more challeng-
ing. Similar to the path followed by prokaryote sys-
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tems, the ‘omics efforts currently underway within 
the mammalian cell culture community will serve 
the important role of establishing and growing the 
knowledge base required to accomplish a full sys-
tems biology based understanding of mammalian 
production platforms.

The wide adoption and utilization of ‘omics tech-
nologies as part of the overall systems biology approach 
to cell culture and biomanufacturing optimization 
will be highly reliant on technological advancements 
capable of driving down the overall costs of experimen-
tation and data analysis. Implementing the required 
infrastructure and know-how internally is not a simple 
undertaking, often requiring new partnerships to be 
established. There are very few commercial platforms 
developed specifically toward this application. One 
such example is ArrayXpress’ (Raleigh, NC) iCOP 
– integrated Cellular ‘omics platform, which is our 
suite of tools for building and mining systems biology 
knowledge bases.

Next-Generation Sequencing and ‘omics are becom-
ing pervasive in almost every field of biological and 
medical research, including cancer research, diagnos-
tics and drug development. Regulatory agencies are 
already familiar with the application of these technolo-

gies in these areas, and indeed are keen on their uti-
lization as a tool to improve human health  [120]. It is 
also a particularly relevant tool for biosimilars, to help 
ensure their safety and efficacy. We fully anticipate 
the same trend to biomanufacturing, with regulatory 
endorsement of the application of NGS and ‘omics to 
support new submissions. There is increasing recogni-
tion in the field of the benefits of NGS and ‘omics as 
important tools within the US FDA’s PAT and QbD 
framework [4,48].
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Executive summary

Background
•	 Systems biology is the study and subsequent mathematical modeling of the components that constitute a 

biological system, their interactions and the system’s resulting emergent properties.
•	 Advances in ‘omics technologies have propelled systems biology to mainstream biomedical/biological research.
•	 Biomanufacturing is harvesting some benefits of applied ‘omics approaches for increasing titer, yield, quality, 

process efficiency and stability.
•	 The biopharmaceutical industry is starting to realize the limitations of single ‘omics approaches and is slowly 

moving toward a true systems biology approach for data-driven, rational bioprocesses optimization and cell 
line development.

•	 Most applications of systems biology to date have been performed on prokaryotes with predictive genome-
scale whole-cell models already having been developed for many species.

Mammalian cell lines
•	 A number of successful projects integrating two or more ‘omics datasets on Chinese hamster ovary cells and 

HEK-293 have been published.
•	 There are currently no peer-reviewed reports of predictive genome-scale mammalian models having been 

implemented in an industrially relevant context.
•	 Systems biology resources geared toward mammalian cell lines are under development, priming production 

hosts for systems-wide analyses in the near future.
Working with the data
•	 Currently, metabolomic and proteomic data production lag behind transcriptomics, as a result, information 

obtained from data integration can be limited.
•	 Once data have been generated, integration, analysis, data mining and visualization are necessary to gain an 

understanding of the biological system.
•	 The massive amount of data being generated is creating new requirements in infrastructure, software and 

computing power for accessing, analyzing and storage.
•	 Wider utilization of systems biology by the industry is hampered by high cost in technology and data analyses.
•	 While the barriers for production of data have lowered, working with it and developing meaningful, 

actionable outcomes represent the major bottleneck for most companies.
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