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Summary	 AMP-activated protein kinase (AMPK) has long been recognized as a master 
energy sensor. Activation of AMPK in response to metabolic stress preserves energy stores 
by switching on catabolic pathways, whilst its inhibition consumes the energy by switching 
on anabolic pathways. Over the past 10–15 years, much attention has been focused on the 
role of AMPK in mammalian metabolism, and particularly in diabetes. As a consequence, 
AMPK has emerged as much more than a simple energy regulator and is now recognized as 
a kinase involved in controlling numerous cellular processes, including cell growth, apoptosis, 
autophagy and polarity. Using different in vitro and in vivo tools, AMPK has also been found 
to play important roles in different glucose-sensing organs and to serve as a key regulator of 
glucose homeostasis in mammals. Perhaps most importantly, AMPK appears to be the major 
target for several antidiabetic drugs. Here, we review recent advances in the field and particularly 
those emerging from the generation of tissue‑specific knockout and transgenic mice.
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�� AMP-regulated protein kinase (AMPK), an intracellular sensor of energy change, is regulated by AMP:ATP  
(and ADP:ATP) ratios and is an important regulator of glucose homeostasis in mammals.

�� AMPK is emerging as an important regulator of insulin secretion, insulin action and feeding behavior.

�� AMPK is responsible for some but not all of the actions of antidiabetic drugs including metformin  
and thiazolidinediones.

�� New mouse knockout models shed light on the roles of the enzymes in different tissues.

�� The roles of the separate AMPK catalytic isoforms a1 and a2, as well as of the upstream kinases LKB1 and 
CaMKK, are frequently distinct.

�� AMPK and related kinases including per-arnt sim kinase represent exciting potential targets for new 
therapeutic drugs.
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Increases in the prevalence of obesity owing 
to sedentary lifestyles and the intake of high-
calorie food have led to a remarkable and par-
allel increase in the number of patients with 

obesity-associated diseases including Type  2 
diabetes (T2D), with higher risks in certain eth-
nic groups [1,2]. With T2D almost reaching pan-
demic proportions, novel and effective therapies 
targeting this disease are urgently needed. 
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Type 2 diabetes normally begins with blunted 
responses of peripheral tissues to insulin action 
with higher fasting blood glucose due to abnor-
mally regulated liver glucose production and 
moderately impaired glucose tolerance due to 
the failure of skeletal muscle to take up glucose 
from the bloodstream [3–8]. This insulin resistance 
leads, by still unknown mechanisms, to hyperin-
sulinemia wherein hyperplastic and hypermorphic 
pancreatic b cells hyper-secrete insulin to compen-
sate. At this stage, hyperinsulinemia is still able to 
control blood glucose within the normal physi-
ological range (3.6–5.8 mM in humans). It is only 
when b‑cell function deteriorates and/or b‑cell 
mass falls that glucose intolerance and finally 
the onset of frank T2D occurs with its attendant 
complications including failure of other impor-
tant organs such as the kidneys (nephropathy), 
eyes (retinopathy) and heart (cardiovascular dis-
ease) [5–11]. Consequently, different pharmaceuti-
cal approaches have been developed that aim to 
either reduce insulin resistance (e.g., metformin, 
thiazolidinediones) or to enhance insulin produc-
tion by b cells (e.g., sulphonylureas, glucagon-like 
peptide‑1 analogs), hence reducing blood glucose 
and delaying or preventing the onset of frank 
T2D [12,13]. 

AMP-activated protein kinase (AMPK), a phy-
logenetically conserved serine/threonine protein 
kinase [14], has recently emerged as an interest-
ing potential drug target for treating diabetes [15]. 
Indeed, several front-line antidiabetic drugs such 
as metformin and thiazolidinediones appear to 
act at least in large part through activating AMPK 
in the liver and adipose tissues [13,16,17]. As an 
energy sensor, AMPK and the signaling path-
ways upstream and downstream of this enzyme 
have been intensively studied for the past decade, 
indicating that AMPK might play important 
roles in modulating glucose and insulin sensing 
in organs such as skeletal muscle, liver, brain, adi-
pose tissues and pancreas [18–21]. However, recent 
exciting studies, particularly those describing 
tissue-specific AMPK knockout mice developed 
with LoxP-Cre technology [22] have implied that 
AMPK activity is regulated differently in differ-
ent organs in response to glucose or insulin, and 
that the activation of AMPK may exert different 
downstream effects in different tissues. 

AMPK structure, isoforms, tissue 
distribution & subcellular localization
Mammalian AMPK exists as a heterotrimer con-
sisting of a catalytic a subunit (a1 or a2) [23,24], a 

regulatory b subunit (b1 or b2), which is required 
for the binding of other subunits [25], and an 
AMP-binding g subunit (g1, g2 or g3) [26]. Each 
of the separate subunits and isoforms is encoded 
by an individual gene [24,27]. The a subunit con-
tains a N‑terminal Ser/Thr kinase domain, an 
auto-inhibitory sequence (AIS) and a C‑terminal 
b‑subunit-binding domain [28–30]. The kinase 
domain includes the critical phosphorylation site, 
Thr172, which is indispensible for the activation 
of AMPK by upstream kinases including liver 
kinase B1 (LKB1; STK 11), a tumor suppressor 
and Ca2+/calmodulin-dependent protein kinase 
(CaMKKb) [31–35]. AMPK can be inactivated 
by phosphatases including PP2A and PP2C [36], 
although recent studies suggest that a phospha-
tase complex containing the catalytic subunit of 
protein phosphatase-1 and regulatory subunit R6 
might be involved in glucose-regulated AMPK 
inactivation [37]. Single site mutation at Thr172 
to aspartic acid (D) reduces AMPK activity by 
almost twofold. Conversely, a T172D mutation 
generates a mutated AMPK resistant to dephos-
phorylation [38]. The (autoinhibitory sequence) 
AIS domain appears to exert an auto-inhibitory 
effect on AMPK activity, since truncated AMPK 
a subunits lacking this domain have an almost 
fourfold higher AMPK activity than those with an 
intact AIS [29]. Two isoforms of AMPK catalytic 
a subunit, a1 and a2, encoded by two distinct 
genes (PRKAA1 and PRKAA2), exist and share 
high similarities at the N‑terminal of the subunit, 
and both are capable of being phosphorylated by 
upstream kinases at the Thr172 site [24]. The dis-
tribution of a1 and a2 subunits is distinct in both 
the subcellular, cellular and whole-body level, 
with a2 present in both the cytosol and nucleus, 
suggesting a role in controlling transcription and 
gene expression. a2-containing complexes are 
predominately found in the skeletal muscle and 
heart, whilst a1 complexes, present chiefly in the 
cytosol, are found in most of the other chief meta-
bolic organs such as the liver, endocrine pancreas 
and adipose tissues [39,40]. 

The regulatory b subunit consists of a glyco-
gen-binding domain (GBD) and a- and g‑sub-
unit-binding domains [41,42]. Recently, much 
attention has been focused on the functions of 
the b subunit and the observations that: bind-
ing of a1→6-linked branches of glycogen at the 
GBD during glycogen depletion (e.g., caused by 
muscle contraction) appears to be necessary for 
dephosphorylation of glycogen synthase at site 2, 
promoting glycogen resynthesis [43]; and the 



Targeting the AMP-regulated kinase family to treat diabetes: a research update  Review

future science group www.futuremedicine.com 335

b1 subunit is critical for AMPK activation by the 
thienopyridone drug A769662 [44,45]. The g sub-
unit of AMPK has two Bateman domains formed 
by four tandem cystathionine b‑synthase motifs 
1–4, three of which are essential for AMP/ATP 
binding [46]. Recently, the resolution of the crystal 
structure of the abg core complex containing the 
C‑terminal domain of a1 and b2 with full length 
g1 confirmed that among these three motifs in 
the g subunit, two of them are interchangeable 
between AMP and ATP binding and the other 
one tightly occupied by AMP [47]. 

High AMP:ATP ratios activate AMPK either 
allosterically [48] or by rendering AMPK a better 
substrate for upstream kinases [49] and a poorer 
substrate for protein phosphatases [36]. Owing 
to the action of adenylate kinase, the AMP:ATP 
ratio in cells varies approximately as the square 
of the ADP:ATP ratio, which makes the former 
ratio a very sensitive indicator of cellular energy 
changes. Therefore, any activities that deplete 
ATP such as hypoxia or glucose deprivation are 
expected to activate AMPK [14,36,50]. 

Examining the role of AMPK in  
different tissues 
�� AMPK in muscle

The ability of skeletal muscle to take up glucose 
is essential to maintain normal glucose homeo-
stasis. Aberrant glucose uptake due to insensi-
tivity to insulin has been found in T2D [51,52]. 
Excessive glucose in the bloodstream promotes 
insulin secretion from pancreatic b cells, which 
triggers the PI3K/Akt-AS160-Rab GTPase sig-
naling pathway in the skeletal muscle cells to 
transport glucose across the cell membrane by 
delivering glucose transporter 4 (GLUT4) onto 
the cell surface. After glucose is phosphorylated 
by hexokinase, it is later converted into glycogen 
by glycogen synthase and stored in the muscle 
for use during energy depletion [51]. In contrast 
to this insulin-dependent glucose uptake signal-
ing pathway, exercise has also been reported to 
mediate glucose uptake into the muscle cells 
using an insulin-independent pathway [53].

Does AMPK mediate contraction-induced 
glucose uptake in muscle?
The activation of AMPK that is observed in skele
tal muscle in parallel to increased glucose uptake 
in response to exercise or metformin adminis-
tration to Type 2 diabetic patients suggests that 
AMPK might play a role in controlling glucose 
uptake [54]. Supporting this view, subcutaneous 

injection of the AMP analog 5‑aminoimidazole-
4-carboxamide-1-b-d-ribonucleoside (AICAR), 
an AMPK activator, or single-leg arterial infusion 
of AICAR increased AMPK activity and glucose 
uptake [55–57]. These changes were also associ-
ated with increased hexokinase II transcription 
in both red and white muscles [55,56], suggesting 
that AMPK stimulation might serve as an exer-
cise mimetic to enhance glucose uptake. Global 
deletion of AMPK a2 (AMPK a2-/- mice), but 
not a1, abolished AICAR- but not contraction-
induced glucose uptake in skeletal muscle, prob-
ably reflecting activation of a1 activity in skeletal 
muscle during muscle contraction [57]. Using a 
transgenic mouse model carrying an inactivating 
Lys45 to Arg mutation in the AMPK a2 subunit 
(AMPK a2KD), Mu and colleagues demon-
strated that reduction of AMPK activity in these 
mice completely blocked AICAR-induced glu-
cose uptake in extensor digitorum longus muscle 
but only partially reduced contraction-induced 
glucose uptake [58]. Some years later, the groups 
of Laurie Goodyear and Lynis Dohm [59,60] 
confirmed that decreases in AMPK a2 activity 
abolished AICAR, but not contraction- or exer-
cise-induced glucose uptake and translocation to 
the plasma membrane of the glucose transporter 
GLUT4. Reduced maximal exercise capacity and 
glycogen accumulation [61] with a concomitant 
decrease in hexokinase  II protein levels [61,62] 
were also observed, using transgenic mice over-
expressing inactive AMPK a2 subunits selectively 
in muscle (AMPK a2iTg mice). 

Very recently, the GBD of AMPK b subunit 
has been shown to be necessary for glycogen 
replenishment during muscle contraction [43]. It is 
therefore reasonable to suspect that glucose uptake 
might also be dependent on glycogen binding. 
However, AMPK b2 whole-body knockout mice 
with reduced AMPK activity displayed reduced 
AICAR-induced, but not contraction-induced, 
muscle glucose uptake [63]. Moreover, no effect 
of muscle glucose uptake was seen in AMPK b1 
knockout mice [44], suggesting, in the short term, 
that glucose uptake during muscle contraction is 
probably not modulated by glycogen binding to 
AMPK b subunits. 

The AMPK g3 subunit is specifically expressed 
in muscle cells and mutation of this subunit 
(R225Q) leads to downregulation of AMPK 
a activity. Using this mouse model (AMPK 
g3R225Q), Yu and colleagues confirmed that 
both basal and AICAR-stimulated glucose 
uptake in skeletal muscle were significantly 
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decreased [64]. By contrast, activation of AMPK 
in skeletal muscle achieved by expression of an 
active form of AMPK where Arg70 is mutated to 
Gln in the g1 subunit in mouse skeletal muscle 
increased glycogen accumulation [62]. 

Does AMPK modulate insulin-stimulated 
glucose uptake?
Recently, AS160/TBC1D4, activated in response 
to stimulation of the PI3K/Akt/PKB pathway 
was reported to be phosphorylated by AMPK 
through activation of a2b2g1 subunits [65,66]. 
This leads to the binding of phosphorylated 
AS160 (inactive) to 14–3–3 proteins and pro-
motes conversion of less active GDP-bound Rab 
to more active GTP-bound Rab, which then 
releases GLUT4 from vesicles to the plasma mem-
brane [67]. Another AS160 paralog, TBC1D1, is 
also phosphorylated by purified AMPK and has 
been reported to modulate glucose transport 
[67]. Therefore, the evidence for involvement of 
AS160 in GLUT4 translocation seems to link 
AMPK to insulin-dependent glucose uptake.

Regulation of glucose uptake by kinases 
downstream of LKB1
Interestingly, muscle-specif ic knockout of 
LKB1 (mLKB1 KO) reduced AMPK a2, but 
not a1 activity and blunted both contraction- 
and AICAR-induced glucose uptake [68,69]. 
By contrast, AMPK a2KD or a2iTg [59–61] 
only partially affected, or had no effect, on 
contraction-induced glucose uptake. These 
f indings suggest other LKB1 downstream 
AMPK-related kinases are probably involved. 
Indeed, targeting of the AMPK-related kinase 
and LKB1 substrate SNARK by overexpression 
of mutant SNARK, RNA silencing in C2C12 
muscle cells or using skeletal muscle from 
whole-body SNARK+/- mice led to reduced 
contraction-induced glucose uptake and also 
dephosphorylation of AS160 [68]. By contrast, 
a further potential upstream kinase of AMPK, 
CaMKKb [35] has recently been suggested to 
control glucose uptake in contraction-stimu-
lated mouse skeletal muscle (Figure 1(2)). Using 
STO‑609, a CaMKK inhibitor, Jensen and col-
leagues demonstrated reduced electrical stimu-
lated 2‑deoxyglucose uptake in skeletal muscle. 
However, STO-609 did not have any effects on 
glucose uptake in muscles from AMPK a2KD 
mice, suggesting an AMPK-dependent effect of 
CaMKKb on glucose uptake [70]. However, the 
caveat must be borne in mind when interpreting 

results from experiments using STO-609 that 
direct inhibition of AMPK by this compound 
has also been reported [71]. A mouse model in 
which CaMKKb is specifically deleted in mus-
cle is needed to fully understand the role of this 
kinase in muscle glucose uptake.

Thus, results from various AMPK inactive or 
knockout mouse models seem to argue against a 
role for AMPK in mediating contraction- or exer-
cise-stimulated glucose uptake and suggest that 
alternative signaling pathways might be respon-
sible for contraction-induced glucose uptake 
[57–59,61,64]. As shown in Figure 1(2), the difference 
of contraction-induced glucose uptake displayed 
in muscle in mLKB1 KO versus AMPK a2KD 
mice implies that other AMPK-related protein 
kinase(s) might be involved in regulation. On the 
other hand, the emergence of the ability of AMPK 
to phosphorylate AS160 and TBC1D1 connects 
AMPK to insulin-dependent glucose uptake and 
sheds light on the role of AMPK in muscle glucose 
uptake and whole-body glucose disposal [67]. 

�� AMPK in the liver
One of the major adverse effects of obesity-induced 
insulin resistance is elevated fasting hyperglyce-
mia accompanied by increased accumulation of 
lipid in the liver [72]. Correspondingly, drugs tar-
geting liver glucose output offer powerful diabe-
tes therapies. Indeed, metformin reduces glucose 
levels in T2D patients by reducing liver glucose 
production [73]. Since AMPK is strongly acti-
vated by metformin in hepatocytes and AICAR 
infusion reduces glucose output in Zucker obese 
rats, it has been reasonable to assume, at least 
until recently, that AMPK regulates liver glucose 
production [73,74]. 

AMPK in regulating hepatic glucose output
Foretz and colleagues [75] first demonstrated 
that short-term activation of AMPK, achieved 
by injecting streptozotozin-induced diabetic or 
ob/ob mice with an adenovirus encoding a consti-
tutively active form of AMPK a2, led to reduced 
blood glucose levels with increased gluconeogenic 
gene expression, for example phosphoenolpyru-
vate carboxykinase (PEPCK) and glucose 6-phos-
phase (G6Pase) in the liver. However, liver from 
mice globally deleted for AMPK b1 subunit, with 
a more than 50% reduction of AMPK activity in 
the liver, displayed normal glucose output arguing 
against the involvement of AMPK in regulating 
hepatic glucose production [44]. More recently, 
global AMPK a1 and liver-specific AMPK a2 
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knockout mice (AMPKa1a2LS-/-) were generated 
and, similar to the findings in AMPK b1-null 
mice [44], the latter mice showed comparable 
glucose levels and gluconeogenesis-related gene 
expression to wild-type controls [76]. By contrast, 
liver-specific LKB1 knockout mice displayed 
phenotypes similar to ob/ob mice with elevated 
blood glucose levels and impaired glucose toler-
ance (Figure 1(1)) [77]. This was accompanied by 
decreased phosphorylation of TORC2 (CRTC2) 
and increased expression of gluconeogenic genes, 
including peroxisome proliferator-activated 
receptor‑g coactivator 1‑a, G6Pase and PEPCK, 
and that suggests kinases downstream of LKB1, 
other than AMPK, might be involved in medi-
ating the effects of LKB1. Indeed, salt-inducible 

kinase 2 (SIK2) and MARK2 have been sug-
gested to phosphorylate CRTC2, facilitating its 
binding to 14–3–3 proteins and sequestration in 
the cytosol [78]. As shown in Figure 1(1), deletion 
of LKB1, possibly through the loss of SIK2 and 
MARK2 function, leads to dephosphorylation 
of CRTC2. This, in turn, relocates CRTC2 to 
the nucleus where it binds CREB and facilitates 
CREB-dependent PGC1-a transcription to pro-
mote the subsequent expression of gluconeogenic 
genes such as PEPCK and G6Pase. 

AMPK in liver lipotoxicity
Excessive lipid accumulation in the liver (so-
called ‘fatty liver’) is one of the complications 
of T2D and results from decreased fatty acid 

SIK2?

SNARK?

Glucose output Glucose outputInsulin secretionGlucose uptake

Blood glucose ↓

MARK2?

(1) (2)

(3) (5)

(4)

LKB1

AMPK

Figure 1. LKB1 and AMP-activated protein kinase regulation of whole-body glucose metabolism. 
(1) LKB1 inhibits gluconeogenesis in the liver, probably through phosphorylation and activation of 
SIK2. (2) LKB1 inhibits glucose uptake into the skeletal muscle via phosphorylation of SNARK. AMPK 
(3) and LKB1 (4) play roles in regulating insulin secretion from pancreatic b cells. Note that AMPK 
activation is likely to exert negative effects in the short term but may have positive consequences in 
the longer term, for example through the regulation of apoptosis and related pathways. LKB1 action 
may be mediated via an LKB1-MARK2 signaling pathway. (5) Central AMPK activation stimulates 
hepatic glucose output. 
AMPK: AMP-activated protein kinase; LKB1: Liver kinase B1; SIK: Salt-inducible kinase.
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oxidation and increased lipogenesis [72]. The 
consequent ‘lipotoxicity’ is then thought to lead 
to insulin resistance probably by affecting the 
insulin receptor substrate-1/2 PI3K-Akt-GSK3 
signaling pathway, hence elevating hepatic glu-
cose output [79,80]. In addition to regulating 
gluconeogenic gene expression and glucose out-
put, AMPK has also been reported to control 
lipid deposition in the liver by inhibiting acetyl-
CoA (ACC) activity via phosphorylation of ACC 
and decreases in malonyl-CoA content. These 
changes subsequently decrease fatty acid syn-
thesis and increase fatty acid oxidation to reduce 
triglyceride storage [81,82]. Activation of AMPK 
achieved, for example, by infusion of AICAR 
into obese Zucker rats, reduced the glycerol 
turnover rate [74]. A similar effect was seen in 
hepatocytes treated with metformin or in mice 
overexpressing constitutively active AMPK a2 
(AMPK a2 CA) in the liver by injecting adeno-
virus carrying AMPK a2 CA through the penis 
vein; in the latter case fatty acid oxidation was 
increased whilst there was a decrease in lipo-
genic gene expression, in other words in FAS and 
transcription factors related to lipogenesis such 
as SREBP‑1 and ChREBP [73,75]. Conversely, 
mice with liver-specific deletion of AMPK a2 
displayed increased plasma triglyceride levels, 
suggesting AMPK a2 is an important regulator 
of fat metabolism in the liver [83]. On the other 
hand, ablation of LKB1 in the liver reduced 
ACC phosphorylation and led to increased FAS 
and SREBP-1 gene expression [77]. However, 
since lipogenic gene expression was not assessed 
in mice deleted for both catalytic AMPK iso-
forms, specifically in the liver, it is still unknown 
whether the effects of LKB1 on lipogenic gene 
expression are via AMPK [77]. 

AMP-activated protein kinase was suggested 
to regulate liver glucose output in early research 
studies using AICAR and metformin. However, 
since AICAR is a mimetic of ZMP and metfor-
min acts on respiratory complex I, the effects of 
these drugs on liver metabolism might be due to 
a secondary effect of a change of AMP (ZMP)/
ATP levels rather than AMPK itself [84]. With the 
advent of liver-specific LKB1 or AMPK double 
catalytic isoform knockout mice, more evidence 
has been provided to suggest that other AMPK-
related kinase lying downstream of LKB1, such 
as SIK2 or Mark2, might regulate glucose pro-
duction and gluconeogenic gene expression 
(Figure 1) [1]. Finally, through the phosphoryla-
tion and destabilization of hepatocyte nuclear 

factor‑4, AMPK may exert a direct effect on the 
regulation of lipogenic genes including liver‑type 
pyruvate kinase [19].

�� AMPK in the endocrine pancreas
The endocrine pancreas, and especially pancre-
atic b cells of the islets of Langerhans, plays a 
central role in controlling glucose homeostasis via 
fluctuations in insulin output. Failed first phase 
insulin secretion in response to glucose stimula-
tion, and reduced b cell, are thus required for 
the appearance of overt T2D [5–11]. AMPK has 
recently emerged as a key regulator of insulin 
secretion in the minute-to-minute timescale and 
b‑cell mass (i.e., survival and proliferation path-
ways) more chronically [19].

AMPK regulates b‑cell insulin secretion
& gene expression
The role of AMPK in controlling insulin secre-
tion from pancreatic b cells was first addressed by 
Salt and colleagues in a pharmacological study on 
a tumoral b‑cell line and rodent islets [85]. The 
authors demonstrated that AICAR-treated INS-1 
rat b cells displayed increased basal (at 3 mmol/l 
glucose) but inhibited glucose (16.7  mmol/l) 
stimulated insulin secretion. Similar results were 
also obtained by the group of Van de Casteele and 
Pipeleers [86], and by our own group [87], using 
MIN6 mouse b cells and primary rat islets. The 
latter studies showed that AMPK activation by 
AICAR reduced glucose-stimulated insulin secre-
tion, preproinsulin promoter activity and insu-
lin gene expression [86–88]. Metformin was later 
shown to activate AMPK in MIN6 b cells and 
primary human islets [89]. Increases in AMPK 
activity, achieved by treatment with metformin, 
were also associated with reduced glucose-stimu-
lated insulin secretion to near basal levels [89,90]. 
These results were further confirmed by Wheeler’s 
group showing an almost 50% decrease of glucose-
stimulated insulin secretion from isolated rat islets 
treated with AICAR and metformin overnight 
[91]. However, recent investigations of the involve-
ment of AMPK in controlling insulin secretion 
by Philipson’s group found that AICAR treat-
ment, rather than reducing glucose-stimulated 
insulin secretion from mouse islets, increased it 
[90]. Similarly, studies by Birnbaum and Newgard 
indicated that AICAR and phenformin (a more 
potent analog of metformin), exerted no effect 
on glucose-stimulated insulin secretion in MIN6 
b  cells and primary mouse islets [92,93]. These 
divergent results highlight the limitations of 
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using pharmacological approaches in the study 
of AMPK. AICAR mimics the effect of AMP on 
AMPK activation, and metformin and phenfor-
min have also been reported to activate AMPK 
by inhibiting complex I of the respiratory chain, 
leading to an increase in cellular AMP:ATP 
ratio; the impact on other AMPK-independent 
processes and the signaling pathways is likely to 
be significant [94]. To avoid such complications, a 
AMPK CA (a1312T172D) or a dominant-negative 
form of the enzyme (DN, a2 D157A) [95] were 
used in later studies. Whereas overexpression of 
AMPK CA in MIN6 b cells and rat islets reduced 
glucose-stimulated insulin secretion and insulin 
gene expression, AMPK DN-expressing viruses 

increased basal insulin release and insulin gene 
expression [87]. The effects of AMPK activation 
were later shown to reflect reduced insulin vesicle 
movement in MIN6 cells infected with AMPK 
CA-expressing virus (Figure 2(1)) [96]. 

AMPK regulates b‑cell apoptosis
Apart from insulin secretion and insulin gene 
expression, AMPK has also been reported by 
several groups to exert pro-apoptotic effects in 
b cells. Physiologically, this is expected to lower 
b‑cell mass and total insulin output per pan-
creas [86,97–100]. Prolonged activation of AMPK 
in MIN6 cells and purified mouse islet b cells, 
achieved by 24 or 48 h exposure to AICAR or 

Figure 2. Likely mechanisms through which LKB1 and AMP-activated protein kinase regulate insulin secretion and polarity in 
pancreatic b cells. In pancreatic b cells, membrane glucose transporters (GLUT2) transport glucose across the plasma membrane. 
Glucose is metabolized via glycolysis to form pyruvate, which enters the citrate cycle in mitochondria to generate ATP. Increased ATP 
triggers closure of KATP channels, depolarization and opening of voltage-gated Ca2+ channels. Influx of Ca2+ promotes insulin granules 
to move to the cell surface prior to insulin release events. (1) Increased ATP:AMP ratios inhibit AMPK activity and increase the number of 
docked insulin granules beneath the plasma membrane. This is probably achieved through an inhibitory effect of AMPK on kinesin light 
chain‑1 phosphorylation. (2) LKB1 inhibits glucose-stimulated insulin secretion in part by lowering GLUT2 expression. (3) LKB1 affects 
pancreatic b‑cell polarity by reorganizing microtubules, actin filaments and tight junctions. 
AMPK: AMP-activated protein kinase; GLUT2: Glucose transporter 2; LKB1: Liver kinase B1.
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metformin, led to an increase in the number of 
apoptotic cells assessed by DNA fragmentation 
[86,97,98,101,102]. This change was proposed to be 
due to increased oxygen radical formation and 
mitochondrial dysfunction. The latter was then 
proposed to activate JNK and caspase 3‑depen-
dent death pathways, eventually leading to the 
onset of apoptosis [86,99]. Using an adenovirus 
to express AMPK CA, we confirmed that acti-
vation of AMPK in MIN6 cells and dissociated 
mouse islet b cells significantly increased levels 
of cleaved-caspase 3, a key marker of apoptosis 
[103]. Conversely, AMPK DN virus-infected cells 
showed decreased levels of active caspase 3 after 
cytokine treatment [103]. Correspondingly, in pan-
creatic b cells isolated from AMPK a2-deficient 
mice, AICAR-induced apoptosis was significantly 
reduced [101].

b‑cell AMPK & LKB1 regulate whole-body 
glucose homeostasis in mice
A first attempt to identify the role of AMPK 
specifically in pancreatic b cells in controlling 
whole-body glucose metabolism was achieved by 
our group using streptozotocin-induced diabetic 
mice, which were transplanted with islets infected 
with AMPK CA or DN viruses. Mice receiving 
AMPK CA-infected islets demonstrated poorer 
glycemic index over 20 days post-transplanta-
tion and poorer glucose tolerance, whereas those 
receiving AMPK DN-infected islets had improved 
glycemic control and better glucose tolerance [104]. 
More recent studies by our group [105] and that of 
Michael Ashford [106] using RIP2-Cre transgenic 
mice to delete both AMPK a1 and a2 subunits in 
pancreatic b cells and a subpopulation of ‘RIP2 
neurons’ in the brain revealed severe glucose 
intolerance. In the ‘double knockout’ mice insu-
lin secretion in vivo was sharply reduced [105,106], 
despite increased insulin sensitivity of peripheral 
tissues [105]. It seems likely that this reflects cen-
tral deletion of AMPK, since our further studies 
revealed that stereotactic injection of AMPK DN 
into the hypothalamus of rats decreased glucose 
output, presumably reflecting increased insulin 
sensitivity [107,108]. However, as shown in Figure 1 
[3], although both studies reported that AMPK 
deletion abolishes insulin secretion in  vivo, 
glucose-stimulated insulin secretion from islets 
in vitro revealed important differences between 
the two studies. Thus, insulin secretion from 
double AMPK (a1, a2; dKO) mouse islets was 
reduced and b cells were hyperpoloarized in the 
study by Beall et al. [106]. By contrast our own 

data [105], consistent with earlier studies [87,96], 
revealed increased granule number beneath the 
plasma membrane and enhanced insulin release 
(Figure 2) [1]. These important apparent discrep-
ancies are likely to reflect differences in the pro-
tocols used for the culture of islets (e.g., glucose 
concentrations), and the selection of islets for 
studies (size, ‘condition’). A definitive answer is 
likely to come only from studies using perfused 
pancreas (the most physiological ex vivo prepa-
ration for the study of insulin secretion), more 
b‑cell selective knockout, achieved, for example, 
using RIP-Cre or Pdx1-CreER deleter strains 
[109,110], or a more complete understanding of 
the effects of hypothalamic AMPK deletion on 
insulin secretion. 

In addition to the effects of modulation of 
AMPK on insulin secretion, we have also dem-
onstrated that pancreatic b cells from AMPK 
dKO mice are smaller than those from control 
islets [105] and show enhanced levels of apoptosis 
and autophagy [Sun G, Marchetti P, Tooze S, Leclerc I, 

Rutter GA, Unpublished Data]. These observations 
would appear to argue against the involvement 
of mTOR signaling pathways, which have been 
widely believed to lie downstream of AMPK, 
controlling cell growth in many other cell types 
[111]. Further examination of isolated islets using 
transmission electron microscopy demonstrated 
increased apoptosis with enlarged mitochondria, 
indicating the importance of the presence of 
AMPK for cell survival [Sun G, Marchetti P, Tooze S, 

Leclerc I, Rutter GA, Unpublished Data]. Perhaps the 
most surprising discovery from three recent 
studies on mice with pancreatic b‑cell LKB1 
deletion using RIP2-Cre (our group) (bLKB1 
KO) [112] or Pdx1-CreER [113,114] transgenes is 
the extent to which these mice fail to phenocopy 
bAMPK dKO mice. Thus, mice lacking LKB1 
in b  cells display increased insulin secretion 
and improved glucose tolerance largely due to 
enlarged b‑cell mass and insulin synthesis. This 
is associated with dephosphorylation of MARK2 
and upregulation of mTOR signaling pathways, 
suggesting the involvement of LKB1–MARK2–
mTOR signaling pathways in controlling b‑cell 
mass (Figure 1(4)).

Of the 12 other AMPK-related kinases [115], 
Snf-related kinase, NUAK1/2 and MARK1–3 
were found to be highly expressed in pancreatic 
islets at the mRNA level [112]. Only a very low 
level of expression of SIK1/2 was apparent whilst 
BRSK1/2 (also-called SAD‑A/B in the central 
nervous system) mRNA was undetectable [112]. 
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Interestingly, Snf-related kinase, NUAK and 
MARK have been implicated in the control of 
cell polarity and growth in other cell types [116]. 
Studies of these kinases in pancreatic b cells, for 
example using b‑cell-specific knockout mouse 
models, may reveal the possible function of these 
kinases in controlling pancreatic b‑cell function 
and growth downstream of LKB1.

In summary, careful studies are still needed to 
distinguish between the effects of AMPK dele-
tion in the brain and in b cells, and to determine 
the involvement of other AMPK-related kinases 
in the control of insulin secretion. 

AMPK regulates glucagon secretion & gene 
expression in pancreatic a cells
Glucagon, secreted by pancreatic a  cells in 
response to hypoglycemia [117], is a critical 
counter-regulatory hormone to insulin and 
thus in the maintenance of glucose homeostasis 
in mammals. Glucagon acts on liver glucagon 
receptors to promote hepatic glucose produc-
tion, and downregulation of glucagon signal-
ing, achieved for example by whole-body dele-
tion of glucagon receptors (GCR-/- mice), leads 
to severe hypoglycemia during fasting [118]. On 
the other hand, both recurrent hypoglycemia 
in Type 1 diabetic patients and insulin treat-
ment-induced hypoglycemia in Type 2 diabetic 
patients are associated with hyposecretion of 
glucagon. Both AMPK a1 and a2 subunits are 
expressed in pancreatic a cells [112]. However, 
little information has been obtained to date 
regarding the role of AMPK in pancreatic a 
cells. Interestingly, silencing of Pas (per-arnt-
sim) domain-containing protein kinase (PASK), 
which is distantly related to AMPK, in mouse 
aTC1–9 cells leads to increased AMPK a2 gene 
expression accompanied by increased glucagon 
secretion and pre-proglucagon gene expression. 
Conversely, overexpression of PASK in aTC1–9 
cells or human islets activates glucagon release, 
suggesting that PASK might regulate glucagon 
signaling partially through AMPK [119]. Recent 
approaches to regulate AMPK activity in the 
mouse aTC 1–9 cell line have included using 
AMPK activators, such as metformin, phen-
formin or A769662 [120], or viruses carrying 
AMPKa2 CA [120]. In the same study AMPK 
was inhibited in a cells using compound C or 
a virus carrying AMPK a1 DN. These studies 
revealed a potentially important role for AMPK 
in regulating glucagon release. Thus, activation 
of AMPK increased glucagon secretion whilst 

inhibition of AMPK led to decreased glucagon 
secretion with blunted low glucose-stimulated 
intracellular Ca2+ oscillations. By contrast, acti-
vation of AMPK specifically in pancreatic a cells 
in intact islets by pre-proglucagon promoter-
driven AMPK CA expression demonstrated the 
stimulatory effect of AMPK on glucagon secre-
tion [120]. Thus, these observations indicate that 
AMPK is a critical regulator of glucagon release 
from the a cell, and is likely to be involved in 
counter-regulatory responses to hypoglycemia.

Key remaining questions are thus whether 
regulation of glucagon secretion via AMPK-
dependent pathways will affect total glucose 
metabolism in the long term? Which isoforms of 
AMPK catalytic subunits are involved? What are 
the mechanisms through which AMPK exerts 
diametrically opposite effects on hormone secre-
tion in a cells (stimulation) versus b cells (inhi-
bition)? Studies with AMPK inactivated specifi-
cally in pancreatic a cells will be needed to fully 
address these questions. 

�� AMPK in the ventromedial hypothalamus
Hypothalamic AMPK in regulating food intake
The basomedial hypothalamic area of the 
brain is a key compartment for energy sensing 
and satiety regulation. Hypothalamic AMPK 
activity is regulated by feeding status and vari-
ous hormones and nutrients including insulin, 
ghrelin, leptin, adiponectin and cannabinoids, 
and these changes have been suggested to control 
bodyweight and food intake [121–126]. Increases 
in AMPK activity, achieved by expressing 
AMPK CA in the mediobasal hypothalamus 
(including arcuate and paraventricular areas) 
or intracerebroventricular injection of AICAR, 
increased food intake and bodyweight, concomi-
tant with increased expression of the orexigenic 
peptides neuropeptide and agouti-related protein 
(AgRP) [127]. Conversely, introduction of adeno-
viral AMPK DN or compound C decreased the 
expression of both peptides and lowered food 
intake [127]. It was proposed that two intracel-
lular signaling pathways might be involved in 
the satiety-controlling effects of AMPK. One 
was through hypothalamic lipid metabolism, 
that is, AMPK-mediated inhibition of ACC 
carboxylase and malonyl-CoA activation lead-
ing to enhanced carnitine palmitoyltransferase 
(CPT)‑1 activity [128]. An alternative mTOR-
dependent signaling pathway in the mediobasal 
hypothalamus was recently suggested to mediate 
AMPK-regulated increase in food intake. Here, 
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AMPK was proposed to inhibit phosphoryla-
tion of its downstream target, S6K1 [129,130]. To 
clarify exactly which areas of the hypothalamus, 
and which neuron types, were involved in these 
effects, Wither’s group generated proopiomela-
nocortin and AgRP‑specific AMPK a2 knock-
out mice. Mice lacking AMPK a2 in proopi-
omelanocortin neurons displayed increased food 
intake and became obese, while mice inactivated 
for AMPK a2 in AgRP neurons showed the 
opposite phenotype, with decreased food intake 
and bodyweight [131]. Glucose-inhibited neurons 
isolated from the basomedial hypothalamus 
responded to decreased glucose concentrations 
in a similar way to the treatment of neurons with 
AICAR. The stimulatory effects of AICAR on 
these neurons were reversed by the AMPK inhib-
itor, compound C. These results indicated that 
activation of AMPK in these neurons might lead 
to increased bodyweight [125]. 

Hypothalamic AMPK & the regulation of 
hepatic glucose production
In addition to regulating satiety and bodyweight, 
the hypothalamus has also been implicated in 
integrating energy signaling to control hepatic 
glucose production. In light of the reduced glu-
cose output in mice with decreased CPT‑1 lev-
els in the hypothalamus [132], it is plausible that 
AMPK, whose phosphorylation increases CPT‑1 
activity through decreasing ACC and malonyl-
CoA levels, might also increase hepatic glucose 
production. Most recently, using rats infused into 
the mediobasal hypothalamus with virus carrying 
AMPK DN or compound C, Yang and colleagues 
demonstrated that inhibition of AMPK in this 
brain region reduced glucose production without 
changing peripheral glucose disposal [107]. Thus, 
central AMPK might be an important regulator 
of hepatic glucose production (Figure 1(5)). 

Hypothalamic AMPK in controlling b‑cell 
function & b‑cell mass
As well as modulating hepatic glucose produc-
tion, the hypothalamus may be able to control 
b‑cell function and b‑cell mass by control-
ling central hormone secretion such as resistin 
[133]. Thus, intracerebroventricular infusion of 
resistin into rats for 4 weeks led to a remark-
ably elevated first phase insulin secretion, con-
comitant with increased b‑cell mass. Decreased 
AMPK phosphorylation in response to leptin 
was also alleviated by resistin infusion, implying 
that the modulation of AMPK activity in the 

hypothalamus by resistin might regulate b‑cell 
function and b‑cell growth [133]. As mentioned 
above, deletion of both AMPK catalytic isoforms 
using the RIP2-Cre transgene also expressed in 
the hypothalamus [109] led to opposing insulin 
secretion patterns in vivo and in vitro, implicat-
ing the involvement of central AMPK in con-
trolling insulin secretion in vivo [105]. Careful 
analysis of which hypothalamic neuronal cell 
types and which AMPK isoforms are involved 
in controlling b‑cell function or mass needs to 
be further addressed.

Upstream kinases for AMPK in  
the hypothalamus
Mice deleted for LKB1 in RIP2-expressing cells 
(bLKB1 KO), including those in the hypo-
thalamus [109], showed a hypophagic phenotype 
and decreased bodyweight [112]. Neither b‑cell 
selective-AMPK double knockout mice (gener-
ated using the same RIP2-Cre deleter mice as 
for LKB1 elimination in these cells) or mice in 
which LKB1 was inactivated in the b‑cell of 
adult mice using a regulatable Pdx1 CreERT 
mouse strain, showed any changes in satiety 
or bodyweight. These findings suggest that the 
observed decrease of food intake observed as a 
result of  hypothalamic LKB1 elimination (a 
consequence of the expression of the RIP2.Cre 
transgene in parts of the central nervous system, 
as well as in the pancreatic b-cell) was indepen-
dent of AMPK [105,113,114]. Further studies of 
LKB1, or possibly other AMPK-related kinases, 
in RIP2 neurons are needed to fully understand 
the mechanisms by which LKB1 controls satiety 
in RIP2-Cre neurons.

In summary, AMPK is clearly a key regula-
tor of energy signals in the hypothalamus, inte-
grating signals from peripheral tissues to control 
satiety, glucose production and insulin secretion. 
However, caution needs to be taken when inter-
preting data from intracerebroventricular infu-
sion studies that affect large areas of the medio-
basal hypothalamus. Thus, the identity of the 
neurons involved, and the role played by AMPK 
in such neurons, remains only partly clarified. 
Total ablation of AMPK using neuron-specific 
Cre transgenes will be a useful tool to answer 
these questions.

Conclusion & future perspective
In this article we have focused on recent studies 
in which gene inactivation has been used as a 
tool to study the role and regulation of AMPK 
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in diabetes-relevant tissues in mice. However, 
it is important to point out two caveats when 
interpreting such studies [1]: 

�� The possibility exists that changing the 
expression of a gene might unmask a pathway 
whose role in normal physiology is, due to 
redundancy, usually minimal or zero. Such 
redundancies mean that the absence (or mild-
ness) of a phenotype apparent after the inac-
tivation of a particular gene cannot be taken 
as proof that the gene and gene product in 
question are unimportant [2]; 

�� That the considerable differences between the 
physiology of mice (mass ~25  g; lifespan 
<3  years) versus man (mass ~50–90  kg; 
lifespan ~75 years) mean that extrapolation of 
results from the former to the latter must be 
made with caution. 

Nonetheless, at least for the time being, mice 
do provide the most suitable in vivo system to 
analyze the role of enzymes such as AMPK and 
the role they play in health and in disease settings.

Because AMPK balances ATP generation and 
consumption, it is natural to think of it as acting 
as a gauge to control energy status [15,50]. Thus, 
manipulation of AMPK might restore the imbal-
ance of energy usage in metabolic disorders such 
as T2D where AMPK activities and ATP/AMP 
levels can be affected. In fact, the most widely 
prescribed antidiabetic drug, metformin, strongly 
activates AMPK in many insulin-sensitive and 
glucose-regulating organs, such as the liver, mus-
cle, hypothalamus and pancreas [134,135]. Early 
studies using metformin also demonstrated the 
beneficial effects of AMPK in restoring energy 
balance, such as decreasing hepatic glucose out-
put, elevating skeletal muscle glucose uptake and 
promoting satiety in the hypothalamus [134]. 
However, with increased usage of tissue-specific 
AMPK and LKB1 knockout mouse models, it is 

gradually emerging that the effects of metformin 
are probably not, or only partially, mediated via 
AMPK. Moreover, discrepancies between the phe-
notypes of mice inactivated for AMPK or LKB1 
in the same tissue suggest that other AMPK-
related kinases downstream of LKB1 might be 
associated with the control of whole-body glucose 
metabolism. Notably, in the cases of muscle con-
traction-induced glucose uptake and hepatic glu-
cose production, it seems very likely that SNARK 
and SIK2 or MARK2 are involved. Likewise, the 
discrepancies in the phenotypes of RIP2-AMPK 
dKO and RIP2-LKB1 KO mice in terms of food 
intake and insulin secretion also argue against 
the universal control of satiety by a simple linear 
‘LKB1-AMPK’ signaling pathway. Therefore, the 
concept of AMPK as a master energy sensor in 
different glucose- and insulin-sensing organs may 
need careful re-evaluation. In particular, further 
investigation of the role of the other 12 AMPK-
related kinases [115] using tissue-specific knock-
out or transgenic mice model may help to under-
stand how these kinases regulate glucose levels. 
Importantly, drugs acting specifically on certain 
kinases or downstream targets may provide the 
promise of new therapies for T2D. 
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