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Abstract  

Penumbra is the viable tissue around the irreversibly damaged ischemic core. The purpose of acute stroke 
treatment is to salvage penumbral tissue and to improve brain function. However, the majority of acute stroke 
patients who have treatable penumbra are left untreated. Therefore, developing an effective non-
recanalizational therapeutics, such as neuroprotective agents, has significant clinical applications. Part I of this 
serial review on “targeting penumbra” puts special emphases on penumbral pathophysiology and the develop-
ment of therapeutic strategies. Bioenergetic intervention by massive metabolic suppression and direct energy 
delivery would be a promising future direction. An effective drug delivery system for this purpose should be able 
to penetrate BBB and achieve high local tissue drug levels while non-ischemic region being largely unaffected. 
Selective drug delivery to ischemic stroke penumbra is feasible and deserves intensive research. 
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1. Introduction 

Each year, approximately 795 000 people experience 
a new or recurrent stroke. On average, every 40 
seconds, someone in the United States has a stroke. 
Overall stroke prevalence during 2003 to 2006 is 
around 2.9%. Of all strokes, 87% are ischemic. 
(Lloyd-Jones et al. 2010) Due to stroke’s high inci-
dence and prevalence rates and the lack of effective 
treatment, stroke remains one of the major diseases 
causing most mortality and disability. Stroke is the 
third leading cause of death, behind diseases of the 
heart and cancer, and  is a leading cause of serious, 
long-term disability in the United States. Although 
treatments for ischemic stroke have been rigorously 
investigated for two decades, up to now there is only 
one FDA-approved pharmacological treatment for 
ischemic stroke, the intravenous thrombolytic treat-
ment using recombinant tissue plasminogen activator 
(r-tPA).(Jahan and Vinuela 2009), which can only be 
available to a very limited number of patients (Klein-
dorfer et al. 2004).  

Acute stroke causes an irreversibly damaged ischem-
ic core and salvageable surrounding tissue. “Penum-
bra” is the term used for the reversibly injured brain 
tissue around ischemic core; which is the pharmaco-
logical target for acute ischemic stroke treatment (As-
trup et al. 1981a). The goal to treat ischemic stroke is 
to salvage the penumbra as much and early as poss-
ible. It has been reported that roughly half of all acute 

ischemic patients show penumbra on MRI (Rivers et 
al. 2006) and are potentially treatable. However, only 
8% of all ischemic stroke patients eligible for treat-
ment with recombinant tissue plasminogen activator 
(r-tPA) (Kleindorfer et al. 2004). Effective pharmaco-
logical treatment with or without recanalization could 
be used for the majority of stroke patients, having 
invaluable clinical significance. The development of 
neuroprotective treatment for ischemic stroke is ob-
structed by the blood-brain barrier and reduced blood 
supply to ischemic brain tissue, facing repeated 
translational failure in recent 20 years. Drug delivery 
to brain tissue, especially the ischemic brain tissue 
has long been the technical bottleneck limiting acute 
stroke treatments. A breakthrough in this area will 
possibly bring in numerous related applications. The 
technology to be developed in this field may also be 
extended to other fields, such as traumatic brain in-
jury, brain tumor, and CNS inflammatory diseases. 
This review summarizes advances for ischemic 
stroke penumbra, and puts special emphases on 
strategy development from a metabolic point of view 
for effective drug delivery to ischemic penumbra. 

2. Penumbra and infarct expansion: the “time is 
brain” concept 

In animal studies, the dynamic changes of penumbra 
area and infarct expansion can be better illustrated 
based on the data obtained from experimental 
strokes, in which the timing of occlusion and reperfu-
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sion was precisely controlled. After middle cerebral 
artery (MCA) occlusion, the infarct evolves rapidly in 
the first few hours, supporting the interventional con-
cept that “time is brain” (Saver 2006). For an example, 
in a 300 g rat, 2-h MCA occlusion (MCAO) produces 
a big infarct of 400-450 mm3 that is close to the in-
farct caused by 24-h permanent MCAO (Greco et al. 
2007; Masada et al. 2001). Ninety minute transient 
MCAO results in a smaller infarct about 250–380 
mm3 (Eschenfelder et al. 2008; Liu et al. 2006) whilst 
60-min MCAO only produces approximately 170 mm3 
infarct (Han et al. 2008). Therefore, in a 300g rat, at 
1-h post-MCA occlusion approximately 170 mm3 
brain tissue has already been irreversibly injured. At 
this moment the occlusion has caused approximately 
230 mm3 tissue in danger. Roughly 140 mm3 of this 
230 mm3 in-danger brain tissue will die in 30 min, and 
the left 90 mm3 will die in 60 min. If we assume the 
specific gravity of rat brain is 1.0 mg/mm3, the aver-
age speed of infarct expansion for a 300g rat is ap-
proximately 3.3 mg/min after MCA occlusion.  

3. Imaging penumbra 

For identifying the salvageable brain tissue in acute 
stroke, the direct method is to image penumbra. In 
acute ischemic stroke, the viability and size of pe-
numbra change dynamically (Kuge et al. 2001; Shi-
mosegawa et al. 2005) in response to regional cere-
bral blood flow, pathophysiological environment and 
treatment. Penumbra can be imaged using different 
technologies, such as MRI, CT (Kumar et al. 2010), 
PET, and SPECT (Meerwaldt et al. 2009). For target-
ing penumbra in stroke patients, imaging penumbra 
is necessary for monitoring treatment response as 
well as for patient screening. The “mismatch” of per-
fusion-weighted and diffusion-weighted images (PWI-
DWI mismatch) is the most commonly used method 
for imaging penumbra and may serve for this purpose 
(Ebinger et al. 2009; Rivers et al. 2006). The diffu-
sion-weighted image may represent reversibly injured 
tissue in the early hours after stroke (Muller et al. 
1995; Sakoh et al. 2001) whereas the perfusion-
weighted image may include area of benign oligemia 
(Sobesky et al. 2005). The mismatched tissue 
represents “tissue-at-risk”, not “tissue-doomed-to die”; 
therefore it does not identify lesion growth by itself 
(Rivers et al. 2006). (For infarct expansion see the 
following paragraph.) Penumbra may resolve sponta-
neously (Koga et al. 2005), either by merging with the 
ischemic core, or becoming normal tissue. When re-
canalizational therapy started early enough, the mis-
matched tissue, the penumbra, may be salvaged, 
which has been observed using both CT (Murphy et 
al. 2006) and MRI (Olivot et al. 2008) methods.  

4. Penumbra in stroke patients: the majority of 
potentially treatable patients are not treated 

The use of imaging modalities detecting the exis-
tence of penumbra in stroke patients brought in new 
lights in patient management. Theoretically, all pa-
tients having penumbra zone should be treated. 
However, the number of patients treated by recanali-
zational intervention is only a small portion of all 
acute stroke patients who have a salvageable pe-
numbra. When further looking into the subtypes ac-
cording to the Trial of Org 10172 in Acute Stroke 
Treatment (TOAST) classification (Adams et al. 
1993), the existence of penumbral tissue significantly 
correlates to stroke subtypes. The majority (about 
94%)of intracranial large artery atherosclerotic (IC-
LAA) stroke patients had perfusion-diffusion mis-
match, whereas in cargioembolic strokes the penum-
bra existed in 35.7% patients (Boomer et al. 2009). 
Although the initial penumbral volume is similar 
among large-vessel stroke, cardioembolic stroke and 
cryptogenic embolic stroke, the mean perfusion de-
fect in IC-LAA stroke was less severe than in other 
groups. This finding may indicate that the penumbral 
tissue in intracranial large artery atherosclerotic 
stroke may be more responsive to acute treatment. 
When an infarct involves white matter, it is associated 
with a relatively greater penumbral zone than in gray 
matter because white matter is more resistant to ce-
rebral ischemia (Arakawa et al. 2006; Bristow et al. 
2005; Koga et al. 2005) possibly due to the difference 
in constituent cell population and NMDA receptor 
dexpression. . Lacunar infarction is caused by occlu-
sion of perforating artery, which is end-artery without 
collateral circulation; and its occlusion is thought not 
to result in a penumbral zone. Because of the small 
volume of lacunar infarcts, the finding of a perfusion-
diffusion mismatch in lacunar stroke is affected by 
MRI technical issue. Studies using a 1.5-T scanner 
(Gerraty et al. 2002; Ohashi et al. 2005), or CT perfu-
sion imaging and CT angiography (Vergoni et al. 
2000), found no PWI abnormality in patients with a 
final diagnosis of lacunar infarct. In a most recent 
study of lacunar infarcts using a 3-T scanner that 
provide a higher spatial resolution, only 68.2% pa-
tients was found having abnormal PWI at the site of 
the diffusion-weighted imaging lesion (Poppe et al. 
2009).  

5. The fate of penumbra: role of energy state 

While cerebral blood flow determines both the meta-
bolic process (Hata et al. 2000; Hossmann 1994) and 
the fate of ischemic tissue (Bardutzky et al. 2007; 
Murphy et al. 2006; Ohashi et al. 2005), energy state 
of an ischemic cell determines the pathway (Eguchi 
et al. 1997; Nicotera and Leist 1997; Nicotera et al. 
1998) (Leist et al. 1997; Lieberthal et al. 1998) and 
the destination (Galeffi et al. 2000) (Wang et al. 2000) 
of a cell to die or to survive. For detailed discussion 
please refer to our previous publication (Liu and Le-
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vine 2008) and figure 1 and figure 2. Cerebral ische-
mia causes a disturbance of energy metabolism. In 
global ischemia, brain ATP levels decrease to ap-
proximately 60% of baseline in one minute (Winn et 
al. 1979). In focal cerebral ischemia, the ischemic 
core is depleted with ATP whilst the penumbra has 
decreased ATP level, see figure 3. Theoretically, in-

tervention that maintains cell energy state may pro-
vide robust neuroprotection. Such examples can be 
found in some classic neuroprotectants (Warner et al. 
1996). Bioenergetic intervention could be equally im-
portant and effective as recanalizational intervention 
for acute stroke treatment.  

Figure 1. Infarct expansion and treatment strategies. During the first few hours after middle cerebral occlu-
sion of a 300 gram rat, the infarct expands quickly at an average speed of 3.3 mg  brain tissue per minute 
assuming the specific gravity of rat brain is 1.0 mg/mm3. Neuroprotective treatment should be able to pene-
trate the blood-brain barrier and reach penumbral zone. Such treatment should be made available to most 
acute stroke patients who have salvageable penumbral tissue. 

6. Potential of neuroprotection: view from meta-
bolic suppression 

Neuroprotection can be achieved through metabolic 
suppression that decreases energy demand, there-
fore, maintains energy state. The human brain is me-
tabolically highly active, and the majority of its meta-
bolism is for functional purposes and can be sup-
pressed. The human brain constitutes only about 2% 
of the body weight, yet the energy-consuming 
processes that ensure proper brain function account 
for approximately 25% of total body glucose utiliza-
tion. The average ATP concentration of normal rat 
brain tissue is between 2.38 to 2.75 nmole/mg wet 
weight (Hsu et al. 1991; Plaschke et al. 1998; Winn et 
al. 1979). The main energy-consuming process of the 
brain is the maintenance of ionic gradients across the 
plasma membrane and function-related activities 
(Ames 2000). About 87% of total energy consumed 
reflects function-related activities (Magistretti 2002), 

which could be suppressed to decrease energy con-
sumption. Metabolic suppression happens naturally 
in hibernating animals without causing tissue injury. 
Hibernation and torpid state can reduce basal meta-
bolic rate to 1-5% of resting normothermic metabolic 
rate below ischemic threshold for causing irreversible 
injury (Geiser 2004). Decreasing energy demand by 
metabolic suppression is the classic method for 
achieving neuroprotection. Metabolic rate could be 
drastically reduced by hypothermia (Astrup et al. 
1981b; Berger et al. 1998; Mori et al. 1998), anes-
thetics and sedatives (Astrup et al. 1981b; Warner et 
al. 1996); but hypothermia-related (Jian et al. 2003; 
Schwab et al. 2001) and drug-related systemic com-
plications (Coupey 1997) have limited their use in 
acute strokes. Recent advances in CNS drug delivery 
system may provide a solution for these problems. 
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Figure 2. From pathophysiology to therapeutic strategy. Salvaging penumbra is the goal for acute stroke 
treatment. Neuroprotection for acute ischemic stroke should target the upper stream event that determines 
the fate of ischemic penumbra. Bioenergetic intervention could be the therapeutic modality  equivalent to re-
canalizational therapies at metabolic levels because the disturbance of energy metabolism after acute brain 
ischemia differentiates the ischemic cascades. C1-C9: pathological cycles between major events that are 
supported by literature; Q1-Q3: suspected pathological cycles between major events that need more litera-
ture support. 

7. Direct energy delivery 

ATP molecules are negatively charged and cannot 
freely pass membrane barriers entering intracellular 
space (Gordon 1986). Because extracellular ATP are 
rapidly degraded by ectonucleotidases (Winn et al. 
1979), investigators have tried using nanoliposome-
entrapped ATP to deliver energy to ischemic tissue. 
Nanoliposome-encapsulated ATP(Arakawa et al. 
1998) has shown protective effects in intestinal injury 
from hemorrhagic shock (Zakaria el et al. 2005) , fo-
rebrain ischemia (Laham et al. 1988; Puisieux et al. 
1994), myocardial ischemia.(Verma et al. 2005a; 
Verma et al. 2006; Verma et al. 2005b), and skin 
wound healing (Chiang et al. 2007). ATP blood levels 
can be increased drastically after the administration 
of ATP-loaded nanoliposomes; a similar administra-
tion of carboxyfluorescein-loaded nanoliposomes 
showed that nanoliposomes can reach the ischemic 
cerebral parenchyma in rats (Chapat et al. 1991). 

8. Direct energy delivery for brain ischemia 

ATP molecules are highly recycled in living cells. It is 
not practical and neither necessary to provide the 
total consumption amount of exogenous ATP be-
cause injured cells still have, although limited, ability 

to regenerate ATP. Because ATP is released into, 
and degraded in, extracellular space, theoretically, it 
could also be beneficial for ischemic cells if such loss 
of intracellular ATP can be replenished through ex-
ogenous resources by targeted intracellular ATP deli-
very. Administration of liposomal ATP has been 
shown to be promising in a forebrain ischemia mod-
el.(Puisieux et al. 1994) 

The liposomal ATP solution for in vivo experiments 
could reach a high concentration about 12 mg/ml 
(21.8 mole/ml). (Verma et al. 2005a) Wit h a bolus 
injection of serum stable pH-sensitive liposomes, 
50%, 24%, and 15% of injected dose could remain in 
the blood at 1-h, 10-h, and 24-h post-injection, re-
spectively (Slepushkin et al. 1997). Considering the 
regional cerebral blood flow (rCBF) in the inner pe-
numbra being approximately 15 ml/100g/min 
(0.00015 ml/mg/min), (Murphy et al. 2006; Ohashi et 
al. 2005) therefore, an injection of 1 ml such ATP-
loaded liposomes (12 mg/ml) into a 300g rat could 
deliver ATP to the inner boundary of penumbra with a 
speed of 0.079 nmole/mg/min 
(21.8*0.5/21*0.00015*1000) at 1-h post-injection, as-
suming the total blood volume being 21 ml. At this 
delivery speed, it will only need about 30-min 
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(2.38/0.079) to replenish the total ATP base pool 
(2.38 nmole/mg wet weight) in the inner penumbra 
through the residue blood flow. 

In a forebrain ischemia model, it has been observed 
that when being entrapped into nanoliposomes and 
administered intracarotidally, ATP greatly increased 
the number of ischemic episodes that can be tole-
rated before brain electrical silence and death ap-
peared (Laham et al. 1988; Puisieux et al. 1994) be-
cause of improvement in energy metabolism. Direct 
energy delivery remains an attractive treatment for 
ischemic stroke, yet it still needs extensive research 
before its successful translation to clinic settings. Ef-

forts need to be put on aspects such as giving syner-
gistic adjunctive treatments, improving the bioavaila-
bility of ATP-loaded nanoliposomes, and minimizing 
the interaction of exogenous ATP purinergic recep-
tors (Boucsein et al. 2003; Chen et al. 2007; Siow et 
al. 2005). A non-selective P2 receptor antagonist, 
such as suramin (Kharlamov et al. 2002; Millart et al. 
2009), can be used for minimizing these compound-
ing effects. Suramin can be encapsulated into lipo-
somes (Chang and Flanagan 1994; Chang and Fla-
nagan 1995). 

Figure 3. Correlation between energy thresholds and blood flow thresholds. The form and pathway of cell 
death closely are closely associated with energy state levels. Blood flow reduction causes specific metabolic 
disturbances at certain blood flow thresholds. The ischemic core has depleted ATP level whilst the penum-
bra has gradient reduction of ATP level between normal or oligemic tissue and ischemic core. 

9. Delivery of a metabolic suppressor 

Nanoliposomes have been used as a carrier for CNS 
drug delivery and can be tissue selective. Selective 
delivery of a metabolic suppressor to a specific brain 
region makes it possible to reach a desired regional 
drug concentration with minimized drug-related sys-
temic adverse effects (CNS depression, hypotension, 
etc.), therefore, having its application in acute stroke 
treatments. Some local anesthetics and sedatives 

have been reported of their liposomal formulation for 
topical application and controlled release, such as 
lidocaine (Fransson et al. 2002), benzocaine (Avila 
and Martinez 2003), diazepam (Fatouros and Antimi-
siaris 2002; Sznitowska et al. 2000). Because the 
amphiphilic drug diazepam, which binds to the same 
GABAA receptor as pentobarbital does, can be used 
in liposomal formulation, the more water-soluble pen-
tobarbital will theoretically be better encapsulated in 
nanoliposomes and be bioactive.  
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10. Penumbral drug delivery strategy 

Conventional drug delivery methods cause unwanted 
drug exposure to other tissue or brain regions, lead-
ing to severe side effects and toxicity, especially 
when high dose is being used for reaching therapeu-
tic drug levels in ischemic tissue. For examples, the 
classic metabolic suppressor pentobarbital could re-
duce metabolic rate by 56%, (Warner et al. 1996) 
having a proven neuroprotective effect; but it cannot 
be used with a sufficient dose to achieve the desired 
maximal metabolic suppression because of its drug-
related respiratory suppression. Neuroprotection by 
providing exogenous energy has also been facing 
problems of adverse effects and low bioavailability. 
With the advancement of CNS drug delivery, those 
problems can be tackled through innovative ap-
proaches (see following paragraph).  

Brain ischemia causes a serial of pathological 
changes that affect drug delivery. In the ischemic lo-
cal region there is limited blood supply while the 
blood-brain barrier and the shrunk extracellular space 
further limit drug access to ischemic brain tissue. 
However, there are also some pathological changes 
that may be utilized for facilitating drug delivery to 
local ischemic tissue. For example, brain ischemia 
causes a metabolic shift towards anaerobic glycolysis, 
resulting in a lower intracellular pH value in the 
ischemic brain tissue. Targeting at this property of 
ischemic brain tissue, liposomal nanocarrier may be 
optimized to release their cargos under acidic condi-
tion (Collins et al. 1989) similar to the intracellular 
environment of ischemic brain tissue(pH<6.75) (An-
derson et al. 1999). Another example, ischemia in-
duced molecular structure changes can also be used 
for selective drug delivery to ischemic brain tissue. A 
most recently discovered special peptide has showed 
the homing ability to ischemic brain tissue (Hong et al. 
2008). Therefore, the strategy for drug delivery to 
ischemic brain tissue should be to overcome the dis-
advantages and to utilize the advantages of ischemia 
induced pathological changes for achieving maximal 
bioavailability. And the neuroprotective strategy is to 
deliver a treatment that has the largest protection 
potential using the most efficient drug delivery system. 

11. Summary 

It is of great clinical significance to develop a neuro-
protective treatment that can be made available to 
most acute stroke patients. Bioenergetic intervention 
by massive metabolic suppression and direct energy 
delivery would be a promising future direction. An 
effective drug delivery system for this purpose should 
be able to penetrate BBB and achieve high local tis-
sue drug levels while non-ischemic region being 
largely unaffected. Selective drug delivery to ischem-

ic stroke penumbra is feasible and deserves intensive 
research. See Figure 1. 
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