
737ISSN 1475-070810.2217/THY.11.72 © 2011 Future Medicine Ltd Therapy (2011) 8(6), 737–740

Review

Targeting epithelial–mesenchymal transition: 
therapeutic reversal of the cancer stem 
cell phenotype

Mechanisms of cancer cell drug 
resistance & cancer stem cells
One of the most difficult problems facing clini‑
cians who take care of cancer patients is treat‑
ment resistance. Therapeutic advances now 
depend on the development of new insights into 
cancer biology. Recently, a deeper understand‑
ing of cancer signaling pathways has generated 
paradigm shifting models of how cancer cells 
become immortalized and survive the onslaught 
of high doses of chemotherapy. Targeting these 
pathways has led to significant improvements 
in therapeutic outcomes. Insight into how che‑
motherapy mediates programmed cell death 
(apoptosis) via activation of mitochondrial pore 
opening was a major step forward [1]. DNA dam‑
age repair activated by DNA damaging chemo‑
therapeutics has been found to trigger apopto‑
sis by upregulating mitochondrial pore opening 
proteins, such as BAX and p53. The subsequent 
discovery that oncogene cell signaling networks 
cause drug resistance by promoting the release 
of pore closing proteins, such as BCL‑xL, has 
particularly enabled the development of targeted 
therapies, such as imatinib, herceptin, erbitux, 
tarceva, vemurafinib and crizotinib [2,3]. Progress 
in cancer genomics has recently led to the devel‑
opment of another key unifying concept: cancer 
‘stem cells’ [4]. These cells express a particularly 
drug‑resistant phenotype [5,6]. The current view 
holds that stem cell‑like features are turned on 
in a subset of cells within a tumor that provide a 
never ending source of somewhat more differen‑
tiated cancer cells that are treatment sensitive [7]. 
However, the cancer stem cell pool is unfazed by 

chemotherapy, just as the stem cells residing in 
the bone marrow are resistant enough to chemo‑
therapy to allow for repopulation of a patient’s 
peripheral blood elements a few weeks after each 
cycle of treatment. Generation of cancer stem 
cells in the laboratory provides a useful model 
for the potential discovery of their ‘Achilles 
heal’ [7,8]. Recently, gene knock‑in experiments 
using human telomerase have been carried out 
that yield cancer stem cells [9–11]. Of particular 
interest is the finding that cancer stem cells also 
express a mesenchymal ‘fibroblast‑like’ pheno‑
type associated with invasion and migration, 
behaviors critical for the generation of metastases 
[12]. Insight into the mechanisms responsible for 
the transition from an epithelial to a mesenchy‑
mal ‘stem cell’ phenotype, or the epithelial–mes‑
enchymal transition (EMT) is providing a new 
set of potential therapeutic targets. 

Role of hypoxia & hypoxia inducible 
factor in EMT
Tumor hypoxia appears to be a critical determi‑
nant in the development of cancer stem cells and 
the EMT [12–16]. As few as 300 malignant cells 
within a tissue microenvironment can produce 
a hypoxic and hyponutrient environment asso‑
ciated with an angiogenic response, suggesting 
that this selective pressure occurs early in tumor 
development [17]. Evidence suggests that hypoxia 
causes mitochondrial signaling via efflux of 
hydrogen peroxide that blocks hypoxia inducible 
factor (HIF)‑1a binding to von Hypel–Lindau 
protein, preventing HIF‑1a ubiquitination and 
degradation [18]. This leads to accumulation and 

Malignant tumors are composed of various cell types, including heterogeneous mixtures of neoplastic 
cells. Epithelial tissues that undergo transformation exist in an adverse environment where oxygen and 
nutrient supply is low, resulting in the upregulation of survival pathways, many of which are driven by 
hypoxia inducible factors-1 and -2. The intersection between downstream survival pathways driven by 
hypoxia inducible factors, stem cell characteristics of cancer and epithelial–mesenchymal transition has 
recently come to light. Insights into these processes are beginning to yield exciting new avenues for 
targeted therapies that promise to overcome treatment resistance.
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migration into the nucleus where it can partner 
with several other cotranscription factors lead‑
ing to the upregulation of numerous prosur‑
vival pathways [19]. Of particular interest with 
respect to the stem cell phenotype and EMT 
is the observation that HIF upregulates two 
genes of central importance to the mesenchymal 
phenotype, SNAI1 and TWIST [20–22]. SNAI1 
encodes Snail, a zinc‑finger transcription factor 
that belongs to a family of repressor proteins that 
block E‑cadherin expression. E‑cadherin plays 
an important role in cellular adhesion (selective 
stickiness) [23]. Snail normally promotes migra‑
tion and prevents terminal senescence in kera‑
tinocytes, functions that can lead to metastatic 
events when overexpressed in cancer cells [24]. 
Twist, a protein involved in mesoderm develop‑
ment, also acts to suppress E‑cadherin and to 
upregulate N‑cadherin, another characteristic 
of the EMT phenotype [25]. HIF‑1 accumula‑
tion is thus an important modulator of EMT via 
upregulation of Snail and Twist. HIF has also 
been noted to be stabilized in circulating hema‑
topoietic stem cells under normoxic conditions 
via peroxide signaling mediated by NADPH 
oxidase, to upregulate stem cell factor and to 
increase the transcription of human embryonic 
stem cell markers in hypoxic cancer cells [26–28]. 

HIF & telomerase
Another key feature of the cancer stem cell is 
immortalization. HIF‑1 binding motifs lay in 
the human telomerase reverse transcriptase pro‑
moter region gene, and various reports suggest 
that hypoxia upregulates human telomerase 
reverse transcriptase via HIFs [19,29–31]. Human 

telomerase reverse transcriptase is a critical 
component of telomerase, playing a key role 
in the maintenance of telomere lengthening. 
This enables relatively unlimited cell division 
by malignant cells. Recently, telomerase func‑
tions distinct from telomere lengthening have 
been described. Telomerase has been found to 
participate in RNA transcription in complex 
with RNA polymerase [32] and to bind to the 
WNT promoter and upregulate its transcrip‑
tion [33]. Perhaps of even greater interest with 
respect to the extra‑telomeric roles of telomerase 
was the finding that methyltransferase enzymes 
are associated with the telomerase complex in 
tumor cells, but not in untransformed cells, sug‑
gesting that extra‑telomere functioning of telom‑
erase may be altered in cancer to participate in 
gene methylation and possibly gene silencing [34]. 
Telomerase inhibitors are under development, 
and include veronistat and imetelstat [35,36]. One 
wonders about the double‑edged sword of these 
agents, which could lead to telomere shortening 
in normal tissues. CDA2, an agent that disrupts 
telomerase associations with methyltrasferase, 
may be cancer specific in its actions [34].

Therapeutic targeting of HIF 
in cancer
Taken together, these recent findings suggest 
that HIF‑1 upregulates many pathways associ‑
ated with the stem cell phenotype and EMT, 
leading us to speculate that targeting HIF may 
be pivotal in the reversal of drug resistance 
and the metastatic behavior of cancer (Figure 1). 
Screening compound libraries for agents that 
target HIF has revealed that some agents can 
directly block HIF, while others indirectly 
modulate its function [37]. Direct inhibitors 
that are clinically available include bortezomib 
and amphotericin B [38,39]. Indirect inhibitors in 
clinical use include antitopoisomerase‑I agents 
such as topotecan and camptothecin‑11, and 
mTOR targeting agents such as everolimus [40]. 
The nutritional supplement transresveratrol has 
also been found to accelerate HIF degradation, 
while simultaneously increasing the levels of the 
tumor suppressor protein p53 [41–44]. One of the 
potentially damaging effects of HIF upregula‑
tion in hypoxic cancer cells may be its direct 
binding to p53, blocking its tumor suppressor 
function [45,46]. Agents that antagonize HIF 
function may therefore have the added benefit 
of reverting the cancer stem cell to an epithelial 
phenotype with renewed p53 tumor suppressor 
function, potentially rendering the cancer far 
more sensitive to chemotherapy.

Figure 1. Role of hypoxia inducible factor in cancer cell  
epithelial–mesenchymal transition and stem cell phenotype.
HIF: Hypoxia inducible factor.
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Executive summary

New models of cancer biology
 � Cancer cells undergo transformation into stem cells that are drug resistant.
 � Cancer stem cells remain after chemotherapy to repopulate the tumor.
 � Stem cells may result from cancer cell transition from epithelial to mesenchymal programming.
 � Mesenchymal cells behave like fibroblasts and exhibit high metastatic potential.

Underpinnings of epithelial to mesenchymal programming & stem cell character
 � Culturing cell under low oxygen conditions potentiates the transition to a stem cell character.
 � Hypoxia inducible factor (HIF)-1a may be a central transcription factor promoting these changes.

Targeting HIF 
 � Drug screening programs have identified agents that block HIF function and are being explored in the clinic.

Future perspective
 � New treatment approaches that capitalize on combining agents that target HIF and inhibit telomerase may lead to reversal of epithelial 

to mesenchymal programming and promote chemosensitivity and improved outcomes for cancer patients.
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