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Practice Points
 � Endometrial cancers can be broadly dichotomized into two types based on 

histopathologic, clinical and molecular features.

 � Type II endometrial cancers constitute a minority of cases but a disproportionate number 

of deaths and are typified by serous, clear cell or grade 3 endometrioid histology.

 � Immunotherapeutic targets for these high-risk endometrial cancers include Her2/Neu, 

VEGF receptor, epithelial cell adhesion molecule (Ep-CAM), trophoblast cell surface 

marker (Trop-2), tissue factor (TF) and a
V
-integrins.

 � Immunotherapies may be enhanced by modulation of membrane-bound complement 

regulatory proteins or costimulation with IL-2. 

 � Inhibitors of the EGF receptor, FGF receptor and the PTEN/PI3KCA/AKT/mTOR pathway 

have an emerging role in the treatment of high-risk endometrial cancers. 

 � Chemoresistance is multifactorial and attributable to a rapid cellular proliferation 

rate, autocrine secretion of IL-6, as well as upregulation of tubulin-b-III, among other 

processes. 

 � Claudin-3 and -4, natural receptors for Clostridium perfringens, may represent an 

innovative mechanism for targeted drug delivery against chemotherapy-resistant cells 

and cancer progenitors. 

 � Epothilones are novel microtubule-stabilizing agents with activity in paclitaxel-resistant 

disease under clinical investigation for high-risk endometrial cancers.
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Disease burden & classification of 
endometrial cancers
Endometrial cancer is the most common gyne-
cologic malignancy in developed countries, 
with 47,130 new cases and 8010 deaths pro-
jected in the USA alone for 2012 [1]. In total 
90% of endometrial cancers arise purely from 
epithelial glands (adenocarcinomas) [2]. In 8% 
of cases, malignancy develops from either meso-
dermal components (leiomyosarcoma or endo-
metrial stromal sarcoma) or both mesodermal 
and epithelial elements (carcinosarcoma) [3]. 
Endometrial carcinomas may be broadly dichot-
omized into two classes with distinct underlying 
molecular pathogenesis, clinical behavior and 
histopathology [4].

Type I endometrial cancers comprise 80% of 
cases and are associated with endometrioid his-
tology (grade 1 or 2) [5,6], a history of exposure 
to unopposed estrogen with retention of estrogen 
receptor (ER)/progestin receptor (PR) status [7], 
and younger age at onset (mean age: 63 years) 
[8]; deleterious mutations in k-Ras, PTEN or 
mismatch repair mechanisms predominate [9,10]. 
Hyperplasia is a common precursor.

Type II endometrial cancers constitute a 
minority of cases and characterized by serous, 
clear cell or grade 3 endometrioid histology 
[11,12], the absence of an antecedent history of 
unopposed estrogen, higher frequency in black 
patients, later stage and age at initial presentation 
[13]; loss of ER/PR [14] as well as E-cadherin [15], 
aneuploidy, mutations in p53 and HER2/Neu 
overexpression are common [7,16–18]. Recently, 
loss of BAF250a, the protein encoded by the 
chromatin remodeling tumor suppressor gene 
ARID1A, was implicated in 39% of grade 3 
endometrioid, 26% of clear cell and 18% of 
high-grade serous cancers of the endometrium 
as examined by immunohistochemistry (IHC) 
[19] and has been associated with advanced 

stage [20]. PPP2R1A, the scaffolding subunit of 
PP2A holoenzyme, is frequently mutated in uter-
ine serous carcinomas (USCs) [21]. Intraepithelial 
carcinoma is a recognized precursor. Of note, 
unlike serous cancers of the endometrium, 
which demonstrate a genetic signature distinct 
from serous cancers of the ovary, clear cell car-
cinomas show remarkable similarity regardless 
of the organ of origin [22].

Type II endometrial cancers are characterized 
by an aggressive clinical course with relatively 
poor prognosis. Though serous, clear cell and 
grade 3 endometrioid cancers collectively con-
stitute <30% of uterine cancers, they account for 
74% of deaths; 5-year disease-specific survival 
rates for USC, clear cell and grade 3 endometri-
oid carcinomas are 55, 68 and 77%, respectively 
[23]. This compares unfavorably to the rate of 
89% for grade 1/2 endometrioid cancers [8].

Current standard of care
Treatment for high-risk type II endometrial 
cancers begins with complete surgical staging 
with intent for cytoreduction to no residual dis-
ease followed by platinum-based combination 
chemotherapy for advanced disease [24]. Staging 
should consist of total hysterectomy, bilateral sal-
pingo-oophorectomy, bilateral pelvic/para-aortic 
lymphadenectomy, omentectomy and peritoneal 
washings with biopsies [25,26] given that patients 
with type II disease will exhibit extrauterine 
spread at the time of initial surgery in 52–70% 
of instances [26,27] and have a much higher likeli-
hood of positive para-aortic lymph node involve-
ment compared with the rate of 4.6% observed 
in low-grade tumors [28]. CA-125 is the most 
commonly used clinical biomarker for serous 
cancers [25] as elevations reflect disease status by 
means of advanced stage, omental metastases 
and lymphatic spread, although preoperative 
levels do not serve as an independent predictor 

Summary Type II endometrial cancers exhibit distinct histopathology, underlying 

pathogenesis and clinical behavior. These high-risk cancers are associated with an aggres-

sive clinical course and a relatively poor prognosis that underscores the need for the devel-

opment of novel rational therapeutic strategies that exploit their distinct underlying molecular 

pathway alterations. In this review, we describe the extent of disease burden and molecular 

characterization of type II endometrial cancers, summarize the historical development to sup-

port current standards of care and delineate the most recent preclinical and clinical advances 

in immunotherapy, cytotoxic agents and small-molecule inhibitors for this disease.
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for recurrence [29]. The acute-phase reactant 
serum amyloid A has also been proposed as a 
novel biomarker given that higher expression is 
found intracellularly and as a secreted product 
in vitro in USC cell lines compared with B-cell 
and cervical cancer controls, as well as in serum 
of patients with USC compared with healthy vol-
unteers and patients who underwent hysterec-
tomy for benign indications [30]. Also of interest 
are the trypsin-like serine proteases belonging 
to the human kallikrein and kallikrien-related 
peptidase family, which have established clinico-
pathologic correlations in prostate cancer [31,32]. 
Human kallikrein 6 and 10 appear to be secreted 
at higher levels by serous gynecologic tumor cells 
relative to endometrioid tumor cells in vitro; 
accordingly, higher plasma levels discriminate 
patients with USC from patients undergoing 
hysterectomy for benign indications [33,34].

Modern management algorithms for advanced 
disease draw largely upon the cumulative experi-
ence from five large Phase III studies conducted 
by the Gynecologic Oncology Group (GOG), 
each of which enrolled patients with both type I 
and II disease [35–39]. Historically, GOG 177 
established paclitaxel/doxorubicin/cisplatin 
(TAP) as standard of care for advanced or recur-
rent endometrial cancers [36]. GOG 184 subse-
quently demonstrated equivalent hazard ratios 
for recurrence or death in patients who received 
post operative radiation followed by doxorubicin/
cisplatin/paclitaxel versus doxorubicin/cisplatin 
(0.90; 95% CI: 0.69–1.17, p = 0.21), although 
there was a 50% reduction in risk of relapse or 
death with the former regimen in patients with 
residual disease after debulking at the expense of 
increased hematologic toxicity [39]. Preliminary 
analyses of GOG 209 now suggest the noninfe-
riority and favorable side-effect profile of carbo-
platin/paclitaxel over TAP [40]; this regimen 
appears to have utility in high-risk disease [41] 
and is regarded by most as the standard of care.

Fewer data exist regarding treatment of high-
risk early-stage disease. Whole-abdominal radia-
tion is of little benefit (GOG–94) [42]. Adjuvant 
carboplatin/paclitaxel clearly improve recur-
rence rates, overall survival and progression- 
free survival [43]. In uterine serous cancers, there 
is evidence to support the use of vaginal cuff 
brachytherapy in conjunction with platinum-
based chemotherapy. In a retrospective review of 
74 patients with stage I uterine serous cancers, 
no local recurrences occurred in patients who 

received vaginal cuff brachytherapy, but were 
diagnosed in six of the 31 patients (19%) who 
did not. Furthermore, recurrences were far more 
common in the absence of adjuvant chemother-
apy: 6/14 versus 0/7 in stage IA, 10/13 versus 
0/15 in stage IB, 4/5 versus 1/7 in stage IC dis-
ease [44]. In a similar single-institution review of 
stage I/II serous cancers, a regimen consisting 
of six cycles of carboplatin/paclitaxel with vagi-
nal cuff brachytherapy was very well-tolerated 
and resulted in 5-year progression-free and 
overall survival rates of 88% [45]. Additionally, 
there is growing interest in exploring sandwich 
techniques [46,47].

Data among clear cell cancers is very scant 
due to the rarity of this entity; even in advanced 
or recurrent disease, no single Phase III GOG 
study has enrolled sufficient cases to evaluate 
the importance of histology [48]. Barney and col-
leagues published a series of 103 patients with 
stage I clear cell (pure, n = 21; mixed, n = 8) 
or serous (n = 74) uterine cancers who received 
vaginal brachytherapy; approximately 33% also 
received chemotherapy [49]. Local, regional and 
locoregional recurrence rates were 5, 7 and 10%, 
respectively at 5 years. While some pooled analy-
ses suggest that clear cell or serous histologies 
have similar initial responses to cytotoxic agents 
compared with endometrioid cancers, clear cell 
and serous histology are independent predic-
tors of overall survival; clear cell histology also 
predicts poorer progression-free survival [50].

Optimal therapy for invasive grade 3 endo-
metrioid carcinoma confined to the uterus is 
the subject of an ongoing trial (PORTEC-3; 
NCT00411138) [201]. Alektiar and colleagues 
found equivalent clinical outcomes in a study 
of 41 patients with stage I or occult stage II 
grade 3 endometrioid histology compared with 
42 patients with USC or clear cell carcinoma, 
all of whom received intra vaginal brachytherapy 
after surgical staging and underwent external 
beam radiotherapy in balanced fashion [51]. Over 
a median follow-up of 46 months, loco regional 
control rates were 97 vs 90% (p = 0.2), respec-
tively. 5-year disease-free survival was 79 vs 78% 
(p = 0.3); 5-year overall survival was 71 vs 79% 
(p = 0.3). Siow and colleagues reported insti-
tutional outcomes of 18 patients with grade 3 
endometrioid and ten with grade 3 endometrioid 
stage IC (according to International Federation 
of Gynecology and Obstetrics 1988 staging) 
who underwent total hysterectomy, bilateral 



Clin. Pract. (2012) 9(5)542 future science group

Review | Roque, Schwartz & Santin

salpingo-oophorectomy and pelvic lymph node 
dissection (76%) or external beam radiotherapy 
(24%) [52]. All except one patient received vagi-
nal brachytherapy and eight out of ten patients 
with endometrioid histology received platinum-
based adjuvant chemotherapy. Over a median 
follow-up of 50.1 months, there were five sys-
temic relapses (17.9%) and one pelvic recurrence 
(3.6%). The authors concluded that vaginal 
vault brachytherapy was effective in preventing 
locoregional recurrences, but argued for con-
sideration for adjuvant chemotherapy in these 
patients given the high rate of systemic relapse.

Such findings truly underscore the need for 
development of rational therapeutic strategies 
that exploit the distinct molecular pathway alter-
ations that underlie these clinically aggressive 
entities.

Immunotherapy for type II endometrial 
cancers: basis & rationale
Targeted immunotherapy represents a prom-
ising strategy for type II endometrial cancers. 
Monoclonal antibodies result in tumor lysis 
through antibody-dependent cellular cytotoxic-
ity (ADCC) or complement-dependent cytotox-
icity (CDC). Both pathways begin with recogni-
tion and binding of the monoclonal antibodies 
to tumor antigen. The F

c
 region may then be rec-

ognized by F
c
 receptors located on natural killer 

cells, monocytes, macrophages or granulocytes 
to initiate ADCC or by C1 (the first compo-
nent of the complement cascade) to activate the 
classic pathway of CDC ending in osmotic lysis 
through the membrane-attack complex.

 � Immunotherapy for type II endometrial 
cancers: Phase I/II data
HER2/Neu (ErbB2)
The human EGF receptor (EGFR) fam-
ily consists of four members: EGFR (ErbB1), 
HER2/Neu (ErbB2), HER-3 (ErbB3) and 
HER-4 (ErbB4). Ligand binding induces het-
ero- or homo-dimerization and subsequent acti-
vation of pathways integral to proliferation path-
ways [53]. Amplification of HER2/Neu has been 
documented in 26–62% of USC cases [17,54–58] 
and as many as 38% of clear cell endometrial 
carcinomas [59]; positivity by FISH in grade 3 
endometrioid endometrial cancers is far less 
common (3–8%) [60,61]. Overexpression has been 
linked to poor prognosis not only in endome-
trial [17,62] but ovarian [63] and breast [64] cancers. 

Molecular profiling studies have demonstrated 
ErbB2 to be one of the most overexpressed genes 
to distinguish uterine serous from ovarian serous 
tumors [65].

Trastuzumab (Herceptin®, Genentech, 
CA, USA) is a humanized monoclonal IgG1 
antibody that works both through recruitment 
of natural killer cells and initiation of ADCC as 
well as abrogation of downstream effectors [66]. It 
is FDA-approved as an adjunct to cyclophospha-
mide, paclitaxel and doxorubicin in the treatment 
of early-stage HER2/Neu-positive, node-positive 
breast cancer and as a single agent for adjuvant 
treatment of early-stage, HER2/Neu-positive, 
high-risk ER/PR-negative breast cancers follow-
ing multi-modality anthracycline-based therapy 
[67,202]. Based on sound biologic plausibility, 
there is considerable interest in applications for 
endometrial cancers. As assessed by standard 
51Cr-release assays, trastuzumab results in ADCC 
in the range of 25–60% against USC that over-
express HER2/Neu; this can be augmented with 
both IL-2 and simultaneous administration of 
the heterodimerization inhibitor pertuzumab 
(Omnitarg®, Genentech)[68,69]. Despite encour-
aging case reports (Table 1) [70–72], when evaluated 
as a single-agent, trastuzumab 4 mg/kg in week 
1 then 2 mg/kg weekly until disease progression 
in stage III/IV or recurrent endometrial cancers 
at the Phase II level in GOG-181B failed to dem-
onstrate significant activity [59]. Interestingly, a 
large number of clear cell carcinomas in this 
study overexpressed HER2/Neu. These findings 
have been criticized as inconclusive given that 
45.5% of treated patients did not have definitive 
HER2/Neu amplification and on the basis of 
slow accrual leading to premature closure [73]. It 
has been proposed that inter-individual variation 
in trastuzumab efficacy may also reflect variable 
amounts of HER2/Neu extracellular domain 
(ECD) shedding [74]. In a study of 38 USC 
patients versus 19 controls, serum concentrations 
of HER2/Neu ECD were higher in patients with 
tumors expressing HER2/Neu at 3+ by IHC 
(p = 0.02). HER2/Neu positive primary cell lines 
also secreted HER2/Neu ECD in vitro; addition 
of HER2/Neu ECD-containing supernatants 
decreased ADCC (p = 0.01). A Phase II study 
of carboplatin/paclitaxel with or without trastu-
zumab in patients with advanced or recurrent 
uterine papillary serous carcinoma designated 
HER2/Neu-positive by 3+ IHC or FISH is cur-
rently underway (NCT01367002) [203].
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VEGF–A
VEGF–A induces pathologic neoangiogenesis 
in a variety of human cancers [75]. VEGF is a 
homodimeric glycoprotein that exists in at least 
four isoforms due to alternative splicing of the 
primary messenger RNA transcript [76], the most 
common of which is VEGF-A. In endometrial 
cancers, VEGF-A expression has been associated 
with high grade, lymphovascular space inva-
sion, lymphatogenous spread, poor prognosis 
[77,78] and p53 upregulation [79]. Bevacizumab 
(Avastin®, Genentech) is a recombinant human 
monoclonal IgG1 antibody that neutralizes all 
isoforms of VEGF [80]. In a Phase II study of 
recurrent endometrial cancer (GOG 229E) 
[81], bevacizumab 15 mg/kg every 3 weeks pro-
duced clinical response rate of 13.5%, includ-
ing one complete and six partial responses. 
Median progression-free and overall survival 
rates were 4.2 and 10.5 months, respectively. 
Notably, despite representing only 27% of the 
study population, serous histology was observed 

in 100% of complete responses and 50% of 
partial responses. Presently, bevacizumab in 
combination with paclitaxel and carboplatin is 
under study for advanced endometrial cancer 
(NCT00513786) [204]. Another three-arm Phase 
II trial is investigating carboplatin/paclitaxel/
bevacizumab, carboboplatin/paclitaxel/temsiro-
limus and carboplatin/ixabepilone/bevacizumab 
(NCT00977574) [205]. VEGF Trap (Afibercept®, 
Sanofi-Aventis, Paris, France), a fusion protein 
containing receptor components and fully 
human immuno globulin constant region, is also 
under evaluation (NCT00462826) [206].

 � Immunotherapy for type II endometrial 
cancers: preclinical data
Recently the author's group has reported the 
in vitro data to support the candidacy of multiple 
antigens originally discovered through compara-
tive oligonucleotide microarrays contrasting ten 
primary USC and five normal endometrial cell 
lines for targeted immunotherapy [82].

Table 1. Summary of case reports of clinical activity of trastuzumab in heavily pretreated patients with uterine serous carcinomas.

Author Age 
(years)

Stage Histology Initial treatment IHC FISH Additional regimens Response Ref.

Jewell 
et al. 
(2006)

72 IIIA Endometrioid 
grade 2 

Surgical staging, 
whole pelvic 
RT and vaginal 
brachytherapy

3+ NR 1st recurrence (pulmonary metastases) 
at 10 months: weekly paclitaxel then 
single-agent trastuzumab 100 mg iv. 
weekly for 7 months
2nd recurrence: weekly paclitaxel and 
trastuzumab for 2 months then single-
agent trastuzumab for 9 months
Disease progression: addition of 
docetaxel 40 mg/m2 iv.

Partial response 
for 6 months

Stable disease 
for 11 months

Stable disease 
for 15 weeks

[71]

Villela 
et al. 
(2006)

NR IVB USC NR 3+ + 
(>10)

4 mg/kg iv. once, then 2 mg/kg iv. 
weekly until progression

Complete 
response 
for 6 months

[72]

NR IIIC USC NR 3+ + 
(>10)

4 mg/kg iv. once then 2 mg/kg iv. 
weekly until progression

Stable disease 
for 3 months

Santin 
et al. 
(2008)

66 IIIA Endometrioid 
FIGO grade 3

Surgical staging, 
whole pelvic 
radiation, 
doxorubicin 
45 mg/m2 iv. 
+ cisplatin 
50 mg/m2 + 
paclitaxel  
160 mg/m2 

3+ +
(2.18)

1st recurrence (pelvic 
lymphadenopathy); whole pelvic 
radiation
Paclitaxel 175 mg/m2 iv. every 21 days 
+ carboplatin AUC 5 iv. every 21 days 
+ trastuzumab 4 mg/kg iv. once, 
then 2 mg/kg iv. weekly × 6 then 
trastuzumab 2 mg/kg iv. weekly 
+ carboplatin AUC 5 every 5 weeks × 8

Persistent 
disease

Partial response

[70]

63 IIIC USC Surgical staging, 
whole pelvic/
extended-field 
radiation

2+ + (3.1) 1st recurrence at 3 months (vaginal 
cuff); patient declined cytotoxic 
chemotherapy; trastuzumab 4 mg/kg 
loading dose then 4 mg/kg biweekly

Partial response 
for 7 months

AUC: Area under the curve; FIGO: International Federation of Gynecology and Obstetrics; IHC: Immunohistochemistry; iv.: Intravenous; NR: Not reported; RT: Radiation therapy; 
USC: Uterine serous carcinoma.
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Epithelial cell adhesion molecule (Ep-CAM, 
also known as Trop-1, TACSTD1, 17-1A, 
GA733-2, KSA, KS1/4, 323/A3 and CD326) 
is a calcium-independent homophilic type I 
transmembrane glycoprotein molecule of 39–42 
kDa, expressed at low levels on most surface 
epithelial cells. Using IHC and flow cytometry, 
Ep-CAM can be detected in as many as 96% 
of USC tissues and expressed superficially in 
83% of cell lines [83]. Adecatumumab (MT201; 
Micromet AG, Munich, Germany), a human 
monoclonal antibody against Ep-CAM, pro-
duced mean ADCC of 33%, despite resistance 
of these cells to CDC. MT201 has been evalu-
ated at the Phase II level in colorectal carcinoma 
after complete resection of liver metastases alone 
and in combination with FOLFOX (5-fluoro-
uracil, leucovorin, oxaliplatin) (NCT00866944) 
[207], as monotherapy in metastatic breast can-
cer [84], and prostate cancer [85]. It has also been 
evaluated at the Phase IB level in conjunction 
with docetaxel in breast cancer [86], but not in 
gynecologic malignancies.

Trophoblast cell-surface marker (Trop-2, 
also known as GA733-1, M1S1 and EGP-1) is 
35-kDa transmembrane glycoprotein encoded 
by the gene TACSTD2 of chromosome 1p32. 
Trop-2 was originally identified in human 
tropho blasts [87] and has since been shown to 
be upregulated relative to normal tissue in both 
type I [Bignotti et al., Trop-2 protein overexpression 

as an independent prognostic marker in endometrioid 

endometrial carcinoma (2012), Submitted] and type II 
endometrial cancers [88,89], as well as other 
gynecologic malignancies [90–92]. The human 
monoclonal antibody hRS7 (Immunomedics, 
Inc., NJ, USA) produces ADCC in the range 
of 28.2–64.4% in USC [88] and 33.9–50.6% 
in grade 3 endometrioid cell lines [89]. hRS7 is 
scheduled to enter clinical testing in solid tumors 
in late 2012 [208].

Tissue factor (TF) is a transmembrane recep-
tor for coagulation factor VII/VIIa (fVII) that 
is aberrantly expressed in urogenital, gastro-
intestinal, hematologic, breast and lung can-
cers (reviewed by van den Berg et al. [93]). TF 
overexpression can be observed in 50% of USC 
cell lines (three of six) as assessed by real-time 
PCR and flow cytometry; cytoplasmic and/or 
membrane staining can be documented in 100% 
(16 out of 16) of tissue specimens analyzed by 
IHC [94]. Accordingly, in 51Cr-release assays 
hI-CON-1 (Iconic Therapeutics, Inc., GA, 

USA), a fusion protein containing a targeting 
domain against TF and a functional domain 
consisting of IgG1 F

c
, resulted in mean ADCC 

of 65.6% (range: 57.5–77.0%) in USC cell lines 
that overexpress TF and was augmented with 
IL-2. TF overexpression, at least in part, under-
lies the association of thrombogenesis and cancer 
(Trousseau’s phenomenon). As clear cell carcino-
mas are particularly thrombogenic and expres-
sion in ovarian clear cell carcinomas appears to 
exceed that of endometrioid and undifferentiated 
tumors [95], hI-CON-1 may have therapeutic rel-
evance for clear cell carcinomas of the endome-
trium. Phase I studies of hI-CON-1 are ongoing 
for macular degeneration (NCT01485588) [209].

Integrins are glycoproteins that exist in at 
least 24 unique permutations of heterodimers 
consisting of one a and one b subunit, allowing 
for functional variation. Integrins contribute to 
invasion and metastasis in a variety of human 
carcinomas including melanoma, breast, pros-
tate [96], oral squamous cell [97] and USC [98]. 
The a

V
 integrins serve as known receptors for 

extracellular matrix proteins including vitro-
nectin, tenascin and fibronectin [99]. Of six USC 
cell lines assessed, 100% expressed at least one 
isoform of a

V
 integrin, the most common of 

which were a
V
b

3
 (37.5% of cells, mean fluores-

cence intensity: 12.3 ± 4.02) and a
V
b

5
 (32.0% 

cells, mean fluorescence intensity: 17.5 ± 9.23). 
The human monoclonal antibody intetumumab 
(formerly CNTO-95, Centocor, Inc., PA, USA) 
targets a

V
-integrins and inhibited migration 

by 17–27% and adhesion by 30–65% at doses 
of 1.25 µg/ml up to 20 µg/ml when compared 
with control cells with no monoclonal antibodies 
added (p < 0.03). Intetumumab has been evalu-
ated at the Phase II level in advanced melanoma 
[100] and hormone-refractory prostate cancer 
(NCT00537381) [210], but not yet in gynecologic 
malignancies.

 � Immunotherapy for type II endometrial 
cancers: modulation through 
membrane‑bound complement 
regulatory proteins
Despite encouraging preclinical activity, tar-
geted immunotherapies often fail in the clinical 
arena. Prior chemotherapy and radiation might 
lead to immunocompromise and limit effi-
cacy in heavily pretreated patient populations 
[101]. Tumors also evade immune surveillance 
through antigen evolution and upregulation of 
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membrane-bound complement regulatory pro-
teins (mCRPs) that may hinder complement-
dependent pathways [102]. The mCRPs CD46 
(membrane cofactor protein), CD55 (decay-
accelerating factor) and CD59 (protectin) have 
been shown to be upregulated in colorectal, 
cervical, prostate and renal cell carcinomas 
[103–106]; these lead to inactivation of C4b/C3b, 
dissociation of C3/C5-convertases and preven-
tion of membrane-attack complex assembly, 
respectively [107,108]. Inhibition of mCRPs using 
bispecific antibodies results in enhanced CDC 
in rat models of metastatic colorectal carcinoma 
[109]. Recently, this group has shown that USC 
also overexpress CD46, 55 and 59 relative to 
normal endometrial cells; knockdown via siR-
NAs of CD55 and CD59 but not CD46 sig-
nificantly sensitized USC to CDC (from ~6.8 
to 11%) and ADCC (from ~48 to >60%) [110]. 
Inhibition of mCRPs is thus an innovative strat-
egy for treatment of type II endometrial cancers.

Novel cytotoxic chemotherapies
Over the past quarter of a century, the GOG 
has evaluated over 25 novel cytotoxic agents at 
the Phase II level for use in endometrial cancers, 
and exceedingly few of these have proceeded to 
Phase III testing [50]. Due to low expression of 
ER/PR, hormonal modulation is often of little 
benefit in high-risk endometrial cancers, leav-
ing even fewer options for management. In 
GOG-81, a study of 299 patients with advanced 
or recurrent endometrial cancer, Thigpen and 
colleagues witnessed a response rate of only 
8–9% if PR levels were <50 fmol/mg cytosolic 
protein, compared with 37% in receptor-positive 
patients [111]. The development of novel cytotoxic 
chemotherapeutic strategies for recurrent or pro-
gressive disease therefore remains tantamount, 
especially for type II cancers. Several recent 
promising advances are summarized below.

 � Claudin-3 & -4
Claudins are tight junction proteins that regulate 
paracellular transport and provide cell polarity. 
In cancer cells, claudin family proteins may con-
tribute to the capacity for invasion and metas-
tasis [112]. While present in few normal tissues, 
USC [113], as well as prostate cancer cells [114], 
overexpress claudin-3 and -4; chemotherapy-
resistant ovarian cancer cells over-express clau-
din-4 [115]. These proteins simultaneously serve 
as low- and high-affinity natural receptors for 

Clostridium perfringens entertoxin, the binding 
of which results in rapid osmolysis, and there-
fore serve as attractive targets for selective drug 
delivery [116,117]. In ovarian cancer xenografts, 
intraperitoneal administration of C. perfringens 
entertoxin 7.5–8.5 µg in 500 µl of sterile saline 
every 72–96 h for a total of eight injections 
beginning 1 week after tumor establishment 
prevented detectable tumor growth entirely in 
≥60% of mice and resulted in statistically sig-
nificant increases in survival compared with 
untreated mice who demonstrated hemorrhagic 
ascites with peritoneal studding by 2–3 weeks 
and expired within 9 weeks [116].

Although chemotherapy kills the majority of 
tumor bulk, chemoresistant cancer stem cells 
frequently remain and contribute to tumor 
propagation and recurrence [118]. Interestingly, 
claudin-4 is overexpressed in CD44+/MyD88+ 
ovarian cancer stem cells. With growing inter-
est in characterization of stem cells within the 
basalis of the endometrium, which contribute to 
regeneration across 400 cycles in a typical repro-
ductive lifespan, and cancer stem cells in endo-
metrial cancers [119]. It is conceivable that C. per-
fringens entertoxin-based therapies may represent 
a strategy for destruction of this population in 
high-risk endometrial cancers as well [120].

 � Paclitaxel resistance: IL–6, tubulin-b III 
& epothilones
Type II endometrial cancers are relatively chemo-
resistant and any observed responses are gener-
ally nondurable [121]. Resistance to cytotoxic 
chemotherapies appears to be multifactorial. 
First, a brisk growth rate permits rapid tumor 
regrowth despite initial intrinsic sensitivity to 
chemotherapeutic agents [122]. Second, these 
tumors are associated with a distinct milieu of 
autocrine factors such as IL-6, which has been 
shown to prognosticate poor outcome and con-
fer resistance to paclitaxel and cisplatin in gyne-
cologic malignancies [123]. Accordingly, using 
ELISAs, secreted IL-6 expression was found 
to be higher in USC compared with endome-
trioid carcinoma cell lines (mean: 3121 pg/ml, 
range: 1099–5017 pg/ml/105 cells/48 h vs mean: 
88 pg/ml, range: 19–112 pg/ml/105 cells/48 h; 
p < 0.01) and in the serum from 13 patients 
with USC compared with 19 women with 
endo metrioid carcinoma (6.1-fold, p < 0.03). By 
real-time PCR, mean copy number in USC fresh 
frozen tissues also exceeded that of endometrioid 
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carcinomas (313 ± 55 vs 53 ± 11, p < 0.01) [124]. 
IL-6 inhibition thus represents an attractive 
target for high-risk endometrial cancers. IL-6 
inhibitors are currently marketed for the treat-
ment of rheumatoid arthritis. Interestingly, 
tocilizumab (Actemra®, Hoffmann-La Roche 
Ltd, Basel, Switzerland), a humanized monoclo-
nal antibody against the IL-6 receptor, has been 
shown to reduce in vivo growth of squamous cell 
carcinomas [125] and gliomas [126], but has not yet 
been tested in gynecologic malignancies. Third, 
resistance to paclitaxel has been tied to over-
expression of the class III b isotype of tubulin 
[127] given the preferential binding of paclitaxel 
to b-I tubulin isoforms [128] and by means of 
diminished microtubule assembly [129]. Class III 
tubulin differs from class I tubulin at paclitaxel 
binding sites involving amino acid positions 175 
(Ser→Ala) and 364–365 (Ala-Val→Ser-Ser) [130]. 
b-III tubulin overexpression correlates with poor 
clinical outcome in a variety of human cancers, 
including ovarian [131], lung [132], and breast [133].

Epothilones are novel microtubule-stabilizing 
macrolides isolated from Sorangium cellulosum 
[134] with activity in paclitaxel-resistant malig-
nancies, preoverlapping mechanisms of resis-
tance [135], and the unique ability to bind class I 
and III isoforms with at least equal affinity [128]. 

Patupilone (Novartis, Basel, Switzerland) and 
ixabepilone (Ixempra®, BMS-247550; Bristol-
Meyers-Squibb, NJ, USA) are notable members 
of this group.

In vitro, patupilone is highly effective rela-
tive to paclitaxel against USC cell lines that 
express high levels of both tubulin-b-III and 
HER2/Neu [136], a known poor prognostic fac-
tor [17,54]. Patupilone also has activity in clear cell 
carcinomas of the ovary [Roque et al., Unpublished 

Data]. This drug has been studied at the Phase I, 
II and III level in ovarian but not in endometrial 
carcinomas [137–140,211].

In parallel, ixabepilone has been FDA-
approved for treatment of locally advanced/
metastatic breast cancer with capecitabine after 
failure of anthracycline/taxane therapy or as 
monotherapy after failure of anthracyclines, 
taxanes and capecitabine. In GOG-126M, 
an overall response rate of 14.3% and disease 
stabilization rate of 40.8% was achieved in 49 
patients with platinum/taxane-resistant recur-
rent ovarian cancer using 20 mg/m2 on days 1, 
8 and 15 of a 28 day cycle [141]. GOG-129P eval-
uated 50 patients with recurrent or persistent 
endometrial cancer who received one prior line 
of taxane-based chemotherapy including 40% 
with serous and 2% with clear cell histology. An 

Table 2. Selected studies of small-molecule tyrosine kinase inhibitors in patients with persistent/recurrent endometrial cancer.

Study Drug Target Study Dose Clinical outcome Translational 
end points

Ref.

Gehrig and 
Bae-Jump 
(2010)

Lapatinib
(Tykerb®, 
GlaxoSmithKline, PA, 
USA)

EGFR and 
HER2/Neu

GOG-229D
(NCT00096447),
Phase II

1500 mg p.o. 
daily

Failed to open to second 
stage of accrual

None [75]

Leslie et al. 
(2009)

Gefitinib
(Iressa®, AstraZeneca, 
DE, USA)

EGFR GOG-229C
(NCT00027690), 
Phase II

500 mg p.o. 
daily

Of 26 evaluable patients: 
one complete response; 
seven with disease 
stabilization; insufficient 
efficacy to continue 
evaluation 

High serum EGFR 
was associated 
with overall 
survival

[143]

Oza et al. 
(2008)

Erlotinib
(Tarceva®, Genentech, 
CA, USA)

EGFR NCIC IN-148, 
Phase II

150 mg p.o. 
daily

Of 32 evaluable patients: 
four partial responses; 
15 with disease 
stabilization

No correlation 
of response with 
EGFR mutation or 
gene amplification 
by FISH

[144]

Slomovitz 
et al. 
(2007)

Imatinib (Gleevac®, 
Novartis, Basel, 
Switzerland)

C–kit, Abl, 
PDGF 
receptor B

Phase I, 
restricted 
to USC

400 mg 
p.o. daily in 
combination 
with paclitaxel 
175 mg/m2 
every 21 days

Of 11 evaluable patients, 
dose-limiting toxicities: 
rash, neutropenia and 
fatigue

None [145]

EGFR: EGF receptor; p.o.: Orally; USC: Uterine serous carcinoma.
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overall response rate of 12% was achieved using 
40 mg/m2 every 21 days; disease stabilization for 
at least 8 weeks occurred in 60%. Median pro-
gression-free and overall survival was 2.9 months 
and 8.7 months, respectively [142]. Ixabepilone is 
currently under evaluation investigation as first-
line therapy with carboplatin and bevacizumab 
in stage III/IV primary or recurrent endometrial 
cancers (GOG–86P; [204]).

Small‑molecule tyrosine kinase inhibitors 
& mTOR inhibitors
Small-molecule inhibitors occupy binding pockets 
in order to block intracellular signaling pathways 

important to differentiation and proliferation 
among tumor cells. Tyrosine kinase inhibitors 
(TKIs) against EGFR have been developed and 
are under evaluation for efficacy in endometrial 
cancer (reviewed by Gehrig and Bae Jump [75]) 
(Table 2) [143–145]. At least in some instances, the 
dampered response to EGFR inhibitors may relate 
to overexpression of MDM2, a key inhibitor of 
the EGFR pathway, and p53, which is commonly 
mutated in type II cancers and responsible for 
arrest at the G

1
/S or G

2
/M transitions of the cell 

cycle [146]. TKIs against FGF receptor also show 
promise. This family consists of four tyrosine 
kinase receptors and 18 ligands [147], mutations 

Table 3. Selected studies of PI3K/AKT/mTOR pathway inhibitors in patients with persistent/recurrent endometrial cancer.

Authors Drug Target Study Dose Clinical outcome Translational 
end points

Ref.

Oza et al. 
(2006); 
Oza et al. 
(2008) 

Temsirolimus 
(Torisel®, 
CCI-779, 
Wyeth/Pfizer, 
NY, USA)

mTOR NCIC CTG IND 
160b, including 
eight USC and 
one clear cell 
carcinoma

25 mg iv. weekly Of 25 evaluable patients: 
two partial responses; 
12 with disease stabilization

Responses 
independent 
of PTEN 
status

[152,153]

Fleming 
et al. (2011)

Temsirolimus mTOR GOG-248 25 mg iv. weekly + 
megestrol acetate 80 mg p.o. 
bid × 3 weeks alternating 
with tamoxifen 20 mg p.o. 
bid × 3 weeks

Closed prematurely due 
to excessive venous 
thromboembolic events

[154]

Alvarez 
et al. (2012)

Temsirolimus mTOR GOG-229G 25 mg iv. weekly + 
bevacizumab 10 mg/kg every 
other week

Of 49 evaluable patients: 
one complete response; 
11 partial responses; 
median PFS and OS 5.6 and 
16.9 months, respectively

[155]

Mackay 
et al. (2011)

Ridaforolimus
(previously 
deforolimus, 
ARIAD-Merck, 
NJ, USA)

mTOR NCIC CTG IND 
192, including 
four USC and 
two mixed 
histology

40 mg p.o. daily × 5 days per 
week of 4-week cycle

Of 33 evaluable patients: 
two partial responses; 
15 with disease stabilization

PTEN/PI3K 
mutation 
studies 
underway

[156]

Oza et al. 
(2011)

Ridaforolimus mTOR NCT00739830 40 mg p.o. every 
day × 5 days per week vs 
medroxyprogesterone 
acetate 200 mg p.o. daily or 
megestrol acetate 40 mg 
q.i.d. or chemotherapy 
(carboplatin, paclitaxel, 
doxorubicin, pegylated 
liposomal doxorubicin, 
topotecan single-agent or 
doublet)

Of 114 patients included 
in interim analysis: median 
PFS 3.6 vs 1.9 months for 
ridaforolimus compared 
with hormone therapy or 
chemotherapy

[157]

Slomovitz 
et al. (2011)

Everolimus
(Affinitor®, 
RAD-001, 
Novartis, 
Basel, 
Switzerland)

mTOR NCT01068249 10 mg p.o. daily with letrozole 
2.5 mg p.o. daily in 28-day 
cycles

Of 19 evaluable patients: one 
complete response; three 
partial responses; four with 
disease stabilization

[158]

iv.: Intravenous; OS: Overall survival; PFS: Progression-free survival; p.o.: Orally; q.i.d.: Four-times a day; USC: Uterine serous carcinoma.
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of which occur in conjunction with PTEN 
alterations but appear to be mutually exclusive 
with KRAS variants [148]. FGFR mutations have 
proven to be oncogenic in endometrial cancers 
[149], but in other contexts may exert tumor 
suppressive effects [147]. In vitro inhibition with 
pan-FGFR inhibitors results in selective death 
of endometrial cancer cells that carry activating 
mutations [148]. Various FGFR inhibitors have 
entered study at the Phase II level in endometrial 
cancers (TKI258, NCT01379534 [212]) and at the 
Phase I level in other solid malignancies (E–3810, 
NCT01283945 [213]; BGJ398, NCT01004224 
[214]; AZD4547, NCT00979134 [215]).

The PTEN–PI3KCA–AKT–mTOR pathway 
is also of significance for treatment of type II 
endometrial cancers. PIK3CA, downstream of 
EGFR and FGFR, encodes the catalytic p110-a 
subunit of PI3K, which phosphorylates phos-
phatidylinositol-3,4-diphosphate to generate 
phosphatidylinositol-3,4,5-triphosphate. This 
subsequently activates the AKT–mTOR onco-
genic pathway [150]. PIK3CA mutations promote 
oncogenesis [151] and have been observed in as 
many as 15% of USCs [142]. Inhibitors of mTOR, 
mammalian target of rapamycin, are under eval-
uation in the treatment of endometrial cancers 
(Table 3) [152–158]. Surprisingly, responses do not 
correlate with PTEN status [152] or AKT/mTOR 
levels [159], and most studies find responses across 
varied histologies including type II disease.

Conclusion & future perspective
Elucidation of the molecular pathogenesis 
underlying endometrial cancers remains key 
in fueling drug discovery. In the near future, 
whole-genome sequencing will play an increas-
ingly pivotal role in the identification of tumor-
specific somatic mutations. A deeper under-
standing of the mechanisms by which to exploit 
and augment host immune responses should 
permit immunotherapy to achieve its intended 
potential. Tumor-specific drug delivery, small 
molecule and mTOR inhibitors, and novel cyto-
toxic agents such as the epothilones are among 
the most promising developments for this disease 
and the mature data from their clinical study is 
eagerly awaited. With growing recognition of 
the importance of individual tumor biology, 
in the next 5–10 years we hope that targeted 
therapies will allow for the genuine practice of 
personalized molecular medicine.
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