
469Pharm. Bioprocess. (2014) 2(5), 469–481 ISSN 2048-9145

Statistical methods for mining Chinese 
hamster ovary cell ‘omics data: from 
differential expression to integrated 
multilevel analysis of the biological system

Colin Clarke*,1,2, 
Niall Barron1,2, Paula Meleady2 
& Martin Clynes1,2

1The National Institute for Bioprocessing 

Research and Training, Fosters Avenue, 

Mount Merrion, Blackrock, Co. Dublin, 

Ireland 
2The National Institute for Cellular 

Biotechnology, Dublin City University, 

Dublin 9, Ireland 
*Author for correspondence:  

Tel.: +353 1 2158 100 

Fax: +353 1 2158 116 

colin.clarke@nibrt.ie

Pharmaceutical
Review

part of

10.4155/PBP.14.50 © 2014 Future Science Ltd

Pharm. Bioprocess.

10.4155/PBP.14.50

Review

Clarke, Barron, Meleady & Clynes
Statistical methods for mining Chinese ham-

ster ovary cell ‘omics data

2

5

2014

Publication of Chinese hamster ovary (CHO) cell line and Chinese hamster genomes 
is accelerating efforts to increase the efficiency of biopharmaceutical manufacturing 
through greater understanding of CHO cell biology. It is hoped that this knowledge 
will lead to more predictable bioprocesses through the identification of biomarkers 
for culture monitoring and engineering of the CHO cell itself. If we are to translate 
the potential of the CHO systems biology era to industrial practice, the extraction 
of knowledge from complex genomic, proteomic, transcriptomic and metabolomic 
datasets will be critical. In this manuscript, we review the methods utilized to analyze 
expression profiling data and highlight the role of advanced statistics as we generate 
larger scale datasets and move toward integrated multi-omic analyses of the biological 
system.

Chinese hamster ovary (CHO) cells are the 
dominant mammalian expression platform 
for the production of recombinant therapeu-
tic proteins such as monoclonal antibodies 
[1]. While alternative mammalian cell lines 
are available, their use has been limited 
and CHO is likely to remain the cell line of 
choice in the biopharmaceutical industry. 
CHO cells have several advantages includ-
ing rapid growth rates, ability to produce 
appropriately post-translationally modified 
proteins, familiarity to regulatory agencies 
and an excellent safety record. In the 25 
years since the first product manufactured 
in CHO cells was approved, the continual 
development of culture processes has made 
the production of gram per liter titers routine 
for many molecules. These gains in manufac-
turing efficiency have been largely achieved 
by improvements in areas such as bioreactor 
engineering, media composition and vector 
design [1,2].

There have been tremendous gains in per-
formance of CHO cell-based bioprocesses; 
however, the cell itself remained, for many 
years, somewhat of a black box. About a 
decade ago, academic and industrial research 
groups began to probe the underlying biol-

ogy of the cell in an attempt to uncover the 
biological mechanisms underlying desirable 
industrial traits [3]. To this end, expression 
profiling technologies such as hybridization 
microarrays and mass spectrometry (MS) 
based proteomics were employed to iden-
tify genes, proteins and metabolites associ-
ated with a range of phenotypes including 
cell-specific productivity (Qp) [4–6] and cell 
growth [7,8]. A number of transcriptomic 
studies utilized cross-species microarrays 
relying on homology for mRNA and miRNA 
expression profiling [9,10]. Where CHO-spe-
cific microarrays were developed, probesets 
were annotated through sequence compari-
son to the human, mouse and rat genomes 
[11,12] and similarly, studies utilizing MS-
based proteomics utilized orthologous pro-
teins in UniProt for protein identifications 
[13]. Despite the lack of CHO cell genome 
sequence, these early experiments increased 
our knowledge of the biological system and 
highlighted routes to improve performance 
(e.g., growth rate) through cell line engineer-
ing and biomarkers for monitoring culture 
progress [7].

The CHO cell biology field is, at present, 
in the midst of a postgenomic revolution. 
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The development of cost-effective next-generation 
sequencing (NGS) technology enabled the publica-
tion of the CHO-K1 genome in 2011 [14] followed 
by the publication of two Chinese hamster genomes 
as well as a further five cell lines in 2013 [15,16]. The 
release of these data through public repositories such 
as www.CHOgenome.org [17] has signaled a transi-
tion of the field toward a genome-scale understanding 
of the CHO biological system [18,19]. Genomic data 
is shedding light on how genomic instability, chro-
mosomal rearrangements, point mutations and copy 
number variations impact industrially relevant phe-
notypes [16,20] as well as enabling the development of 
computational approaches for the prediction of CHO 
host cell protein immunogenicity [21] and the applica-
tion of genome engineering using technologies such as 
CRISPR-Cas9 [22].

The availability of genomic data is also overcoming 
the limitations of early transcriptomic and proteomics 
analyses. Affymetrix has recently released the first 
commercially available microarray for mRNA analy-
sis [23] and gene expression profiling by RNA-Seq is 
growing increasingly popular [24–26]. In addition, the 
combination of genome sequence with NGS technol-
ogy is expanding our understanding of the breadth of 
the CHO cell transcriptome [27]. Proteomic expression 
analysis using difference gel electrophoresis and quan-
titative LC-based methods has also been improved. 
CHO genomic sequence has been shown to increase 
the number of MS identifications by as much as 50% in 
comparison to traditional cross-species identifications 
[28] as well as increasing the total numbers of proteins 
identified in CHO cells [29]. CHO cell DNA sequence 
is also enabling the development of new analytical 
platforms such as a recently described CHO-specific 
CpG island microarray to study DNA methylation [30].

Our ability to study noncoding RNA, particularly 
miRNAs has been dramatically enhanced since publi-
cation of the CHO-K1 genome. Since their discovery 
in 2007 [31], microRNAs (miRNAs) have emerged as 
candidates for multigene engineering in CHO cells 
[32,33]. The analysis of the role of miRNAs progressed 
steadily before the CHO cell genome was published 
through exploitation of levels of homology to profile 
conserved mature miRNAs as well as the development 
of in silico approaches to identify putative novel miR-
NAs from NGS data [34]. Following publication of the 
genome sequence, characterization and genomic orga-
nization of miRNAs [34–36] (and other types of non-
coding RNAs such as piwi RNAs [37]) has improved 
greatly – release 21 of miRBase contains sequence 
data for 307 mature and 200 precursor Cricetulus gri-
seus miRNAs. Access to these genome and miRNA 
sequence data coupled with advances in profiling anal-

ysis have significantly improved our ability to associ-
ate miRNA expression with phenotype [38], determine 
their impact on other levels of the biological system 
[39], confirm direct targets [40] and ultimately modulate 
the expression of these molecules to impact bioprocess 
phenotypes in CHO cells [41–43].

The analysis of data from expression profiling 
platforms is a critical stage in any CHO cell biology 
research program. This manuscript focuses on the 
statistical methods currently employed to analyze 
high-dimensional profiling data and relate those data 
to CHO cell bioprocess phenotypes. Considering the 
broad range of experimental platforms for transcrip-
tomic, proteomic and metabolomics utilized in the 
field, this review does not cover the various techniques 
used to normalize data (e.g., microarray normaliza-
tion methods), annotation (e.g., protein identification 
from MS analysis) or the software packages utilized for 
individual data types. We begin with a description of 
differential expression and progress to more advanced 
analyses such as large-scale coexpression analysis and 
machine learning algorithms. Finally we review recent 
manuscripts which report the integration of data from 
two or more levels of the biological system.

Target discovery using differential 
expression & correlation analysis
The most straightforward method for prioritizing tar-
gets from expression profiling data is differential expres-
sion analysis. The majority of studies in the CHO cell 
biology field have used differential expression to ana-
lyze data from a range of ‘omics platforms to identify 
individual ‘features’ (e.g., mRNAs, miRNAs, proteins 
and metabolites) that are associated with a cellular phe-
notype or altered in response to changes in culture con-
ditions. In a differential expression analysis, researchers 
simply compare the average abundances (e.g., fluores-
cence intensity, ion intensity or delta Ct) of a particular 
feature from two or more groups of CHO cells with 
different properties in order to identify features that 
vary significantly between the two conditions.

For example, to highlight individual mRNAs 
associated with cell growth, we might compare the 
transcriptomes of two distinct groups of CHO cells 
(assayed in replicate); one group grows rapidly while 
the other grows at a slower rate in the bioreactor. The 
experimental design must ensure that only the factor of 
interest (growth rate) varies between the groups while 
other potentially confounding factors remain constant 
(e.g., parental cell line, product type, specific produc-
tivity, culture media and temperature). Note: in differ-
ential expression experiments, it is often useful to com-
pare more than one sample group. For example, when 
examining growth rate, we might also consider a sec-
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ond CHO cell line producing a different molecule to 
identify genes that are commonly associated with fast 
or slow growth to eliminate potential false  positives.

In such an experiment, once the data has been nor-
malized appropriately and before progressing to dif-
ferential expression analysis, it is essential to conduct 
unbiased quality control (QC) using a multivariate 
statistical approach to determine if the original biologi-
cal hypothesis holds true and to identify any outlying 
samples. For this stage of data processing, an unsuper-
vised analysis technique (i.e., no prior knowledge of 
the phenotype is assumed) such as principal compo-
nents analysis (PCA) [44] is used to provide an initial 
QC analysis. Note: hierarchical cluster analysis (HCA) 
is also widely used for this purpose [45]; the selection 
of PCA or HCA for data QC is often dependent on 
the preference of the analyst. For the purposes of this 
review, we will focus on PCA, readers are directed to 
[45] for a detailed explanation of HCA. PCA is a data 
reduction method that compresses the variation from 
a large number of variables to a smaller number of 
dimensions, known as principal components (PCs). 
For a more complete treatment of the PCA algorithm, 
see [44]. The first few PCs (usually the first three PCs) 
contain the majority of information contained within 
the original dataset and plotting these PCs against 
each other (e.g., PC1 vs PC2) allows the distribution 
of samples to be visualized in the PCA ‘score space.’ 
Consider the transcriptomic analysis of growth rate 
described above; if this experiment was successful, we 
would expect a PCA score plot of the first two PCs 
to show a clear separation of samples corresponding 
to fast and slow growing CHO cells. Figure 1A illus-
trates a PCA scores plot of a recent microarray analy-
sis of growth rate carried out by Doolan et al. [8]. As 
can be seen, there is a clear separation of those CHO 
cells with fast growth rate from those growing slowly 
demonstrating a divergence of global gene expression 
profiles with growth rate variation. Given the high 
false discovery rates associated with expression profil-
ing analyses failure to observe this division of sample 
types is a critical experimental review point in the data 
analysis workflow.

Upon satisfactory initial data QC, the difference 
or fold change for each feature (e.g., mRNA) between 
the two groups is calculated by comparing the mean 
expression (e.g., fluorescence intensity) of the test 
group (e.g., fast growth rate) versus the comparator 
group (e.g., slow growth rate). For each fold-change 
value, an accompanying p-value is calculated to deter-
mine statistical significance or probability that the 
fold-change could have been observed by chance. The 
statistical significance of each differentially expressed 
gene fold-change can be calculated using methods such 

as a Student’s t-test (two groups; multiple replicates) or 
an analysis of variance (multiple groups; multiple rep-
licates). The application of linear models through the 
R Biocondutor package limma [46] is another popular 
approach for differential expression analysis and calcu-
lation of statistical significance.

When calculating p-values using expression profil-
ing platforms such as microarrays where thousands of 
features are often measured simultaneously, it is essen-
tial to correct for the effects of multiple testing [47]. The 
Bonferroni correction and Benjamini-Hochberg cor-
rection are two commonly used methods for p-value 
adjustment. The Bonferroni correction simply mul-
tiples the p-values by the total number of tests. This 
adjustment method is the most conservative and is 
likely to result in a high false negative rate. A Benjamini-
Hochberg false discovery rate [48] adjustment is a widely 
used, less stringent alternative to the Bonferroni cor-
rection. The Benjamini-Hochberg method first ranks 
the p-values, the smallest p-value is assigned a rank of 
1 and the second smallest is designated rank 2 and so 
on. The probeset with the largest p-value remains the 
same, the second largest p-value is multiplied by the 
total number of probesets and divided by its assigned 
rank to yield the adjusted p-value; this iterative process 
continues until all p-values have been adjusted.

Key Terms

Unsupervised analysis: A statistical method that assumes 
no prior knowledge of the data.

Principal components analysis (PCA): An unsupervised 
multivariate data reduction technique which compresses 
the majority of the information in the original dataset 
into a smaller number of dimensions known as principal 
components (PCs). The first few PCs (usually PC1 vs PC2) 
can be plotted against each to identify sample groupings 
and outliers.

Hierarchical cluster analysis: A statistical method for 
grouping samples through the calculation of multivariate 
distances and assigning closely related samples to clusters. 
The relationships among samples can be visualized using a 
dendrogram.

Differential expression analysis: Straightforward 
comparison of expression between a control group and 
test group (e.g., fast cell growth). A fold-change and 
p-value is calculated for each analyte under investigation.

Multiple testing: A problem that arises when carrying 
out multiple hypothesis tests simultaneously. For instance, 
if the p-value threshold is set at 0.05 for an individual test 
and we carry hundreds or thousands of tests, the chances 
of returning a significant result by chance is actually greater 
than 5%.

P-value adjustment: Transformation of a p-value 
to correct for the multiple comparisons problem. The 
Bonferroni and Benjamini-Hochberg methods are 
commonly used p-value adjustments.
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Figure 1. Visualization of microarray data using principal components analysis & differential gene expression analysis. (A) Prinicipal 
component analysis scores plot of microarray data for fast (growth rate >0.025 h-1) and slow (growth rate <0.023 h-1) growing 
Chinese hamster ovary cell clones [8]. A clear separation between the two sample groups can be seen indicating the global gene 
expression profile is distinct. (B) Volcano plot to illustrate probesets which passed the differential expression criteria of 1.3-fold up 
or downregulated and had a Benjamini-Hochberg-adjusted p-value <0.05 (shown in green). In this experiment, the total number of 
probesets was further reduced through calculation of Pearson’s correlation coefficient between expression and cellular growth rate. 
PC: Principal component.
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The final step in differential expression analysis is to 
set a fold change cut off (biological significance) and an 
adjusted p-value threshold (statistical significance) to 
designate those genes that are differentially expressed. 
Figure 1B shows a volcano plot for the transcriptomic 
analysis of fast growing CHO cells compared with 
slow growing CHO cells. The x-axis shows the log

2
 

of fold change between fast and slow growing samples 
while the y-axis represents statistical significance as 
-log

10
 of the Benjamini-Hochberg adjusted p-values. 

The genes that were altered by >+1.3-fold or <-1.3-
fold between the fast and slow growing CHO cells 
and yielded Benjamini-Hochberg adjusted p-values 
<0.05, are designated as differentially expressed and 
are highlighted in green. While differential expression 
analysis has been a successful technique to prioritize 
mRNAs, miRNA, proteins and metabolites associated 
with CHO cell phenotypes, the false discovery rates 
can be high. In addition, the selection of an arbitrary 
fold-change threshold could result in molecules with 
statistically significant yet small biologically important 
differences in expression being eliminated from the 
analysis leading to an increase in the false negative rate.

Researchers in the CHO cell biology field have 
employed a number of methods to reduce false posi-
tive and false negative rates when conducting discov-
ery experiments including increasing sample number, 
combining multiple profiling technologies and utiliz-
ing advanced statistical methods (separately discussed 
below). The false positive rate can also be reduced 

when prioritizing features through the combination 
of standard differential expression analysis with cor-
relation analysis. Several bioprocess phenotypes are 
continuous variables (e.g., Qp and growth rate) which 
allows the calculation of Pearson’s or Spearman’s cor-
relation coefficient between expression of the feature 
of interest and a bioprocess variable. Following cal-
culation of correlation with a continuous bioprocess 
variable those features that increase in expression as 
the bioprocess variable increases or decreases can be 
identified by applying a correlation threshold (e.g., r = 
±0.75). Two recent studies determined the correlation 
between the transcriptome and growth rate to high-
light mRNA [8] and miRNA [49] that were differentially 
expressed between fast and slow growing CHO cells 
but also either increased or decreased as growth rate 
increased. The identification of miRNAs and mRNAs 
that maintained a close relationship with growth rate 
was intended to compensate for the subjective nature 
of defining fast and slow growth as well as reducing the 
false positive rate.

Guilt by association: associating gene 
coexpression networks with Chinese 
hamster ovary cell phenotypes
In recent years, there has been increasing interest in 
developing novel data analysis approaches that take 
into account the relationships between genes and go 
beyond the single-gene approach of differential expres-
sion analysis. Coexpression network analysis, in partic-
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ular, has emerged as a powerful method to mine large-
scale heterogeneous transcriptomic datasets [50–53]. The 
principle behind coexpression is ‘guilt by association’ – 
genes that exhibit similar expression patterns irrespec-
tive of phenotype tend to be functionally related [51]. 
The coexpression network-based analysis approach ini-
tially identifies groups of genes (known as modules) in 
an unsupervised manner assuming no prior knowledge 
of the phenotype data. Only when groups of genes have 
been identified are potential associations with pheno-
type investigated. Early gene coexpression network 
analyses simply calculated pairwise correlation coef-
ficients (e.g., Pearson’s correlation coefficient [PCC]) 
to construct a correlation matrix by applying a ‘hard’ 
threshold (either based on strength of the correlation or 
its significance) to identify pairs of coexpressed genes 
[54,55]. Modern coexpression analysis techniques seek 
to avoid the potential loss of biological information by 
maintaining the continuous nature of gene expression 
data. One such algorithm is known as weighted gene 
coexpression network analysis (WGCNA). The algo-
rithm, as its name suggests, utilizes a weighted measure 
of similarity between genes removing the subjectivity 
associated with the definition of a hard threshold. This 
weighted separation of genes into coexpressed mod-
ules is achieved by first transforming the correlation 
matrix to mimic a scale-free network topology (a type 
of complex network structure found across nature) and 
then applying a sensitive coexpression distance mea-
sure known as topological overlap. The topological 
overlap matrix produced is subjected to HCA to group 
genes into transcriptional modules. To associate each 
of these transcriptional modules to phenotype, the raw 
gene expression data are subdivided according to the 
genes in each coexpression network and subjected to 
PCA. Only the first PC is retained to provide an over-
all summary measure for the transcriptional module 
known as the ‘module eigengene’ which is then used to 
calculate associations with a phenotype. The WGCNA 
method has been applied successfully to a wide variety 
of transcriptomics analyses ranging from comparison 
of human and chimpanzee brain coexpression pat-
terns [56] to the identification of coexpression modules 
associated with survival in patients with breast cancer 
[50]. For more information on WGCNA, the reader is 
directed to [55].

In the CHO cell biology field, the WGCNA algo-
rithm has previously been utilized in our laboratory 
to identify modules of coexpressed genes associated 
with growth rate and productivity as part of the largest 
single analysis of CHO gene expression described in 
the literature [57]. In that study, the transcriptomes of 
295 CHO cell samples from 121 individual cultures 
were assayed using the Wye2aHamster microarray [11]. 

The range of cellular phenotypes were highly hetero-
geneous spanning a range of samples from CHO cell 
lines producing multiple therapeutic proteins includ-
ing monoclonal antibodies and fusion proteins, grow-
ing in different media types, at different temperatures. 
In addition to these controllable parameters, variables 
such as cell specific productivity, titer, cellular growth 
rate and the production of waste products were also 
measured. An overview of the CHO cell WGCNA 
analysis strategy used in that study is shown in Figure 2.

To remove potential sources of noise prior to 
WGCNA, we eliminated genes that were invariant or 
not detected reducing the number of probesets to 750 
of the most highly expressed highly variable probesets 
across the 295 samples. WGCNA analysis identified 
six groups of coexpressed genes, the smallest of which 
comprised 53 probesets, while the largest module had 
225 probesets – each of these modules was assigned 
a color for ease of reference. To determine if any of 
the genes were correlated with bioprocess variables, 
the original expression data were subdivided by the 
genes present within each coexpression module. PCA 
was carried out for each of the six datasets and the 
first principal component retained. The PCC between 
each of the six module eigengenes and the continuous 
bioprocess variables (growth rate, temperature, rate 
of ammonia production (qAmmonia), rate of lactate 
production (qLactate), cell viability, seed density, titer 
and Qp) was calculated. A PCC >0 indicated that the 
expression of genes within a particular transcriptional 
module increased as the bioprocess variable increased 
while PCC <0 indicated that the genes within a coex-
pression module decreased as the bioprocess variable 
increased.

The most significant correlations between coex-
pression modules and bioprocess variables were found 
to be with growth rate and productivity. For growth 
rate, two transcriptional modules were found to be 
correlated, one group of 225 probesets (designated 

Key Terms

Correlation coefficient: A measurement of the 
relationship between two variables. The Pearson’s and 
Spearman’s correlation coefficient are examples of 
commonly used correlation measures.

Weighted gene coexpression network analysis 
(WGCNA): An algorithm for the identification groups 
of genes (termed coexpression modules) with similar 
expression patterns across large heterogeneous gene 
expression datasets.

Module eigengene: The module eigengene is calculated 
via PCA of the gene expression data for each individual 
coexpression module identified using WGCNA. The first 
PC is termed the module eigengene and acts a summary 
measure to link coexpressed gene groups to phenotype.
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Figure 2. Chinese hamster ovary gene coexpression analysis workflow. The first stage of the analysis shown 
on the right-hand side of the figure illustrates the stages of weighted gene coexpression network analysis. The 
bioprocess data are analyzed separately and dominant phenotypic trends across the samples examined. Upon 
identification of coexpressed gene modules, PCA is used to generate a summary measure (PC1) for each subgroup 
of genes and correlated with the bioprocess data. Finally, each coexpression module can be compared with 
pathway databases such as the gene ontology using GSEA to identify over-represented biological processes and 
highlight single mRNAs that could be used for cell engineering or as biomarkers. 
CHO: Chinese hamster ovary; GSEA: Gene set enrichment analysis; HCA; Hierarchical cluster analysis; qAmmonia: 
Rate of ammonia production; qLactate: Rate of lactate production; PC: Principal component; PCA: Principal 
component analysis; PCC: Pearson’s correlation coefficient; TOM: Topological overlap Matrix. 

future science group

Statistical methods for mining Chinese hamster ovary cell ‘omics data    Review

‘green’) was found to be positively correlated while 
another group containing 199 probesets (designated 
‘blue’) was found to be negatively correlated. Gene 
set enrichment analysis (GSEA) was used to deter-
mine if known biological processes were overrepre-
sented within those modules associated with CHO 
cell growth rate. Prior to GSEA, all available probe-
sets were ranked according to their similarity to the 
green module eigengene, therefore probesets that were 
ranked highly tend to increase as green module gene 
expression increased and genes ranked lowly decreased 
as green module genes increased. GSEA identified a 
number of growth-related categories corresponding to 
cell cycle and DNA replication that were significantly 
positively enriched (i.e., associated with rapidly grow-
ing CHO cells). In contrast, the blue coexpression 
module (associated with a slower growth rate) was 
found to be significantly enriched for genes involved 
in the secretory and Golgi vesicle pathways. For Qp, 
three coexpression modules were found to be corre-
lated (one positive and two negative). The positively 
associated group contained 77 coexpressed probesets 
(designated as ‘yellow’) while the two negatively asso-
ciated groups contained 67 and 77 probesets (des-
ignated ‘red’ and ‘black’, respectively). GSEA was 
again used to determine the overrepresentation of bio-
logical processes following ranking of the probesets 
according to the yellow module eigengene and genes 
involved in secretion were again found to be signifi-
cantly enriched.

WGCNA is an extremely powerful method for 
understanding gene expression patterns as well as 
selecting putative biomarkers and candidates for CHO 
cell line engineering. It is however unlikely that this 
type of analysis will be widely used in the future due to 
the large sample numbers (in comparison to differential 
expression analysis) required to elucidate robust coex-
pression networks. When such analyses are carried out, 
it is essential that the results are made available to the 
community. To make the coexpression patterns uncov-
ered in the study described above accessible, a database 
and web-based user interface were developed (available 
at www.cgcdb.org [58]). This system allows researchers 
compare mRNA targets prioritized in their laboratories 
to a large-scale study of the CHO t ranscriptome.

Building machine learning models from 
Chinese hamster ovary cell ‘omics data to 
predict bioprocess variables
In recent years, there have been several demonstrations 
of machine learning approaches for mining CHO cell 
‘omics data to identify targets for cell line engineering 
and construct models for predicting the performance of 
clones during cell line development. These supervised 
analysis methods aim to build a model from historical 
data by capturing multivariate patterns associated with 
a particular phenotype to predict future unknown 
samples [59]. In addition, during construction research-
ers can assess the contribution of each variable to the 
overall model and remove uninformative variables to 
improve performance (known as feature selection). 
Partial least squares (PLS), in particular, has proven 
to be a useful algorithm for mining bioprocess data 
[60] as well as revealing patterns in metabolomics [61] 
and proteomics [62] experiments. PLS is closely related 
to PCA, however the PLS PCs, known as latent vari-
ables (LVs), are formed by maximizing the variance 
captured between the independent variables (e.g., gene 
expression) and a dependent variable(s) (e.g., Qp) [63]. 
The following section illustrates the utility of the PLS 
algorithm to construct classification and regression 
models for the prediction of cell-specific productivity 
from gene expression and MS data.

Our laboratory utilized a PLS-based approach to 
develop a model to predict the Qp of CHO cell cul-
ture based on gene expression patterns [4]. In that 
study, a teaching set comprised data from 70 CHO-
specific WyeHamster2a microarrays was utilized to 
construct a partial least squares regression model. To 
improve the performance of prediction and investi-
gate the underlying biology, we implemented a fea-
ture selection technique to select a subset of the most 
informative genes. During the execution of a compu-

Key Terms

Supervised analysis: A multivariate statistical method that 
utilizes a dependent variable (assumes prior knowledge of 
the dataset). PLS is an example of a supervised technique.

Partial least squares (PLS): A supervised method, related 
to principal components analysis for building PLS regression 
and classification models (e.g.,  PLS discriminant analysis).
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Figure 3. Building a prediction model for Chinese hamster ovary cell-specific productivity based on gene expression profiles [4]. 
(A) PLS cross-model validation algorithm incorporating a feature selection step to remove uninformative genes. (B) The 287 genes 
selected following application of the jackknife PLS (JK-PLS) method decreased the error rate and yielded a less complex PLS model 
(i.e., a lower number of latent variables) in comparison to building a model with all probesets on the microarray. (C) PLS scores plot 
showing the distribution of samples in terms of Qp for the 287 genes selected during the CMV procedure. The first three LV scores 
retained are shown. The color bar to the right points to the color assigned for measured Qp. A gradient of samples is formed across 
the scores space demonstrating that a relationship between specific productivity and the expression of retained genes is captured by 
the PLS model. 
CMV: Cross-model validation ; JK: Jackknife; LV: Latent Variable; LOOCV: Leave one out cross-validation; PLS: Partial least squares; 
Qp: Cell-specific productivity; RMSECV: Root mean squared error cross- validation; Q2: A measure of model fit calculated during 
cross-model validation; RMSEP: Root mean squared error prediction.

Import microarray data (x)
and Qp values (Y)

Preprocess
microarray data

For each independent run

Randomize dataset

Split data for 
10-fold CMV

For current 90% of 
training data

PLS regression LOOCV
and jack-knifing

10-fold
CMVEliminate gene

with the largest 
P-value

Max p-value 
≥ 0.1 

Yes

No

Independent
runs

Inner loop
gene selection

Store remaining genes 
and LOOCV performance

Test PLS with remaining 
genes with held out 
CMV split.

Build final model 
using selected genes

Independent testing
set evaluation

Calculate average RMSEP
and Q2 for CMV.
Determine selection
frequency for each gene

9

8

7

6

5

4

3
1 2 3

# Latent variables retained

R
M

S
E

C
V

 (
p

g
/c

el
l/d

ay
)

4 5 6

6
4

-4

-4

-6

6

-6

-8

8

10

L
at

en
t 

va
ri

ab
le

s 
3

Latent v
aria

ble 2

Latent variable 1

5
0

-5
-10

-15

2

4
2

-2

-2

0

0

7 8 9

50.40

JK-PLS
PLS

44.89

39.38

33.87

28.36

22.85

17.34

11.83

6.32

0.81

10

-4

6 nt varia
ble

2

atent variable

5
0

-5
-10 4

2

-2
0

A B

C

future science group

Review    Clarke, Barron, Meleady & Clynes

tationally intensive cross-model validation algorithm 
only those genes with statistically significant regression 
coefficients were retained (Figure 3A). Upon comple-
tion of the procedure, a subset of 287 probesets were 
identified as being most closely associated with Qp 
and were used to build the final prediction model. The 
gene selection procedure reduced the model complex-
ity (three latent variables were retained) and decreased 

the root mean squared error (RMSE) of the model 
(Figure 3B). The scores for the three LVs retained can 
be plotted to demonstrate the distribution of samples 
according to Qp for 287 gene PLS model (Figure 3C). 
To determine the accuracy of the model, ten micro-
arrays (assayed from cultures displaying Qp ranging 
from 0.92 to 36.9 pg/cell/day) that were never used 
during the model building or gene selection process 
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were utilized for independent test set validation. The 
RMSE of the independent testing set was 3.11 pg/cell/
day and indicated that the model is capable of separat-
ing CHO cells in high, medium and low Qp catego-
ries. The genes selected during the partial least squares 
regression procedure further demonstrated the utility 
of the technique for mRNA prioritization (in compari-
son with a gene-by-gene differential expression analy-
sis, the PLS algorithms consider relationships between 
genes [64]). The targets selected include the selection 
markers, NPT and DHFR as well as a number of genes 
that had been shown to be functional in previous stud-
ies of Qp in CHO. For example CANX, a gene selected 
during model building process when simultaneously 
overexpressed with the CALR gene (not highlighted in 
the analysis) results in a significant increase in human 
thrombopoietin production in CHO cells [65].

While the PLS analysis described in the previous 
section demonstrated that multivariate gene expression 
patterns could be associated with Qp, the model devel-
oped in that study can only be considered a proof of 
concept. To apply this approach in practice during a cell 
line development project would require a prospective 
validation (i.e., to measure the expression of a number 
of clones that are followed through to large-scale biore-
actors) as well as development of a custom microarray 
or qPCR screen to make the test practical. A recent 
study by Povey et al. describes the utilization of MS in 
combination with PLS discriminant analysis to predict 
the productivity of CHO cell lines [66]. The research-
ers utilize MALDI-TOF fingerprinting of whole cells 
(overcoming the need to assess specific molecular tar-
gets) and follow a cohort of cells from 96-well plates to 
predict performance at the 10L bioreactor scale. The 
model constructed was able to identify high producing 
clones early in the cell line development process and 
reduce the cell line development timeline. The util-
ity of the analytical strategy and predictive model was 
confirmed by accurate performance on a set of clones 
producing a different monoclonal antibody.

Machine learning algorithms are a powerful method 
for the analysis of CHO cell expression profiling data, 
however robust model building and validation must 
be employed to minimize the risk of overly optimistic 
results known as overfitting. Appropriate validation is 
an essential consideration when building prediction 
models, especially when variable selection routines are 
incorporated in order to avoid selection bias. Research-
ers should always implement a conservative in silico 
validation (e.g., cross-validation or cross-model valida-
tion) with appropriate randomization of training and 
testing sets when building supervised learning models 
as well as testing models on independent datasets.

Toward multiomics data integration
As the platforms and statistical techniques for ana-
lyzing CHO cell ‘omics data advance in the postge-
nomic era, researchers have begun to consider the 
interactions between multiple levels of the CHO bio-
logical system. To date, these multiomics data analysis 
approaches have utilized differential expression and 
correlation analysis as well as unsupervised multivari-
ate analysis (e.g., cointeria analysis [49]). Courtes et al. 
recently reported the first study of the CHO ‘trans-
latome’ [67] at multiple time points during exponen-
tial culture growth by combining data from high-
resolution polysome profiling and mRNA expression 
profiling to investigate the correlation between global 
mRNA expression and translational efficiency. In 
that study, a CHO DG44 cell line producing an IgG 
molecule was subjected to global gene expression pro-
filing and simultaneous analysis of RNAs bound to 
ribosomes (i.e., translatome) on days 1–4 of the cul-
ture. A sucrose gradient fractionation technique was 
employed to produce two RNA pools, the first pool 
was enriched in monosome (poorly translated) while 
the second was polysome enriched (highly trans-
lated). These RNA pools were analyzed via microar-
ray and compared to identify mRNAs which were 
significantly differentially enriched within either the 
monosome and polysome pools. By focusing in isola-
tion on the translatome data, cell growth genes (such 
as Hnrnpc and Utp6 ) that were constantly efficiently 
translated during exponential culture could be identi-
fied. When the researchers compared the translation 
efficiency of genes to their gene expression patterns, 
they found that these two levels were largely uncor-
related shedding light on cellular regulation in CHO 
cells via translational control.

Multiple expression profiling datasets are also being 
used to explore miRNA-mediated regulation of pro-
tein synthesis and the role of these noncoding RNAs in 
controlling CHO cell growth rate. Bort et al. recently 
utilized cross-species microarrays to profile mRNA 
and miRNA expression in parallel at various stages of 
culture [68]. A combination of differential expression 
and correlation analysis of miRNAs and mRNAs in 
isolation was used to identify targets associated with 
culture growth phase. In addition, by searching for 
inverse correlations between miRNA–mRNA pairs 
followed by in silico miRNA target prediction potential 
interactions could be identified.

Key Term

Cross-validation: An iterative in silico validation procedure 
to estimate the performance of a predictive model. 
Cross-model validation and leave one out validation are 
examples of cross-validation methods.
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Our laboratory has also focused on analyzing mul-
tiple levels of the biological system in parallel to under-
stand the role of miRNAs in CHO cell clonal growth 
rate variation [49]. These experiments focused on a 
cohort of 30 CHO cell clones from a single cell line 
development project that displayed equivalent Qp yet 
varied significantly in their growth rates (0.011–0.044 
h-1). Samples were taken from each culture for miRNA, 
mRNA and proteomics by TaqMan low density array 
(Applied Biosystems, CA, USA), CHO-specific micro-
array and quantitative LC-MS/MS, respectively. Simi-
lar to other studies, each of the levels were analyzed in 
isolation before integration. From the miRNA analy-
sis, 51 priority miRNAs were identified through dif-
ferential expression and correlation analysis to identify 
miRNAs that were not only differentially expressed 
between the fast and slow groups but also maintained 
a consistent relationship with growth rate. Differential 
expression analysis of the microarray and proteomic 
data revealed the enrichment of biological processes 
associated with mRNA processing and translation.

The availability of mRNA, miRNA and protein 
expression data was critical in this study enabling 
the prioritization of targets undergoing potential 
miRNA-mediated translational repression. Following 
comparison of the mRNA and proteomic expression 
data, we identified 158 proteins that were differentially 
expressed between fast and slow growing CHO cells 
yet the expression of their respective mRNAs remained 
constant. Forty four of these proteins were predicted 
to be regulated by anti-correlated growth-associated 

miRNAs by the targetScan algorithm. These high pri-
ority targets could not have been identified through 
the analysis of a single dataset in isolation.

Conclusion & future perspective
Following publication of multiple genome sequences 
and subsequent development of technology for profil-
ing multiple levels of the biological system, we now 
have the ability to generate data for CHO systems 
biology at an unprecedented rate. To date, a number 
of univariate and multivariate data techniques have 
been shown to be valuable to generate new knowledge 
and build prediction models from these data. In the 
years to come as the community continues to embrace 
new analytical platforms such as NGS, the field needs 
access not only to these advanced statistical analyses 
but also dedicated CHO cell specific bioinformatics 
resources. It is critical that the availability of these tools 
is not restricted to bioinformaticians and user-friendly 
resources be developed.

Financial & competing interests disclosure
This publication has emanated from research conducted with 

the financial support of Science Foundation Ireland (SFI) under 

Grant Number 13/SIRG/2084. The authors have no other rele-

vant affiliations or financial involvement with any organization 

or entity with a financial interest in or financial conflict with 

the subject matter or materials discussed in the manuscript 

apart from those disclosed.

No writing assistance was utilized in the production of this 

manuscript.

Executive summary

•	 There is a renewed interest in Chinese hamster ovary (CHO) cell biology following publication of the CHO K1 
and Chinese hamster genomes.

•	 The availability of genomic sequence has already improved analytical platforms for expression profiling and 
will become more important as RNA-Seq grows in popularity.

•	 The selection of appropriate statistical methods for mining these expression profiling datasets is critical.
•	 Differential expression is frequently used to associate mRNA, miRNAs, metabolites and proteins with CHO cell 

bioprocess phenotypes.
•	 Researchers in the community are increasingly utilizing advanced statistical approaches including predictive 

modeling and large-scale coexpression analysis to mine these data.
•	 A number of recent studies have employed parallel expression profiling and integrated multiple levels of the 

biological system.
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