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Src-family kinases have an important role in many oncologic functions in 
human cancers, including proliferation, motility, migration, survival and 
angiogenesis. Several Src inhibitors have been developed, of which dasatinib 
has been most explored in the clinic. Preclinical studies in a wide variety of 
solid tumor cell lines have shown that dasatinib acts as a cytostatic agent, 
inhibiting the processes of cell proliferation, invasion and metastasis. In 
particular, in preclinical studies, an interaction between Src-family kinases 
inhibition and cell survival has been noted in EGFR-dependent non-small-
cell lung cancer cell lines. Src tyrosine kinase inhibitors in clinical trials 
have shown a favorable safety profile and moderate anticancer activity in 
unselected patient populations. Future trials will continue to explore the 
contribution of Src inhibition in combination with chemotherapy and other 
targeted agents.
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Based on the early work of Peyton Rous on the transmission of sarcoma in fowl, 
the Rous sarcoma virus, which carries the v-src oncogene, was eventually dis-
covered [1]. The v-src oncogene is a truncated, constitutively active form of the 
wild-type proto-oncogene c-SRC (or ‘Src’). Since the discovery of the Src proto-
oncogene as a tyrosine kinase in 1976, nine additional variants closely related to 
Src have been identified in the human genome. Together these ten Src-related 
kinases are grouped as ‘Src-family kinases’ (SFKs) and mainly regulate cell adhe-
sion and motility [2,3]. According to their pattern of expression in different tissues, 
SFKs are subdivided into three distinct groups. The first group (SRC, FYN and 
YES) is ubiquitously expressed. The second group (HCK, LCK, LYN, BLK, YRK 
and FGR) is expressed primarily in hematopoietic cells, and the third group (FRK-
related kinases) is expressed predominantly in epithelial-derived tissues [4–7].

Structurally, SFKs are highly related to one another. They share a conserved 
domain structure consisting of consecutive SH3, SH2 and tyrosine kinase (SH1) 
domains (Figure 1). All SFKs also contain a SH4 membrane-targeting region at 
their N-terminus, which is always myristoylated and sometimes palmitoylated 
[8,9]. The SH4 region is followed by a unique domain of 50–70 residues, which is 
divergent among family members [10,11]. The SH3 domain is critical for Src activity, 
intra cellular localization, and the recruitment and binding of Src substrates. Src 
kinases can be activated by binding of cognate ligands to their SH2 and/or SH3 
domains [12]. Src can be activated by the PDGF receptor by its interaction with 
SH2 [13] or through interaction of SH2 and SH3 domain with FAK [14,15]. 

SFKs cooperate with multiple-receptor tyrosine kinases (RTKs), such as 
EGFR, to modulate intracellular signaling, transform cells and promote tumor 
growth, invasion and metastasis [2,16–21] (Figure 2). SFKs activate downstream 
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signaling pathways, such as RAS/RAF/MAPK, PI3K/
AKT and STATs, which control tumor growth [22–24]. 
Angiogenic growth factors, such as VEFG and IL-8, 
are downstream targets of c-Src, and small-molecule 
inhibitors of SFK have been shown to inhibit angio-
genesis [25–28]. However, there are different results 
in the literature regarding effects on angiogenesis 
through Src inhibition. The pleiotropic functions of 
Src and other SFKs underscore the importance of 
these kinases and explain why many of the SFKs have 
been involved in carcinogenesis [29]. The regulation 
of cell adhesion, invasion and motility is one of the 
key functions of Src by interaction with E-cadherin 
[30] and FAK [31]. This effect is consistently described 
in different cancer cell lines. Except for rare cases of 
colorectal and endometrial cancers, the constitutive 
activation of Src by oncogenic Src mutations or by 
increased gene copy number has not been detected 
in most cancer types, including lung cancer [32–37]. 
However, the aberrant expression of activated Src 
has been found in most types of cancer, including 
lung, prostate, breast, ovarian, pancreatic, hepato-
cellular, gastric and colorectal [24]. The increased Src 
kinase activity in these tumors has been proposed as 
a consequence of several alterations, including tyro-
sine phosphatase-mediated dephosphorylation of the 
carboxy-terminal negative regulatory element, an 
increase in Src protein levels and/or altered protein 
stability, an increase in upstream RTK activity, or 
loss of key regulatory proteins [18,38–42]. Interestingly, 
increased levels of activated Src have been detected 
in advanced, metastatic disease compared with early 
disease. This finding suggests that Src may regulate 
tumor invasion and metastasis, rather than tumor 

formation [43–46].
The interaction of Src and RTKs, notably with the 

HER family of RTKs, including EGFR, HER2, HER3 
and HER4, is of special interest. This interaction of 
SFKs with RTKs can result in enhanced or synergistic 
SFK activation and has been demonstrated in different 
tumor types, most notably in head and neck squa-
mous-cell carcinoma (SCC), non-small-cell lung can-
cer (NSCLC) and colorectal cancer (CRC) [38,47–49]. In 
breast cancer, increased Src activity conferred consid-
erable resistance to the HER2 antibody trastuzumab. 
Moreover, combining Src inhibitors with trastuzumab 
restored the sensitivity of trastuzumab-resistant cell 
lines to trastuzumab [50]. Although EGFR is activated 
through ligand binding and autophosphorylation of 
its cytoplasmic tail, it is well established that Src, or 
SFKs, are necessary for full activation of the EGFR 
[20]. Investigations into the molecular interactions 
between SFKs and EGFR have revealed that SFKs 
can physically associate with activated EGFR [18,51,52]. 
In lung cancer cells, the interaction and cooperation 
between mutant EGFR and Src play critical roles in 
constitutive engagement of the downstream signal-
ing pathways, and mediate oncogenic potential [53]. 
In EGFR-dependent lung adenocarcinomas, protein 
levels of SFKs are increased [17]. 

Src signaling is also involved in normal 
bone remodeling and in the formation of bone 
metastases [54–58].

Src & SFKs in lung cancer
Several research groups have examined Src expres-
sion and activation in human lung cancer [45,59–62]. 
An increased level of Src protein and kinase activity 
have been reported in 50–80% of patients with lung 
cancer [60]. Several preclinical studies have suggested 
that SFK inhibitors are active against lung cancer cell 
lines in vitro [63,64]. Preclinical studies with small-
molecule Src inhibitors have provided evidence to 
support the role for Src as a potential therapeutic tar-
get in lung cancer [65]. Our own experiments showed 
that the interaction of Src with Id1 is one potential 
mechanism that regulates migration and invasion in 
lung cancer cells [66,67]. We also reported that Src and 
Id1 are frequently co-expressed in primary lung can-
cers and early malignant lesions. Recently, our group 
demonstrated that specific miRNAs are involved in 
Src–Id1 signaling and cancer cell resistance towards 
SFK inhibitors, providing a potential explanation of 
why the activity of SFK inhibitors might be limited 
in lung cancer [68].

Clinical data of SFK inhibitors
In the 1990s, the first SFK inhibitors such as PP1 

Figure 1. The domain structure of Src-family kinases. All Src-family 
kinases consist of four domains: the unique region, which varies among 
family members, followed by the SH3, SH2 and SH1 (tyrosine kinase) 
domains. The activation site of the kinase domain is colored red, and the 
activation (Tyr-416) and autoinhibitory (Tyr-527) phosphorylation sites 
are indicated. Conserved residue Arg-175 in the SH2 domain is important 
for phosphotyrosine recognition. Trp-260 at the N-terminus of the kinase 
domain plays a role in autoinhibition.  
Adapted with permission from [10]. 
Color figures can be found online.
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and PP2 were used in vitro. In the meantime, several 
small-molecule inhibitors for SFKs have been tested in 
clinical trials. Among others, dasatinib, saracatinib, 
bosutinib, XL228, KX2-391 and XL999, have been 
tested in patients with different solid tumors, includ-
ing lung cancer. 

 ■ Dasatinib
Dasatinib (BMS-354825; Bristol-Myers Squibb, NY, 
USA) is a potent, orally available multikinase-inhib-
itor against BCR-ABL, c-KIT, SFKs, PDGFR, BTK 
and EPHA2 [69,70]. Dasatinib has clinical targets in 
Philadelphia-chromosome-positive leukemias (BCR-
ABL) and gastrointestinal stromal tumors (PDGFR). 
Dasatinib inhibits the kinases Src and ABL with IC50 
values of 0.55 and 3.0 nM, respectively. Dasatinib also 
inhibits other Src-family members such as FYN (IC50 
of 0.2 nM), LCK (IC50 of 1.1 nM) and YES (IC50 of 
0.4 nM) [69]. 

 Dasatinib is currently approved for imatinib-
resistant chronic myelogenous leukemia (CML) and is 
being studied in numerous clinical 
trials for solid tumors. Preclinical 
data suggested that SFK inhibitors 
could inhibit tumor growth and 
induce tumor cell death. Dasatinib 
inhibited migration and invasion 
in different NSCLC and head and 
neck SCC cell lines and induced 
cell cycle arrest and apoptosis in 
some cell lines [64]. The first clinical 
data with dasatinib in NSCLC were 
reported by Johnson et al. In their 
Phase II study, 34 patients received 
dasatinib as first-line therapy for 
previously untreated advanced 
NSCLC. The primary objective 
was overall disease control rate 
(partial responses plus stable dis-
ease), which was 43% including one 
case with a long-lasting remission. 
Major toxicities reported from this 
trial were fatigue and dyspnea due 
to pleural effusion, which led to 
a reduced starting dose in subse-
quent patients. EGFR and KRAS 
mutational analyses were per-
formed successfully in 31 tumors. 
Baseline EGFR mutational status, 
KRAS mutational status, EGFR 
amplification, phosphorylated SRC 
score, phosphorylated STAT3 level, 
and histology were not significant 
predictors of progression-free 

survival (PFS) [71]. Based on preclinical data showing 
cooperation between EGFR and Src in lung cancer 
cell lines, Haura et al. ran a trial investigating the 
combination of dasatinib with erlotinib in previously 
treated patients with advanced NSCLC [72]. A total 
of 34 patients were enrolled, the recommended dose 
from the Phase I part of the trial was erlotinib 150 mg 
once daily and dasatinib 70 mg twice daily. The main 
adverse events included gastrointestinal side effects 
(diarrhea, anorexia and nausea), skin rash, cytope-
nias, pleural effusions and fatigue. More than half of 
patients had previously received two or more lines 
of chemotherapy. The disease control rate was 63% 
with two partial responses and one bone response. 
To investigate plasma markers, plasma was collected 
before treatment and on days 15 and 29. There was no 
correlation between pretreatment levels of VEGF, IL-8 
and basic FGF. However, reductions in plasma VEGF 
on day 29 correlated with disease control. The authors 
concluded that plasma biomarkers of Src-dependent 
angiogenic factors should be further explored to 

Figure 2. Src-family kinases signaling pathways and function. Src-family kinases (SFK) 
can interact with RTK and cooperate in activation of downstream signaling, leading to cell 
proliferation, survival, invasion and angiogenesis. Through the interaction with the RAS/
ERK pathway, DNA synthesis and cell proliferation is enhanced. By activating the PI3K 
signaling, cell survival is promoted. By activating transcriptional factors, such as STAT3, SFKs 
promote the transcription of proangiogenic growth factors and cytokines. Furthermore, 
SFKs can phosphorylate p120 catenin and therefore disrupt adherens junctions stabilized by 
E-cadherin. The interaction of Src with FAK activates the downstream targets p130Cas, paxillin 
and RhoA that form complexes with integrin molecules and are responsible for the interaction 
with the extracellular matrix. 
RTK: Receptor tyrosine kinase. 
Adapted with permission from [65,74].
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monitor the effect of treatment [72].
KRAS mutation is a predictive biomarker for resis-

tance to cetuximab in metastatic CRC. Although 
approximately 30% of NSCLC harbor mutations in 
KRAS, these mutations are not predictive for cetux-
imab or EGFR TKIs. In a preclinical study, dasatinib 
sensitized KRAS-mutant CRC tumors to cetuximab 
[73]. In NSCLC cell lines with acquired resistance to 
cetuximab, SFK activation was increased relative to 
the parental cell line. Following dasatinib treatment, 
cetuximab-resistant cells exhibited a decrease in 
total EGFR phosphorylation and SFK activity, result-
ing in inhibition of cell proliferation. Combination 
treatment augmented growth inhibition, indicating 
that dual targeting of EGFR and SFKs might have a 
greater clinical impact than either agent alone [74]. A 
Phase I clinical trial investigated combination ther-
apy with dasatinib and cetuximab in patients with 
advanced solid tumors. Dose-limiting toxicities were 
headache and nausea. The recommended dose for 
further trials was dasatinib 150 mg once daily and 
cetuximab 250 mg/m2 weekly. In 23 patients evalu-
able for response, there were no objective responses; 
ten patients had stable disease as best response (one 
patient with NSCLC). Median duration of stable dis-
ease was 4.3 months (range 2–22) [75]. 

Owing to the functional associations between 
SFKs and EGFR, SFKs have been proposed as a tar-
get to overcome acquired resistance in EGFR-mutant 
tumors. Preclinical models demonstrate that EGFR-
mutant cell lines containing either exon 21 mutation 
L858R (H3255) or exon 19 deletions (PC9 or HCC 
827) undergo apoptosis when treated with dasatinib 
[63]. Furthermore, gefitinib-resistant adenocarcinoma 
cells with T790M (PC9/ZD) or MET amplification 
(HCC827 GR5) also undergo cell death when treated 
with dasatinib [76]. Based on these data, a Phase II 
study of dasatinib in patients with EGFR-mutant 
lung adenocarcinomas and acquired resistance to the 
EGFR-TKIs erlotinib and gefitinib was conducted. The 
trial led to a negative result, with no objective response 
in 21 enrolled patients [77]. In advanced solid tumors, 
the combination of dasatinib with gemcitabine was 
safe, but pleural effusion was a relevant toxicity [78]. 
The CALGB 30602 trial investigated dasatinib 70 mg 
twice daily in patients with chemo-sensitive relapsed 
small-cell lung cancer. A total of 45 patients were 
enrolled. No objective response was recorded, only 
13 cases with PFS ≥6 weeks were observed. Therefore, 
dasatinib did not reach the specified efficacy criteria 
in this clinical setting [79]. Ongoing clinical trials with 
dasatinib alone and in combination in patients with 
NSCLC are listed in Table 1.

 ■ Saracatinib
Saracatinib (AZD0530; AstraZeneca Pharmaceuticals, 
London, UK) is an oral inhibitor of SFKs and ABL. It 
selectively inhibits Src (IC50 value ≤4 nM), and other 
SFKs such as LCK and YeES (both with IC50 values 
<4 nM). Saracatinib has shown anticancer activity in 
preclinical models [80,81]. In a Phase I study in healthy 
volunteers, saracatinib was generally well tolerated at 
doses ≤250 mg once daily, with the most frequently 
reported adverse events being mild maculo-papular 
facial/thoracic rash and diarrhea [82]. Another Phase I 
trial in healthy male volunteers showed that saraca-
tinib decreased serum and urine bone markers, con-
sistent with osteoclast inhibition [30]. In a Phase I trial 
including 81 patients with advanced solid malignan-
cies, the most common treatment-associated grade ≥3 
toxicities were anemia, diarrhea and asthenia. Tumor 
Src activity was reduced following saracatinib treat-
ment [83]. In another Phase I trial, 39 patients received 
saracatinib combined with the oral VEGF inhibitor 
cediranib. The most common adverse events were 
hypertension (67%), diarrhea (62%), dysphonia (46%) 
and fatigue (39%). In 35 evaluable patients, 22 had 
stable disease as a best response [84]. The NCCTG 
0621 trial investigated a maintenance treatment 
with saracatinib 175 mg/day in patients with exten-
sive small-cell lung cancer after four cycles of stan-
dard chemotherapy. The primary end point was PFS 
after 12 weeks. The PFS observed at the preplanned 
interim-analysis after enrollment of 20 patients did 
not meet the criteria for additional enrollment. It was 
found that 12-week PFS was 30% and median PFS 4.8 
months. Commonly occurring grade 3 and 4 toxicities 
were fatigue and thrombocytopenia [85].

Phase I/II studies of saracatinib alone and in com-
bination for other cancers, including ovarian, pros-
tate, breast, head and neck, gastric, and lung (Table 2), 
as well as for sarcoma and melanoma, are ongoing.

 ■ Bosutinib
Bosutinib (SKI-606; Pfizer, NY, USA) is an orally 
administered inhibitor of Src (IC50 value of 3.8 nM) 
and ABL, with a lower affinity for c-KIT and PDGFR 
than dasatinib. It has shown to have antitumoral 
activity in CML, colon, prostate and breast cancer 
models [86,87]. Preclinical breast cancer models showed 
a decrease in in vitro cell motility and invasion, and 
in vivo metastases after bosutinib treatment [88]. A 
Phase I dose-finding trial involving 51 patients with 
advanced solid tumors showed that bosutinib was 
well tolerated; drug-related dose-limiting toxicities 
of grade 3 were diarrhea and rash. The selected maxi-
mum tolerated dose for Phase II trials was 400 mg 
daily [89]. Currently, Phase II, proof-of-concept clinical 
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trials, in patients with CML who had failed to improve 
with imatinib, and in patients with solid tumors and 
HER2-negative metastatic breast cancer in combina-
tion with capecitabine, are ongoing.

 ■ Other SFKs inhibitors
Other ATP-competitive tyrosine kinase inhibitors 
aimed at multiple targets, including SFKs, are being 
evaluated. XL999 was an oral inhibitor of SFKs, 
VEGFR, PDGFR, FGFR and FLT3. However, Exelixis  
Inc. (CA, USA) discontinued it’s development pro-
gram. XL228 targets IGF1 receptor (and Src, but also 
BCR-ABL, including the T315I mutant form, which 
is resistant to approved BCR-ABL inhibitors. In a 
Phase I trial, XL288 was given as an intravenous infu-
sion weekly. One patient with NSCLC had a partial 
response, and one patient with small-cell lung cancer 
had long-lasting disease stabilization [90]. M475271 is 
an oral inhibitor of Src and VEGFR. It has shown pre-
clinical activity in lung adenocarcinoma cell lines [91]. 

KX2-391 is a synthetic, orally bioavailable small mol-
ecule Src tyrosine kinase signaling inhibitor. KX2-
391 is distinct from all other Src kinase inhibitors in 
that it targets the substrate-binding site, and not the 
ATP-binding site. In addition, KX2-391 also inhib-
its microtubule polymerization. In a Phase I trial, 
32 patients were enrolled. Dose-limiting toxicities 
occurred in four patients and included elevated ALT 
and AST, neutropenia and fatigue. The maximum tol-
erated dose was 40 mg twice daily. Seven patients had 
prolonged stable disease for 4 months or longer [92]. 

Future perspective
SFKs play a critical role in cell signaling, leading to 
tumor growth, invasion, metastasis and angiogenesis. 
Multiple tyrosine kinase inhibitors of SFK have been 
developed and are in clinical trials for different indi-
cations. Until today, there are no trials supporting 
the use of Src TKIs in lung cancer. In vitro apoptotic 
effects of Src TKIs have been minimal; however, these 

Table 1. Dasatinib trials in patients with non-small-cell lung cancer.

Treatment Phase Indication Primary end point Identifier [201]

Single agent

Dasatinib II Advanced NSCLC, no prior 
chemotherapy or biological therapy

PFS (at 12 weeks) NCT00459342

Dasatinib II Lung squamous-cell carcinoma ORR NCT01491633

Dasatinib II Lung adenocarcinoma with EGFR 
mutation, progressing after 
treatment with erlotinib or gefitinib

ORR NCT00570401

Dasatinib II Advanced NSCLC, at least one prior 
treatment

Src pathway 
signature to 
predict tumor 
response 

NCT00787267

Combination therapy

Dasatinib + erlotinib I–II Advanced NSCLC; second-line MTD
PFS

NCT00826449

Dasatinib + bevacizumab I Metastatic or unresectable 
malignant solid tumors 

Safety/toxicity
MTD

NCT00792545

Erlotinib vs dasatinib 
vs erlotinib + dasatinib

II NSCLC or HNSCC Biomarker 
modulation

NCT00779389

HNSCC: Head and neck squamous-cell carcinoma; MTD: Maximum tolerable dose; NSCLC: Non-small-cell lung cancer; 
ORR: Overall response rate; PFS: Progression-free survival.

Table 2. Saracatinib trials in patients with non-small- and small-cell lung cancer.

Treatment Phase Indication Primary end point Identifier [201]

Saracatinib II Advanced NSCLC; second-line DCR NCT00638937

Saracatinib II Extensive SCLC (nonprogressing 
after four cycles of 
chemotherapy)

PFS (at 12 weeks) NCT00528645

DCR: Disease control rate; NSCLC: Non-small-cell lung cancer; PFS: Progression-free survival; SCLC: Small-cell lung cancer.
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drugs have consistently shown to inhibit cell adhesion, 
migration and invasion. As such, the effects of Src TKIs 
could be described as cytostatic rather than cytotoxic. 
As cytostatic agents are likely to inhibit tumor growth 
but are unlikely to induce tumor shrinkage, the end 
points of clinical trials should be chosen accordingly. 
One perspective for Src TKIs could be to use these 
agents in early-stage disease or in the adjuvant setting 
after tumor or metastasis resection where tumor cell 
migration and invasion is of greater importance than 
in more advanced disease where cytotoxic drugs play 
a crucial role. Furthermore, Src TKIs could be used to 
increase the cytotoxic effects of other agents.

Chemotherapy resistance may be mediated in part 
by the activation of SFKs. Inhibition of c-Src has been 
shown to enhance the effects of chemotherapeutic 
agents such as platinums, taxanes, and gemcitabine, 
in ovarian, pancreatic and CRCs [93–96]. Therefore, 
combination of SFK inhibition with chemotherapy 
is an encouraging therapeutic strategy that is cur-
rently investigated in several clinical trials in dif-
ferent tumor types. As the redundancy in cellular 
pathways may limit the efficacy of single-receptor 
blockade, multi targeted therapies, including inhi-
bition of EGFR and VEGFR, might improve SFK 
inhibition. Up to 15% of caucasian patients with 
lung adenocarcinoma, exhibit activating-EGFR 
mutations. Discovering the link between Src and 
EGFR in human lung cancer cell lines was therefore 
an important step forward [97]. Meanwhile, several 
groups confirmed that lung cancer cells harboring 
activating EGFR mutations are highly sensitive to the 
combination of Src and EGFR inhibition, which leads 
to increased apoptosis in these cells [49,53,63]. Recently, 
further oncogenic mutations and amplifications 
have been discovered in lung cancer, including SCC. 
Approximately 10–20% of lung SCC have genomic 
amplification of the tyrosine kinase FGFR1 (CD331) 
[98]. Furthermore, mutations in the tyrosine kinase 
DDR2 have been identified in 3–4% of lung SCC [99]. 
The multikinase inhibitor dasatinib did efficiently 
block DDR2 in preclinical models [100]. Therefore, 
dasatinib is now tested in patients with advanced 
SCC of the lung (Table 1).

Future directions of investigation need to address 
the identification of predictive markers for anti-Src-
directed therapy. Already, early results from contem-
porary genomic analyses show promise in identifying 
such molecular and genomic predictors of therapeutic 
response to SFK inhibitors [101,102]. Our own preclini-
cal data suggest that ID1 and miRNA-29b could be 
potential predictive markers for the use of Src TKIs. 
Anti-miR-29b enhanced ID1 mRNA and protein 
levels, and significantly increased lung cancer cell 

migration and invasion, a hallmark of the Src-ID1 
pathway. miR-29b suppressed the level of ID1 and 
significantly reduced migration and invasion. Anti-
miR-29b and ID1 overexpression both diminished the 
effects of the Src inhibitors saracatinib and dasatinib 
on migration and invasion. miR-29b was significantly 
downregulated in primary lung adenocarcinoma 
samples compared with matched alveolar lung tissue, 
and miR-29b expression was a significant prognostic 
factor for patient outcome. These results suggest that 
miR-29b is involved in the Src-ID1 signaling path-
way, is dysregulated in lung adenocarcinoma, and is 
a potential predictive marker for Src kinase inhibitors 
[68]. To establish these factors as predictive biomarkers 
for the use of Src TKIs in the clinic, prospective evalu-
ation in clinical trials would be needed.

Conclusion
Preliminary results of trials with Src inhibitors dem-
onstrated low single-agent activity in patients with 
advanced lung cancer. It is unclear if Src inhibitors are 
of use against tumors that have already metastasized, 
and clinical data with tumors at early stages are lack-
ing. Future preclinical and clinical investigations will 
have to focus on potential predictive molecular mark-
ers for accurate selection of patients who may benefit 
from Src inhibitors, and studies in tumors with muta-
tions of EGFR or DDR2 will be particularly interest-
ing. Furthermore, ongoing clinical trials investigate 
combinations of SFK TKIs and other targeted agents, 
including EGFR inhibitors and antiangiogenic drugs. 
Although this strategy is promising , development of 
Src inhibitors in lung cancer therapy remains chal-
lenging. New results from the laboratory will help us 
to better understand the Src pathway and to develop 
rational therapeutic concepts. 

Personnel review
Based on the reported clinical trials on Src tyrosine 
kinase inhibitors in lung cancer, we speculated that 
there will be no place for this substance in advanced/
metastatic disease as single treatment. There are few 
reports on combinatory treatment of Src inhibitors 
with other targeted agents. These data are too pre-
liminary to draw any conclusions but we think that 
this approach could be of relevance in the future. On 
the other hand, use of this substance in early disease 
to prevent tumor invasion and metastasis could be 
of interest. Based on the main characteristics of Src 
tyrosine kinase inhibitors to reduce cell migration and 
invasion, the use of these inhibitors in early-stage dis-
ease could be promising.
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Executive summary

Src-family kinases
 ■ Src-family kinases mainly regulate cell adhesion and motility.
 ■ Src-family kinases cooperate with multiple receptor tyrosine kinases and promote tumor growth, invasion and metastasis.
 ■ Aberrant expression of activated Src has been found in most types of cancer.

Family kinases in lung cancer
 ■ An increased level of Src protein and kinase activity have been reported in 50–80% of patients with lung cancer.

Clinical data
 ■ Dasatinib showed a disease control rate of 43% in metastatic, untreated non-small-cell lung cancer.
 ■ In combination with erlotinib, dasatinib reached a disease control rate of 63%.
 ■ EGFR-mutated adenocarcinomas with acquired resistance to EGFR tyrosine kinase inhibitors did not respond to dasatinib.
 ■ Other Src tyrosine kinase inhibitors (saracatinib, bosutinib, XL228, M475271 and KX2-391) are currently being investigated in 
clinical trials.
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