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Summary	 Sirtuins are a group of NAD+-dependent enzymes that post-translationally 
modify histones and other proteins. Among seven mammalian sirtuins, SIRT1 has been 
the most extensively studied and has been demonstrated to play a critical role in all major 
metabolic organs and tissues. SIRT1 regulates glucose and lipid homeostasis in the liver, 
modulates insulin secretion in pancreatic islets, controls insulin sensitivity and glucose uptake 
in skeletal muscle, increases adiponectin expression in white adipose tissue and controls 
food intake and energy expenditure in the brain. Recently, SIRT3 has been demonstrated to 
modulate insulin sensitivity in skeletal muscle and systemic metabolism, and Sirt3-null mice 
manifest characteristics of metabolic syndrome on a high-fat diet. Thus, it is reasonable to 
believe that enhancing the activities of SIRT1 and SIRT3 may be beneficial for Type 2 diabetes. 
Although it is controversial, the SIRT1 activator SRT1720 has been reported to be effective 
in improving glucose metabolism and insulin sensitivity in animal models. More research 
needs to be conducted so that we can better understand the physiological functions and 
molecular mechanisms of sirtuins in order to therapeutically target these enzymes for 
diabetes treatment.
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IN 46202, USA; Tel.: +1 317 278 1097; Fax: +1 317 274 4686; xcdong@iupui.edu

 � Exercise and diet should always be considered when managing Type 2 diabetes.

 � Sirtuins may be partly attributed to the beneficial effects of calorie restriction and exercise. Although 
the underlying mechanisms are not quite clear, SIRT1 and SIRT3 have been demonstrated to mediate 
some of the salutary effects of calorie restriction and exercise in animal models, including an increase in 
mitochondrial function and protection against oxidative stress.

 � Resveratrol may act partly through SIRT1 to improve glucose and lipid metabolism in diabetics.

 � Strategies to boost NAD biosynthesis may be beneficial for metabolic homeostasis.
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Sirtuins are evolutionarily conserved
Sirtuins are a family of proteins that are 
homologous to yeast Sir2. Sirtuins are evo-
lutionarily conserved as they exist in a wide 
range of organisms, from bacteria to mam-
mals. In humans, there are seven sirtuins 
(SIRT1–SIRT7). These sirtuins have different 

subcellular localizations: SIRT1 (also found 
in the cytoplasm) and SIRT6 are found in the 
nucleus, SIRT2 is primarily found in the cyto-
plasm (but is also found in nucleus), SIRT3, 
SIRT4 and SIRT5 are present in mitochon-
dria, and SIRT7 is found in the nucleolus [1–3]. 
All sirtuins share well-conserved domains for 
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NAD+ and peptide binding, which are also 
called sirtuin domains (Figure 1) [4]. At least four 
distinct enzymatic activities have been charac-
terized in sirtuin family members: deacetyla-
tion (the transfer of an acetyl group from the 
substrate to ADP-ribose moiety of NAD+ and 
the generation of O-acetyl-ADP-ribose and 
nicotinamide [NAM]), ADP-ribosylation (the 
transfer of ADP-ribose moiety of NAD+ to the 
substrate), desuccinylation (the transfer of a 
succinyl group from the substrate to the ADP-
ribose moiety of NAD+) and demalonylation 
(the transfer of a malonyl group to the ADP-
ribose moiety of NAD+) [5–12]. Since NAD+ 
is required for the enzymatic activities of sir-
tuins, it has been suggested that they may be 
important metabolic sensors [13]. Although it 
is not fully established how sirtuins respond 
to NAD+ flux in cells, changes in the NAD+/
NADH ratio or the reaction product NAM 
have been demonstrated to be critical [14–19]. 
The NAD+ levels, at least in mouse livers, 
oscillate in a circadian manner that peaks both 
late in the day and also late in the night [20,21]. 
However, SIRT1 activity does not seem to 
follow exactly the same pattern because either 
SIRT1 protein levels or activities only peak at 
night in mice [22,23]. This apparent inconsist-
ency between NAD+ levels and SIRT1 activity 
has not been resolved yet.

To date, the deacetylation function of sirtuins 
has been best characterized among all the sir-
tuin enzymatic activities. It is well documented 

that acetylation/deacetylation play pleiotropic 
roles in all biological systems, including gene 
transcription, protein stability, signal trans-
duction and metabolism [24–27]. Protein acety-
lation status and sirtuin activities are dynamic 
and change in response to different metabolic 
conditions [24–27]. Mammalian sirtuins, except 
SIRT4, have characterized deacetylation activi-
ties on a variety of protein substrates described 
in Table 1. 

As a founding member, SIRT1 can deacetylate 
histone (H1K26, H3K9 and H4K16) and non-
histone substrates (e.g., FOXO1/3, PGC-1a, 
p53, NF-kB, CREB, TORC2, LXR, MyoD, 
MEF2, SREBP-1 and BMAL1; see Table  1). 
Thus, SIRT1 has pleiotropic cellular func-
tions including cell proliferation, survival, 
anti-inflammation, antistress and metabolism 
[28,29]. SIRT2 deacetylates a-tubulin, PEPCK, 
FOXO3 and others for the regulation of mito-
sis, chromatin remodeling, gene transcription, 
autophagy and metabolism [3,30–37]. SIRT3 
is a predominant mitochondrial sirtuin that 
deacetylates numerous proteins or enzymes, 
such as ACCS2, ALDH2, LCAD and SOD2, 
which are involved in diverse metabolic func-
tions and antioxidative stress [38–56]. SIRT4 can 
inhibit glutamate dehydrogenase (GDH) activ-
ity and amino acid-stimulated insulin secretion 
in pancreatic β cells through NAD+-dependent 
ADP-ribosylation [8,9,57]. SIRT5 can deacetylate 
and desuccinylate CPS1 to promote ammonia 
detoxification through the urea cycle [11,58,59]. 
SIRT6 is involved in glucose homeostasis, chro-
matin remodeling and DNA repair through 
deacetylation of histone 3, lysines 9 and 56, 
CtIP and PARP1, respectively [60–70]. With 
regard to SIRT7, only p53 has been reported to 
be a substrate in the regulation of cell survival 
and cardiac function [71–74]. Since the scope of 
this review focuses on diabetes, here I mainly 
summarize the metabolic functions of sirtuins 
in Table 2 and discuss them as follows.

Sirtuin functions in pancreatic β cells
SIRT1 and SIRT4 have been reported to play roles 
in pancreatic β cells. SIRT1 can increase insulin 
gene transcription and glucose-stimulated insu-
lin secretion (GSIS). This has been confirmed 
in Sirt1-knockout and β-cell-specific overexpres-
sion transgenic mice (BESTO) [75–78]. GSIS was 
blunted in the knockout mice and elevated in the 
BESTO mice. One potential mechanism may 
be the repression of the UCP2 gene expression 
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Figure 1. Human sirtuin proteins and their 
domain structure. The conserved sirtuin 
domain is shaded. The protein sequences and 
annotations are based on the NCBI Gene data set.
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Table 1. The identified substrates of sirtuins.

Sirtuin Known substrates Process involved Ref.

SIRT1 ACSS1: K661
AR: K630
BMAL1: K537
β-catenin
Cortactin
CREB: K136
CRTC2: K628
DNMT1: K1349, 1415
eNOS: K496, K506
FOXO1: K242, K245, K262, K274, K294, K559
FOXO3: K242, K245, K259, K271, K290, K569
FOXO4: K186, K189, K215, K237,  K407
Histone H1: K26
H2A.x
H2A.z: K15
Histone H3: K9
Histone H3: K56
Histone H4: K16
HIV Tat: K50
HNF4a
Ku70: K539, K542
LKB1: K48
LXRa: K432
c-Myc: K323
MyoD: K99, K102, K104
p53: K317, K370, K382
p300: K102, K1024
PARP1
PCAF
PER2
PGC-1a: K77, K144, K183, K253, K270, K277, K320, K412, 
K441, K450, K757, K778
PGC-1β
NF-kBRelA/p65: K310 
Rb: K873, 874
Smad7: K64, K70
SREBP-1c: K289, K309
SUV39H1: K266
TAF(I)68
Zyxin

Conversion of acetate to acetyl-CoA
Androgen receptor signaling
Circadian rhythms
Suppression of tumorigenesis
Cell migration
Glucose and lipid metabolism
Gluconeogenesis
DNA methylation
Endothelium vasodilation
Transcription, autophagy, among others
Transcription
Transcription
Heterochromatin formation
DNA damage response
Cardiac hypertrophy
Chromatin remodeling
Chromatin remodeling
Chromatin remodeling
HIV transcription
Transcription
DNA repair
Cell proliferation and metabolism
Lipid metabolism
Cell proliferation
Muscle differentiation
Cell survival and stress response
Protein acetylation
Cell survival
DNA damage response
Circadian rhythms
Mitochondrial biogenesis and metabolism

Glucose and lipid metabolism
Transcription
Cell cycle control
Apoptosis
Lipid metabolism
Heterochromatin formation
rDNA transcription
Cytoskeletal dynamics

[169]

[170]

[23]

[171]

[172]

[81]

[87]

[173]

[174]

[175–177]

[177,178]

[177]

[179]

[180]

[181]

[179]

[182]

[179]

[183]

[184]

[148]

[130]

[97]

[185]

[186]

[187,188]

[189]

[190]

[186]

[22]

[84]

[191]

[192]

[193]

[194]

[95]

[195]

[196]

[197]

SIRT2 CDC20
CDH1
FOXO1: K262, K265, K274
FOXO3: K242, K259, K290, K569 
Histone H3: K56
Histone H4: K16
NF-kBRelA/p65: K310
p53
p300: K418, K423, K1542, K1546, K1549, K1699, K1704, K1707
Par3: K831, K848, K881, K1327
PEPCK: K70, K71, K594
PRLR
a-tubulin: K40

Mitosis
Mitosis
Adipogenesis and autophagy
Oxidative stress and ubiquitination
DNA damage response
Mitosis
Transcription
Cell survival and stress response
Chromatin remodeling
Myelination
Gluconeogenesis
Prolactin receptor dimerization
Mitosis

[31]

[31]

[33,35]

[30,116]

[198]

[3]

[34]

[199]

[200]

[201]

[32]

[202]

[36]
ETC: Electron transport chain; PTP: Permeability transition pore; Rb: Retinoblastoma.
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by SIRT1. Moreover, SIRT1 also protects β cells 
against inflammation-induced apoptosis [79]. By 
contrast, SIRT4 inhibits amino acid-induced 
insulin secretion through the ADP-ribosylation 
of GDH [8,9].

Sirtuin functions in the liver
�� Glucose metabolism

Several sirtuins have been found to play impor-
tant roles in the liver. SIRT1 has been reported 
to regulate hepatic gluconeogenesis. However, 
reports are still conflicting with regard to either 
activation or inhibition of this process. Motta 
et al. reported that SIRT1 might inhibit gluco-
neogenesis through suppression of PEPCK gene 
expression, which is one of the key enzymes 
in the gluconeogenic process [80]. Qiang et al. 
suggest that SIRT1 suppresses hepatic gluco-
neogenesis via direct deacetylation and inhibi-
tion of CREB, a critical transcription factor for 
PEPCK [81]. Recently, Wang et al. have found 
that SIRT1 also suppresses the hepatic expression 
of PEPCK and glucose 6-phosphatase genes via 
upregulation of Rictor, a unique component of 
the mTORC2 complex, and subsequent inhibi-
tion of FOXO1 activity [82]. Several other reports 

suggest that SIRT1 might upregulate gluconeo-
genic genes through the activation of FOXO1 
and PGC-1a via direct deacetylation [83–86]. A 
study has indicated a time-dependent switch 
from early CRTC2 to late FOXO1 activation; 
however, SIRT1 plays dual roles by not only 
inhibiting CRTC2 but also promoting FOXO1 
activity [87]. SIRT1 can also activate gluconeo-
genesis via inhibition of STAT3 [88]. Moreover, 
there is also a feedback mechanism in which the 
SIRT1/FOXO1 pathway induces the expression 
of SHP and subsequently, SHP inhibits FOXO1 
transcriptional activity [83]. Apparently the regu-
lation of hepatic gluconeogenesis by SIRT1 is 
quite complex and dynamic under different con-
ditions [81–88]. It requires more systemic study to 
pinpoint how SIRT1 is involved in gluconeogen-
esis in a time course. SIRT2 also regulates hepatic 
gluconeogenesis through direct deacetylation of 
PEPCK [32]. Additionally, SIRT1 and SIRT6 
regulate glycolysis through distinct mechanisms. 
SIRT1 may repress the expression of glucokinase 
and pyruvate kinase genes through deacetylation 
of PGC-1a and FOXO1 [84,89,90], whereas SIRT6 
suppresses these two genes via deacetylation of 
H3K9 [64].

Table 1. The identified substrates of sirtuins (cont.).

Sirtuin Known substrates Process involved Ref.

SIRT3 ACSS2: K635
ALDH2: K377
CYPD: K166
GDH
HMGCS2: K310, K447, K473
IDH2
LCAD: K42
MRPL10: K124, K162, K196
NDUF9A
OTC: K88
SDH
SOD2: K53, K68, K89, K122 

Conversion of acetate to acetyl-CoA
Alcohol metabolism
Mitochondrial PTP control
Glutamate oxidation and insulin secretion
Ketogenesis
Anti-oxidative stress
Fatty acid oxidation
Mitochondrial protein synthesis
Mitochondrial ETC
Urea cycle
Mitochondrial ETC
Anti-oxidative stress

[169,203]

[38]

[204]

[56]

[50]

[48]

[53]

[47]

[54]

[43]

[205]

[51]

SIRT4 GDH Glutamate oxidation and insulin secretion [8,9]

SIRT5 CPS1
CS
GDH
GOT2
HMGCS2
MDH
TST

Urea cycle
Citric acid cycle
Amino acid-induced insulin secretion
Amino acid metabolism
Ketogenesis
Citric acid cycle
Cyanide detoxification

[59]

[11]

[11]

[11]

[11]

[11]

[11]

SIRT6 CtIP: K432, K526, K604
H3K9
H3K56
PARP1: K521 (mono-ADP-ribosylation)

DNA repair
Chromatin remodeling
Chromatin remodeling
DNA repair

[66]

[69]

[67,206]

[60]

SIRT7 p53 Cell survival [72]

ETC: Electron transport chain; PTP: Permeability transition pore; Rb: Retinoblastoma.
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Table 2. Sirtuin metabolic functions.

Gene Functions Ref.

SIRT1 Pancreatic β cells
 � Increases insulin gene transcription [75–79]

 � Decreases UCP2 gene transcription [75,76,78,207]

 � Increases glucose-stimulated insulin secretion [75–79]

 � Protects against cytokine toxicity via NF-kβ downregulation [79]

 � Protects against oxidative stress via upregulation of NeuroD and MafA [175]

Liver
 � Regulates gluconeogenesis [32,80,82–88]

 � Inhibits glycolysis [84,89,90]

 � Inhibits lipogenesis [91,95,96]

 � Increases fatty acid oxidation [92]

 � Inhibits cholesterol biosynthesis [96–98]

 � Improves hepatic insulin sensitivity [82]

 � Inhibits oxidative stress, inflammation and ER stress [82,92,94,208]

 � Regulates circadian rhythms [22,23]

 � Modulates NAD biosynthesis [20,21]

Brain
 � Mediobasal hypothalamic SIRT1 inhibits hepatic glucose production [117]

 � Central SIRT1 positively regulates food intake and energy expenditure [118–124]

 � Regulates physical activities [123]

Skeletal muscle
 � Increases insulin sensitivity [99,103]

 � Increases mitochondrial biogenesis [100–102]

 � Increases fatty acid oxidation [100,104]

Adipose tissue
 � Increases adiponectin biosynthesis and secretion [109–111]

 � Increases lipolysis [112,113]

 � Inhibits adipogenesis [112]

SIRT2 Liver
 � Increases hepatic gluconeogenesis via deacetylation of PEPCK [32]

Adipose tissue
 � Decreases oxidative stress via deacetylation of FOXO3 [116]

 � Inhibits adipocyte differentiation via deacetylation of FOXO1 [35,115]

SIRT3 Liver
 � Regulates energy homeostasis via control of ETC complexes I and II [54]

 � Reduces oxidative stress via deacetylation of SOD2 [51]

 � Increases fatty acid oxidation via deacetylation of LCAD and others [39,43,50,53]

 � Increases ketone body production via deacetylation of HMGCS2 [50]

 � Promotes the urea cycle via deacetylation of OTC [43]

Skeletal muscle
 � Induced by fasting, caloric restriction and exercise [105–107]

 � Decreased by high-fat diet [40,41,107]

 � Inhibits mitochondrial protein synthesis via deacetylation of MRPL10 [47]

 � Increases mitochondrial oxidation [39,40]

 � Decreases ROS and insulin resistance [40,108]

 � Increases mitochondrial biogenesis [108]

Brain
 � Protects against age-related hearing loss by reducing oxidative damage [48]

SIRT4 Pancreatic β cells
 � Decreases insulin secretion via inhibition of GDH [8,9]

ETC: Electron transport chain; GDH: Glutamate dehydrogenase; ROS: Reactive oxygen species. 
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�� Lipid metabolism
In addition to the regulation of glucose metab-
olism, SIRT1 also modulates hepatic lipid 
homeostasis. This function has been dem-
onstrated by Sirt1 knockout and transgenic 
mouse models. The liver-specific Sirt1 knock-
out mice develop hepatic steatosis on a high-fat 
diet [91,92], whereas the overexpression of Sirt1 
specifically in the liver or globally, protects 
mice from developing fatty liver disease [93,94]. 
Several potential mechanisms may contribute 
to the beneficial effects of SIRT1 in triglycer-
ide metabolism. First, SIRT1 increases hepatic 
fatty acid oxidation, possibly through the acti-
vation of PGC-1a/PPARa [92]. Second, SIRT1 
improves cellular functions by reducing oxida-
tive and endoplasmic reticulum (ER) stress [94]. 
Third, SIRT1 can inhibit lipogenesis through 
deacetylation-induced SREBP-1c degradation 
and downregulation of ChREBP gene expression 
[91,95,96]. However, constitutive systemic over-
expression of Sirt1 in mice also causes elevated 
hepatic and circulating levels of triglycerides 
and the inhibition of CREB by Sirt1-mediated 
deacetylation may play a critical in role in this 
dysregulation [81]. SIRT1 has also been reported 
to control cholesterol homeostasis. Knockdown 
or knockout of Sirt1 in mouse livers leads to 
an elevated level of total hepatic cholesterol. 
This may be attributed to the dysregulation of 
SREBP-2 and LXR protein stability and activi-
ties [96–98]. SIRT3 also plays an important role 
in lipid metabolism through deacetylation of 
some key enzymes including long chain acyl-
CoA dehydrogenase for fatty acid oxidation and 

3-hydroxy-3-methylglutaryl-CoA synthase 2 for 
ketogenesis [39,43,50,53]. SIRT6 can improve lipid 
homeostasis through inhibition of lipogenesis 
and activation of fatty acid oxidation by modu-
lating the expression of numerous genes such 
as FASN, ACC1, ELOVL6, SCD1, CPT1 and 
ACOX1 [64]. By contrast, SIRT4 has been shown 
to inhibit fatty acid oxidation in the liver and 
skeletal muscle [57].

Sirtuin functions in skeletal muscle
Sirtuins also play critical roles in skeletal mus-
cle physiology. SIRT1 has been demonstrated to 
increase insulin sensitivity and insulin-stimulated 
glucose uptake in skeletal muscle or myotubes 
by downregulating PTP1B [99]. Mitochondrial 
quality and quantity are critical for skeletal mus-
cle function. Significantly, SIRT1 can enhance 
mitochondrial biogenesis, and thus increases 
muscle function, partly through the activation 
of PGC-1a [100–102]. SIRT1 also mediates calorie 
restriction (CR)-enhanced insulin sensitivity via 
the inhibition of STAT3-induced p55a/p50a of 
PI3K [103]. SIRT1 also boosts fatty acid oxidation 
in the skeletal muscle [100,104]. As a mitochondrial 
sirtuin, SIRT3 can be induced by fasting, caloric 
restriction and exercise [105–107]. SIRT3 activation 
can lead to increased mitochondrial biogenesis 
and function and can decrease oxidative stress 
[40,105–108]. By contrast, SIRT6 inhibits basal- and 
insulin-stimulated glucose uptake in the skeletal 
muscle by the inhibition of Akt phosphorylation 
and the suppression of recruitment of the glucose 
transporters, GLUT1 and GLUT4, to plasma 
membrane [62]. 

Table 2. Sirtuin metabolic functions (cont.).

Gene Functions Ref.

SIRT5 Liver
 � Regulates the urea cycle via deacetylation of CPS1 [58,59]

SIRT6 Liver
 � Inhibits glycolysis and lipogenesis via deacetylation of H3K9 [64]

 � Increases fatty acid oxidation via deacetylation of H3K9 [64]

Brain
 � Regulates somatic growth and adiposity via deacetylation of H3K9 and H3K56 in the brain [63]

Skeletal muscle
 � Inhibits basal- and insulin-stimulated glucose uptake [61,62]

Adipose tissue
 � Decreases triglyceride synthesis via downregulation of DGAT1 [65]

 � Inhibits glucose uptake [61]

SIRT7 Regulates Pol I transcription and p53 function, particularly protects against stress, apoptosis and 
inflammation in the heart

[72,74]

ETC: Electron transport chain; GDH: Glutamate dehydrogenase; ROS: Reactive oxygen species. 
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Sirtuin functions in adipose tissue
Adipose tissue has been increasingly appreci-
ated to play a critical role in energy homeostasis. 
At least three sirtuins (SIRT1, 2 and 6) have 
been implicated in adipose functions. SIRT1 
can increase the expression of adiponectin, an 
important adipokine for energy metabolism, in 
part through deacetylation of FOXO1 [109–111]. 
SIRT1 also inhibits adipogenesis and activates 
lipolysis through repression of PPARg, a key adi-
pose regulator [112]. Through deacetylation and 
activation of FOXO1, SIRT1 induces the tran-
scription of adipose triglyceride lipase and pro-
motes lipolysis in adipose tissue [113]. In 3T3-L1 
adipocytes, SIRT1 knockdown decreases insulin 
signaling and insulin-stimulated glucose uptake 
[114]. SIRT2 can also inhibit adipocyte differ-
entiation, partly through FOXO1 deacetylation 
[35,115]. In addition, SIRT2 activates FOXO3 in 
adipocytes to reduce oxidative stress [116]. SIRT6 
has been reported to downregulate the expres-
sion of the DGAT1 gene and decrease triglyceride 
biosynthesis [65].

Sirtuin functions in the brain
The brain plays a key role in the integration of sys-
temic energy homeostasis. Interestingly, medio-
basal hypothalamic SIRT1 has been implicated 
in the suppression of hepatic glucose production 
by resveratrol [117]. Moreover, CNS SIRT1 posi-
tively regulates food intake and energy expendi-
ture [118–124]. Inhibition of central Sirt1 blocks 
ghrelin-induced food intake in rodents partly 
through regulation of p53 and melanocortin 
4 receptor pathways [118,119,124]. Hypothalamic 
SIRT1 also mediates dietary restriction-induced 
neural adaption by increasing physical activity 
and body temperature [123]. Through chroma-
tin remodeling, particularly deacetylation of 
H3K9 and H3K56, neural SIRT6 regulates nor-
mal somatic growth and adiposity and protects 
against obesity [63].

An integrative view of sirtuins in 
metabolism
As described above, sirtuins play distinct roles in 
different tissues, which are consistent with the 
tissue-specific functions. In general, each sirtuin 
has unique functions in a given tissue. For exam-
ple, SIRT1 promotes mitochondrial biogenesis in 
skeletal muscle and SIRT5 detoxifies ammonia 
in the liver [58,59,101,125]. Our current understand-
ing is that sirtuins also functionally cooperate 
to achieve systemic homeostasis. For example, 

SIRT1 and SIRT3 both control fatty acid oxi-
dation; however, SIRT1 does so at the gene 
transcription level mostly through PGC-1a, 
whereas SIRT3 directly controls the activity of 
metabolic enzymes involved in the fatty acid oxi-
dation (FAO) process [126]. Another example is 
that although both SIRT1 and SIRT2 regulate 
hepatic gluconeogenesis, again, SIRT1 acts via 
the control of PEPCK and G6pc gene expression 
(up or down) while SIRT2 directly deacetylates 
PEPCK and increases its stability [32,80,82–88]. 
Regarding SIRT4, only a few studies have been 
carried out but they mostly reveal an inhibitory 
effect on metabolism – inhibition of amino acid-
stimulated insulin secretion in pancreatic β cells 
as well as inhibition of fatty acid oxidation in the 
liver and skeletal muscle [8,9,57].

Targeting sirtuins for diabetes 
therapeutics
As summarized above, most, if not all, sirtuins 
have been implicated in metabolism and energy 
homeostasis. Therefore, they may become use-
ful therapeutic targets for diabetes and the 
metabolic syndrome. Although there are con-
flicting reports in the literature, resveratrol has 
been directly or indirectly linked to SIRT1 for 
metabolic functions, possibly involving AMPK 
and other pathways [14,93,127–135]. Indeed, res-
veratrol and SIRT1 share numerous similar 
effects. For example, resveratrol has been shown 
to improve insulin sensitivity in obese animals 
and humans, increase mitochondrial biogen-
esis and function and protect against inflam-
mation (Table 3) [101,136–140]. A recent report has 
shown that 30-day resveratrol supplementation 
increases activated AMPK and protein levels 
of SIRT1 and PGC-1a in skeletal muscle of 
obese subjects, decreases triglycerides in the 
liver and improves the homeostatic model 
assessment index and inflammatory markers 
[141]. Resveratrol can also improve dyslipidemia, 
ketoacidosis and inflammation in Type 1 dia-
betic rats [136,142]. Resveratrol is also found to 
increase GSIS in pancreatic β cells [77]. In most 
cases, the processes that resveratrol is involved 
in are also partially related to SIRT1 functions. 
However, it should be pointed out that it is still 
controversial as to whether resveratrol directly 
acts on SIRT1, since AMPK deficiency blunts 
resveratrol effects in mice [128]. Additionally, 
some reports suggest that SIRT1 overexpression 
may also cause increased lipogenesis [81,143,144]. 
More mechanistic studies are needed to clarify 
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how and when SIRT1 contributes to beneficial 
or adverse effects on lipid metabolism. 

CR has been demonstrated to be effective for 
extending lifespan and improving age-related 
abnormalities [145–147]. Although it is still con-
troversial whether sirtuins may increase lifespan, 
the current literature tends to suggest that there 
is some connection between sirtuin functions 
and CR effects. First, it has been reported that 
SIRT1 gene expression is induced in fasting and 
CR-treated mice, rats and human subjects [84,148–
150]. Second, transgenic and knockout mouse 
models indicate that SIRT1 may mediate some 
of the CR effects. For instance, Sirt1 knockout 
mice are irresponsive to CR in activity changes 
[151]. Mice carrying the Sirt1 transgene in the 
β-actin locus also manifest numerous character-
istics of CR, including increased physical activ-
ity, decreased blood cholesterol, insulin and glu-
cose as well as delayed reproduction [152]. Third, 
the metabolic functions of SIRT1, particularly 
in glucose, lipid and mitochondrial biogenesis, 
implicate its role in CR [84,96,97,112]. However, 
whether SIRT1 mediates CR-induced longevity 
is debatable because some yeast strains are still 
long-lived in the absence of Sir2 (yeast homolog 
of SIRT1) and overexpression or activation of 
SIRT1 in mice does not increase lifespan on a 
regular diet [133,152–155]. Additionally, SIRT1 is 
likely to function differently in a tissue-specific 

manner. Chen et al. have reported that Sirt1 
activities increase in skeletal muscle and white 
adipose tissue but decrease in the liver on a 
CR regimen [156]. More intriguingly, different 
regions of the brain respond differently to CR in 
the expression of Sirt1 gene in mice – an increase 
in the cortex and hippocampus and a decrease in 
the midbrain and cerebellum [157]. In addition 
to SIRT1, other sirtuins may be also implicated 
in CR. For instance, SIRT3 has been shown to 
mediate some of the anti-oxidative stress effects 
by CR in the liver and in the brain, including 
cochlear neurons [48,51]. 

In pursuit of the development of small-mol-
ecule activators of sirtuins, several compounds 
including SRT1720 have been reported to specif-
ically activate SIRT1 and manifest pharmacolog-
ical efficacy on Type 2 diabetes in rodents [155]. 
However, whether those small molecules directly 
bind to SIRT1 is still debatable [158,159]. Another 
approach involving an increase in cellular NAD+ 
levels has been also tested in mouse models. 
NAD+ biosynthesis comprises of at least four 
pathways according to substrates: tryptophan 
(de novo synthesis), nicotinic acid, nicotinamide 
and nicotinamide riboside. It has been reported 
that the rate-limiting enzyme for the salvage bio-
synthesis of NAD+ – nicotinamide phosphoribo-
syltransferase (NAMPT) – plays a critical role 
in NAD+ homeostasis and insulin secretion in 

Table 3. Sirtuin activators and metabolic effects.

Compound name Metabolic effects Ref.

Resveratrol Improves insulin sensitivity
Improves hyperglycemia
Increases mitochondrial biogenesis
Increases glucose uptake
Increases lipid transport and β-oxidation in skeletal muscle
Regulates hepatic gluconeogenesis
Improves ketoacidosis and muscle protein degradation in T1DM
Increases insulin secretion in pancreatic β cells
Improves hepatic steatosis and hepatocyte ballooning
Improves dyslipidemia
Inhibits adipogenesis
Protects against inflammation
Protects against oxidative stress

[99,117,140,141,209]

[140,141]

[101,137]

[210–214]

[137,141]

[117,140]

[136]

[77,215]

[208,216,217]

[93,218–220]

[112,114,221,222]

[139,141,223,224]

[138,209,223,225]

SRT1720 Improves glucose homeostasis
Increases insulin sensitivity
Increases mitochondrial function
Reduces lipogenic gene expression

[104,155]

[104,155]

[104,155]

[96,155,226]

NMN Protects against inflammation in pancreatic islets
Increases glucose-stimulated insulin secretion
Improves glucose tolerance in obesity
Improves glucose and lipid homeostasis in age-induced diabetes

[227]

[160,162,207]

[162]

[162,207]
T1DM: Type 1 diabetes mellitus.
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mice [15,160,161]. As one of the key intermediates 
of NAD+ biosynthesis, nicotinamide mononucle-
otide (NMN; a product of the NAMPT enzyme) 
has been shown to have protective effects against 
obesity- and aging-induced diabetes [162]. Daily 
injections of 500 mg/kg body weight of NMN 
for 5–7 days improves glucose intolerance and 
insulin resistance in high-fat-induced diabetic 
mice. Similar treatment in old diabetic mice also 
demonstrated an improvement in glucose and 
lipid homeostasis [162]. 

Since no drug targeting sirtuins has yet been 
approved for clinical use and only limited ani-
mal studies have been performed, the advantages 
and disadvantages of sirtuin activators compared 
to current diabetes drugs are not clear. Some 
reports suggest that SIRT1 might mediate part 
of the metformin effects in the suppression of 
hepatic gluconeogenesis, the activation of fatty 
acid oxidation in skeletal muscle and protection 
against hyperglycemia-induced retina damage 
[14,163,164]. It is possible that AMPK activation 
by metformin may also stimulate SIRT1 activity 
[14]. Interestingly, it is hypothalamic SIRT1 but 
not AMPK that mediates resveratrol-suppressed 
hepatic glucose production [117]. Moreover, 
SIRT1 might also activate AMPK according 
to several lines of evidence [93,127,130,164–167]. 
Since sirtuins can be modulated by increasing 
cellular NAD+ levels, nutriceutical approaches 
by providing NAD+ biosynthesis substrates or 

intermediate metabolites, such as NMN, may 
be also useful in the prevention or treatment of 
Type 2 diabetes [160,162,168].

Conclusion & future perspective
Sirtuins have pleiotropic functions in metabo-
lism including glucose and lipid metabolism, 
energy expenditure and insulin secretion. 
Certainly, we still have many unanswered 
questions with respect to sirtuin biology and 
their therapeutic potentials. For example, 
what determines sirtuin activities? Why do 
Sirt2/3/4/5 deficient mice have mild pheno-
type? How do we design specific assays for 
each sirtuin? How can we target sirtuins for 
specific diseases such as diabetes without com-
plications? Through future investigation, we 
should be able to address those questions and 
choose the best available approach for drug 
development.
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