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Single-Atom Carbon-Based Catalysts 
in High Oxidation Reactions for Water 
Remediation: From Materials to 
Reaction Pathways

Introduction
Water quality is typically assessed by looking 
at the levels of inorganic, organic, microbial, 
and heavy metals in the water. Recently, 
however, some unknown pollutants have 
been identified as emerging contaminants, 
which are not listed as harmful to the 
environment [1]. We have gained limited 
knowledge of the emerging contaminants 
because they rarely appear [2]. Emerging 
contaminants usually range in concentration 
forming/l to μg/l, but they are non-degradable 
under natural conditions and build-up in the 
food chain (Macro Invertebrates). As a result, 
their release into the environment has posed 
a significant risk to human health and the 
environment. As a result, several treatments 
have been developed to remove emerging 
contaminants, including phase-changing 
technologies (PCTs), biological processes 
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(BMPs) and advanced oxidation (AOP) 
processes [3]. AOPs have the highest 
potential due to their high generation of 
reactive oxidizing (ROS) species (H2O2, 
H2O3, H2O4, H2O5, H2O6, H2O7, H2O8, 
H2O9, H2O10, H2O11, H2O12, H2O13, 
H2O14, H2O15, and H2O16). These 
reactive oxidizing species have high 
oxidation potential, allowing them to 
efficiently attack and degrade emerging 
contaminants.

Pesticides

Pesticides (also known as pesticides) are 
physical and chemical agents that are 
used to protect agriculture from harmful 
insects, weeds and microorganisms, 
depending on the target species. 
There are four classes of pesticides that 
are conventionally used: Insecticides 
Aldicarb Marathon Athmectin Rotenone 
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Herbicides Atrazine Clopyralid Alachlor 
Oxyfluorfen Fungicides Oxypropion Micatin 
Chlorothalonil Methylthobuzin Maintaining 
good soil Bactericides [4, 5]. 

Semiconductor acids (SACs) based on carbon

The development of scalable, controllable, 
and reproducible synthetic strategies for the 
preparation of carbon based SACs is essential 
for the industrialisation of carbon- based 
SACs for persulfate based AOPs due to its 
high surface energy [6]. Here is a summary of 
the topics covered in this review Summary of 
Carbon Based SACs Preparation Classification 
and Representative Structures of Emerging 
Contaminants. eco-Environment & health 
2(2023) Surface energy of isolated single 
metal atoms The isolated single metal 
atoms always migrate and aggregate with 
each other to form nanoparticles or clusters 
[7] . However, only when the interaction 
between the individual metal atom and the 
carbon carrier is strong enough to anchor 
the individual metal atom to the carbon 
carrier can carbon based SAC be obtained 
[8]. The as-processed catalysts have various 
chemical and electronic structures that 
allow the induction of radical or non-radical 
pathways in persulfate based AOP’s [9]. The 
characterizations of the structure of these 
carbon based SACs allow us to reveal the 
relationship between structure and catalytic 
pathway, the focus of this review, to realize 
rational design of high performance catalysts 
and eventually industrial application [10]. 

Description
The purpose of this review is to provide 
an overview of recent progress in the 
development of carbon-based catalytic 
converters (SACs) in persulfate based AOPs for 
the degradation of emerging contaminants. 
First, the types of emerging contaminants 
are clarified and the corresponding typical 
contaminants are described. Second, this 
article provides an overview of the progress 
in the synthesis and characterization in recent 
years in the production and characterization 
of carbon based SACs. Thirdly, the relationship 
between the types of generated oxidative 
residues in persulfate activation and the 
underlying single atom active sites of carbon 
based catalytic converters are systematically 
summarised and discussed. Fourthly, brief 
conclusions and perspectives on the design 

of carbon base catalytic converters with 
controllable catalytic active sites towards 
targeted catalytic properties in persulfate 
base AOPs from the design principle, the 
synthesis strategy, and the distinction 
between single metal active sites.

Conclusion
In conclusion, we summarise recent research 
on emerging contaminants type, carbon 
based SAC synthesis and characterization, 
and their environmental applications. 
In particular, we compare the catalytic 
mechanism of persulfate based AOPs to the 
structure of carbon based SACs from the 
perspective of the generation of reactive 
oxygen species (ROS). Previously, excellent 
carbon based SAC were well prepared 
and characterized with superior catalytic 
performance over their nanoparticle/
cluster counterparts for the degradation of 
emerging contaminants. Excellent catalytic 
performance benefits from the unique 
geometrical and electronic structure of the 
single atom active sites in carbon based SAC. 
The single atom active site can influence 
the adsorption by persulfate, regulate the 
electron transfer from the active site to 
persulfate and determine how persulfate 
cleaves to generate different types of ROS. 
The difference in the generation of ROS 
ultimately impacts the reaction pathway and 
the difference in ROS ultimately affects the 
reaction pathway and catalytic performance. 
Although carbon-based SACs are believed 
to be of great potential in the application 
of persulfate-based AOPs, there are still 
some aspects that require more attention in 
future research strengthen the coordination 
environment. For instance, introduce 
additional heteroatoms to create a more 
stable interaction between the metal atoms 
and the carbon carriers. Form numerous 
small cavities to stabilize individual metal 
atoms. For instance, use more cavities in MOF 
to anchor multiple metal atoms. Finally, it is 
important to note that different metal atoms 
have varying interaction strengths and 
loading dynamics with the carbon carriers, 
which may lead to significant differences in 
their upper limit of loading.
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