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Lectins are multifunctional carbohydrate-binding proteins that can recognize various 
carbohydrates on cell surfaces and extracellular matrix, and are involved in several 
biological processes. Galectins, a family of animal lectins with affinity for 
β-galactoside-containing oligosaccharides, are expressed by several cells of the immune 
system and tissue-resident stromal cells. Increasingly, experimental evidence indicates that 
galectins might play critical regulatory roles in cancer, fibrosis and chronic inflammatory 
disorders, such as rheumatoid arthritis. In this review, we summarize recent developments 
in our understanding of the galectins’ roles within particular cells, and in the broader 
context of the inflammatory or tumor microenvironments. This body of knowledge, 
documenting the coming-of-age of galectins as potential immunosuppressive agents or 
targets for anti-inflammatory drugs, represents a sound basis to further explore their 
immunoregulatory properties in the development of novel therapies for autoimmune 
diseases and chronic inflammation.

Galectins, a subfamily of the animal lectins, are
evolutionarily conserved carbohydrate-binding
proteins [1]. Members of the galectin family are
defined by a conserved carbohydrate-recognition
domain (CRD) with a canonical amino acid
sequence and affinity for β-galactosides [2]. To
date, 15 mammalian galectins have been identi-
fied, 11 of which have human orthologus
(Table 1). These can be subdivided into three
groups; single-CRD galectins; tandem-CRD
galectins, and the unique ‘chimera-type’ galec-
tin-3, which contains a single CRD fused to
unusual tandem repeats of short amino acid
stretches [1,3].

Some single-CRD galectins can exist as
dimers, tandem-CRD galectins have two carbo-
hydrate binding sites and galectin-3 can form
oligomers when it binds to multivalent carbo-
hydrates [4,5]. Galectins, like antibodies, can
therefore establish ordered arrays of complexes
with increased avidity when they bind to
multivalent glycosylated proteins [6,7].

Galectins can be found inside and outside
cells and have distinct functions in each
location [8]. Whether endogenously expressed, or
rapidly internalized from the cell surface,
galectins have been implicated in important
intracellular functions, such as pre-mRNA splic-
ing, regulation of cell growth, cell cycle progres-
sion and protein sorting [9–14]. Furthermore, the
cytoplasmic-nuclear transport of galectin-3
appears to be regulated by unknown chaperone
factors [15] and modulated by neighboring
leucine-rich nuclear export signals [16,17].

Although galectins do not contain signal pep-
tides to direct them through the classical endo-
plasmic reticulum (ER)–Golgi apparatus
secretory system, they can be secreted by other
unorthodox secretory pathways [18–21]. Once out-
side the cell, galectins bind to and crosslink mul-
tiple molecules found on the cell surface or in the
extracellular matrix (ECM) that display appropri-
ate galactose-containing oligosaccharides. In this
way, galectins may exert autocrine and paracrine
effects to regulate the inflammatory response
within tissue microenvironments [3,22,23]. 

General considerations for extracellular 
galectin signaling
Cross-linkage of cell-surface receptors by
galectins can trigger transmembrane signaling
events through which diverse processes such as
apoptosis, cytokine secretion and cell migration
are modulated. However, highly significant fac-
tors that determine the responsiveness of cells to
galectin-mediated signals include the repertoire
of potentially glycosylated molecules expressed
on the cell surface, and the activities of specific
glycosyltransferases that are responsible for pro-
ducing galectin ligands. These variables can dra-
matically change according to the developmental
stage and activation status of cells [24]. 

In addition to producing galectin ligands,
glycosyltransferases can also effectively mask
galectin saccharide ligands. For example, the
addition of α2,6-linked sialic acids to lactosamine
units by the α2,6-sialyltransferase I (ST6Gal-I)
has been shown to block galectin-1 binding [25].
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On the other hand, the Core-2-β-1,6-N-
acetylglucosaminyltransferase (C2GnT), creates
branched polysaccharide structures, which galec-
tin-1 recognizes on T-cell surface glycoproteins,
such as CD45 [26].

Undoubtedly, one of the most intriguing find-
ings is the fact that individual galectins can exert
contrasting effects on the same target cells,
depending on the activation or differentiation
state of these cells. In this regard, galectins-1 and
-3 have been shown to promote survival or
death, activation or silencing and differentiation
or proliferation on particular leukocyte
subsets [27–31].The intimate mechanisms of these
contrasting effects still remain to be elucidated. 

Some galectins, such as galectins-1 and -3,
appear to be expressed ubiquitously whereas
others, such as galectins-2, -4, -7 and -13, have
a more restricted tissue localization [1,3,32]. The
expression of the galectins themselves is modu-
lated during the activation and differentiation
of immune cells and changes under different
physiological, pathological or in vitro
conditions [22]. For instance, galectins- 1 and -3
are upregulated following activation of differen-
tiation in macrophages [19,33,34], T cells [35–37]

and fibroblasts [38]. In addition, recent evidence
indicates that galectin-1 is overexpressed during
the expansion of CD4+ CD25+-regulatory
T cells [39], suggesting a potential role for this
protein in the establishment of peripheral toler-
ance. Furthermore, galectin-9 expression can be
upregulated by proinflammatory cytokines,
including interleukin (IL)-1β and interferon

(IFN)-γ [40,41], and galectin-12 expression can
be downregulated by different stimuli, includ-
ing isoproterenol, tumor necrosis factor
(TNF)-α and dexamethasone [42]. In addition,
different members of the family can be up- or
downregulated during myeloid differentiation
into the monocyte, eosinophil or neutrophil
lineages [43].

Functions of the tandem-CRD galectins
Although galectin-1 (single-CRD galectin) and
galectin-3 (chimera-type galectin) are the most
extensively studied members of the galectin
family, it is gradually becoming evident that
other galectins can also modulate innate and
acquired immune responses. Examples include
the abilities of the tandem-CRD-type galectin-8
to activate microbial killing machinery in
neutrophils [44], and of galectin-9 to act as an
eosinophil-specific chemoattractant [45]. In
addition, galectin-9 can induce the maturation
of monocyte-derived human dendritic cells,
providing a link between innate and adaptive
immunity [46]. 

Another tandem-CRD-type family member,
galectin-4, has been found to play a key role in
CD4+ T-cell activation in intestinal inflamma-
tion [47]. Epithelial cell-derived galectin-4 stimu-
lates an increase of IL-6 production in CD4+

T cells and exacerbates chronic colitis. Discus-
sion of this finding is worthwhile in terms of the
different roles played by individual members of
the same galectin subfamily in activating or
silencing pathogenic T-cell responses.

Table 1. Mammalian galectin family and their subgroups.

Single-CRD (monomeric or dimeric) Two-CRDs in tandem Chimera-type

Galectin-1

Galectin-2

Galectin-3

Galectin-4

Galectin-5 (found in rat)*

Galectin-6 (found in chicken and mouse)*

Galectin-7

Galectin-8

Galectin-9

Galectin-10

Galectin-11 (found in sheep)*

Galectin-12

Galectin-13

Galectin-14

*These galectins have no reported human ortholog. 
CRD: Carbohydrate recognition domain. 
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In this regard, immunosuppressive functions
for tandem-CRD galectins have also been
described. For example, galectin-9 induces apop-
tosis of murine thymocytes [48] and peripheral
CD4+ and CD8+ T-cell death through a Ca2+-
calpain-caspase-1 signaling pathway [49]. Inter-
estingly, in a very elegant study, Zhu and col-
leagues recently showed that galectin-9 is a
ligand of Tim-3, a T-helper (Th)1-specific cell-
surface molecule. The authors showed that
galectin-9 specifically kills Tim-3 expressing
IFN-γ-producing cells [50]. Interestingly, this
immunosuppressive effect has clear conse-
quences in silencing Th1 responses in vivo [50].
This effect will be more extensively discussed in
the next sections.

Regarding other members of this family, it has
been demonstrated that galectin-8 can induce
either growth arrest or apoptosis of tumor cell
lines depending upon the activities of cyclin-
dependent kinase inhibitors and c-Jun N-termi-
nal kinase (JNK) [51]. Finally, the tightly
restricted expression of galectin-12 in adipocytes
has also been shown to regulate cell-cycle
progression and apoptosis [52,53].

Pro-inflammatory functions of galectin-3
Studies of acute peritonitis in galectin-3-defi-
cient mice have provided significant support for
the pro-inflammatory role of galectin-3 [54,55].
Following thioglycolate administration into the
peritoneum, fewer granulocytes could be recov-
ered from galectin-3-deficient mice than from
wild-type controls. Furthermore, galectin-3 has
been shown to promote neutrophil adhesion to
laminin and endothelial cells in vitro [56,57].
Karlsson and colleagues showed that galectin-3
is able to induce activation of the superoxide-
producing NADPH oxidase in primed neu-
trophils [58]. In this regard, we have recently
demonstrated that galectin-3 and soluble fibrin-
ogen together regulate neutrophil activation,
degranulation and survival [59].

An essential role for galectin-3 in the phago-
cytic function of macrophages has been reported
by Liu and coworkers [60]. 3 years ago the same
group also demonstrated that galectin-3 can
promote chemotaxis of human monocytes
through interaction with a G-protein coupled
receptor [61]. 

Consistent with its pro-inflammatory function,
galectin-3 promotes dendritic cell-naive T-cell
interactions in lymph nodes [62]. This molecule is
also a critical intracellular mediator of IL-4-
induced survival and differentiation of B cells into

a memory phenotype [63]. Therefore, it seems
evident that galectin-3 plays a critical role in the
regulation of the inflammatory response.

Interestingly, depending on whether the pro-
tein is found in the intracellular compartment
or extracellularly, galectin-3 can have dramati-
cally different functions. Fukumori and col-
leagues demonstrated that extracellular
galectin-3 could induce apoptosis in human
T cells, binding mainly to CD7 and β1-integrin
and resulting in activation of the mitochondrial
death pathway [64]. The proapoptotic effect of
galectin-3 was recently confirmed by the groups
of Liu and Baum who showed that galectin-3
and galectin-1 can induce cell death through
binding to a different set of glycoreceptors [30].
Contrarily, galectin-3 overexpression studies by
Yang and colleagues demonstrated that T-cell
transfectants exhibited faster growth than
control cells and were protected from apoptosis
induced through death receptors and mito-
chondrial routes [11]. Interestingly, over
expressed galectin-3 appeared to interact with
Bcl-2. Similarly, Hahn and colleagues demon-
strated that galectin-1-induced cell death could
be inhibited by intracellular expression of galec-
tin-3 [65]. The antiapoptotic activity of intracel-
lular galectin-3 has been implicated in
pathological situations, including rheumatoid
arthritis (RA) [66], lymphomas [67] and other
types of cancer [68]. 

Galectin-3 in rheumatoid arthritis, bone 
development & fibrosis
Two studies have independently found increased
expression of galectin-3 and galectin-3-binding
protein (G3BP) in cells from RA patients. Using
subtractive cDNA hybridization, Seki and col-
leagues found that G3BP was one of 11 genes
that were expressed at significantly higher levels
in cultured synovial fibroblasts from RA patients
than in osteoarthritis patient fibroblasts [69].
Accordingly, Ohshima and colleagues have
reported that both galectin-3 and G3BP are
abundantly expressed in RA patient synovia, par-
ticularly at sites of cartilage invasion [66]. Both
proteins could also be found in synovial fluid.
Furthermore, galectin-3 expression appears to be
associated with the expression of L1 retrotrans-
posable elements [70] and can be induced by the
adhesion of synovial fibroblasts to cartilage
oligomeric matrix protein [71].

Interestingly, Colnot and colleagues found
that galectin-3-deficient mice displayed acceler-
ated apoptosis or terminal differentiation of
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chondrocytes in the hypertrophic zones of devel-
oping long bones [72]. Furthermore, evidence from
Ortega and coworkers suggested that, in matrix
metalloproteinase (MMP)-9-deficient mice, excess
extracellular galectin-3 can accumulate, potentially
leading to increased recruitment of monocytes and
the extended survival of osteoclasts [73].

Elegant work by Henderson and colleagues
has recently revealed a crucial role of galectin-3
in the fibrotic response to tissue injury [13]. This
is consistent with the fact that galectin-3 is an
immediate early gene, with a serum responsive
element in its promoter [74]. Galectin-3 defi-
ciency in mice drastically reduced renal, pulmo-
nary and hepatic fibrosis by preventing the
differentiation of myofibroblasts [13]. Despite
comparable levels of transforming growth factor
(TGF)-β in injured livers of both wild-type and
galectin-3 null animals, and intact Smad-2 and
-3 activation in isolated hepatic stellate cells,
galectin-3 proved necessary for TGF-β-induced
procollagen-I and α-smooth muscle actin
expression. Since exogenously added galectin-3
was rapidly internalized, the authors favor a
hypothesis in which the essential role of galec-
tin-3 is intracellular, although the protein is
likely to be delivered in an autocrine and
paracrine fashion. 

Immunosuppressive & anti-inflammatory 
functions of galectins
In general, galectin-1, a prototypical single-
CRD galectin, displays pro-apoptotic and anti-
inflammatory properties (Figure 1). Accordingly,
we found that pretreatment of rats with galec-
tin-1 suppressed the acute inflammatory
response and inhibited neutrophil extravasation
induced by bee venom phospholipase A2 [75].
Furthermore, arachidonic acid release and nitric
oxide production from activated macrophages
was inhibited [75,76]. In this regard, La and col-
leagues demonstrated that, at remarkably low
doses (20 pmol/mouse), galectin-1 could
inhibit neutrophil chemotaxis and transend-
othelial migration [77]. The authors speculate
that local galectin-1 release from endothelial
cells at inflammatory sites may be a crucial neg-
ative feedback mechanism to prevent excessive
neutrophil recruitment. In addition, it has been
reported that exogenous galectin-1 causes phos-
phatidylserine exposure and phagocytic uptake
of activated neutrophils [78]. Therefore, it seems
that galectin-1 can display a wide variety of
anti-inflammatory effects on different immune
cell types.

In this regard, accumulating evidence sug-
gests that galectins might have particularly
important roles in the regulation of cell survival
in the immune system [79]. Recent work by
Endharti and colleagues showed that secretion
of galectin-1 by stromal cells supports the sur-
vival of naive T cells without promoting
proliferation [29]. However, galectin-1 has been
reported to induce apoptosis and regulate cell
growth in developing thymocytes and activated
T cells [34,80,81,82]. In this regard, recent evidence
indicates that dendritic cells engineered to over-
express galectin-1 can promote contrasting
effects on resting and activated T cells, either
promoting activation or apoptosis [31]. The fact
that galectin-1 is expressed by activated but not
resting T cells may point towards an autocrine
suicide mechanism, similar to that reported for
Fas ligand expression, to prevent excessive T-cell
clone expansion after the completion of an
ongoing immune response [83]. 

Perhaps intringuingly, many reports of the
pro-apoptotic effect of galectin-1 have used
micromolar concentrations of the protein, which
are unlikely to exist in biological fluids in vivo.
However, recent evidence indicates that the more
moderate amounts of galectin-1 secreted by most
T cells is, in fact, sufficient to kill T cells when
the galectin is displayed in the context of ECM
glycoproteins [84]. In this regard, the same group
recently showed that endothelial cell expression
of galectin-1 can also inhibit T-cell trans-
endothelial migration in a manner independent
of its pro-apoptotic properties [85].

Several glycosylated proteins on the surface
of activated T cells are reported to be crucial
receptors for galectins, including CD2, 7, 43
and 45 [86–88]. Galvan and coworkers showed
that T cells expressing CD45, but lacking the
C2GnT glycosyltransferase, become resistant to
galectin-1-induced cell death [26]. Furthermore,
a recent report by Lanteri and colleagues is
noteworthy in this context – the authors con-
clude that, during HIV-1 infection, T cells
become increasingly susceptible to galectin-1-
induced cell death due to altered cell-surface
molecule glycosylation [89]. CD7 appears to be
a particularly critical receptor for galectin-1-
induced cell death. T lymphocytes from
patients with mycosis fungoides/Sezary syn-
drome that lack CD7 expression were demon-
strated to be insensitive to galectin-1-triggered
death [90]. Interestingly, very recent evidence in
neoplastic T-cell lymphoma indicates that hap-
loinsufficiency of C2GnT results in altered
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cellular glycosylation and resistance to galectin-
1-induced cell death. These results identify a
potentially novel escape mechanism displayed
by T-lymphoma cells to survive in galectin-1
enriched microenvironments [91].

Whilst several classical apoptotic signal
transduction events have been documented
during galectin-1-induced cell death, including
caspase activation and cytochrome c release [28],
alternative death pathways and apoptotic end
points appear to be triggered in different T-cell
types [65]. Indeed, apoptosis may only partially
explain the immunosuppressive properties of

galectin-1: the T cells that escape apoptosis
may instead be subject to suppression of proin-
flammatory cytokine secretion [92,93] or even
targeted for phagocytic removal [78]. 

Miceli and collaborators demonstrated that
galectin-1 induces partial T-cell receptor
(TCR)-γ chain phosphorylation, antagonizing
full signals through the TCR and costimula-
tory receptors, but allowing partial TCR-medi-
ated responses, such as CD69 upregulation
and apoptosis [94,95]. Furthermore, in a very
elegant study, Demetriou and colleagues dem-
onstrated that galectin-3 may also restrict

Figure 1. Immunosuppressive effects of galectins in different experimental models of T-cell dependent 
chronic inflammation and autoimmunity. 
 

The effects of galectins in different murine models of autoimmune disease and inflammation, including collagen-induced arthritis (CIA), 
EAE, inflammatory bowel disease (IBD), concanavalin A-induced hepatitis, EAU and GVHD. Gal-1 exerts immunosuppressive effects 
through induction of T-cell apoptosis, modulation of the Th1/Th2 cytokine balance, inhibition of leukocyte migration and generation of 
regulatory T cells. On the other hand, Gal-9 negatively regulates Th1-mediated responses through selective killing of Tim-3-positive IFN-
γ-producing Th1 cells. In addition, Gal-9 can modulate nephrotoxic nephritis through regulation of cell cycle-dependent kinases. EAE: 
Experimental autoimmune encephalomyelitis; EAU: Experimental autoimmune uveitis, GVHD: Graft versus host disease;  Th: T helper.

Experimental autoimmune uveitis 
• Gal-1 suppresses clinical ocular pathology 
  early or late during the course of EAU
• Gal-1 ameliorates retinal inflammation by 
  skewing the uveitogenic response towards 
  nonpathogenic Th2 or T-regulatory responses

Graft versus host disease
• Gal-1 suppresses GVHD and increases 
  host survival following allogeneic 
  hematopoietic stem cell transplant
• Gal-1 administration promotes a bias 
  toward a Th2-mediated response

Concanavalin A-induced hepatitis
• Gal-1 prevents liver injury and T-helper 
  cell liver infiltration with inhibition of 
  Th1 cytokines and induction of apoptosis 

Experimental autoimmune 
encephalomyelitis 
• Gal-1 prevents clinical and histopathological 
  manifestations of EAE 
• Gal-9 suppresses EAE in mice by specifically 
  killing Tim-3-positive Th1 cells

Collagen-induced arthritis 
• Gal-1 suppresses clinical and 
  histopathological manifestations of 
  the disease by sensitizing T cells 
  to activation-induced cell death and 
  favoring a Th2 cytokine profile

Inflammatory bowel disease
• Gal-1 suppresses clinical and histopathological 
  manifestations of the disease with suppression of 
  pro-inflammatory and Th1 cytokines
• Gal-4 exacerbates intestinal inflammation through 
   activation of CD4+ T cells and increased 
   interleukin-6 secretion

Galectins 
and chronic 
inflammation
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signal transduction initiated by TCR com-
plexes [96]. Hypothetically, the authors argued,
the lateral mobility of TCR complexes might be
restrained by multivalent complexes of galec-
tin-3 and TCR. Mice deficient in a crucial
enzyme in the N-glycosylation pathway (β1,6
N-acetylglucosaminiltransferase or Mgat5),
showed an increased susceptibility to autoim-
munity [96]. Thus, galectin-1 and galectin-3 may
share an ability to suppress T-cell activation.

In vitro, galectin-1 is also known to block
secretion of pro-inflammatory cytokines includ-
ing IL-2, IFNγ, and TNF-α [92,94]. In vivo stud-
ies using inflammatory disease models concur;
galectin-1 tends to skew the cytokine response to
a balance towards the Th2-type [97–102] (Figure 1).
In addition, treatment of both nonactivated and
activated CD4+ and CD8+ T cells with recom-
binant galectin-1 has been reported to cause a
significant increase in IL-10 mRNA and protein
[103]. IL-10 is known to suppress Th1-type
responses, and galectin-1 may therefore employ
this mechanism for its immunoregulatory activ-
ity. In contrast to galectin-1, galectin-3 sup-
presses Th2 cytokine secretion in antigen-
specific T-cell lines [104]. Furthermore, galectin-3
gene therapy has recently been shown to inhibit
both inflammation and stromal remodeling
when delivered into the chronically inflamed
lungs of mice [105]. Paradoxically, galectin-3-defi-
cient mice also appear to recruit fewer eosi-
nophils than wild-type controls and to display a
Th1 cytokine profile in an experimental model
of asthma [106]. This apparent discrepancy might
be explained by the different experimental strate-
gies used by the authors of these studies (i.e.,
therapy versus analysis of the susceptibility of
galectin-3 gene knock-out mice). 

Despite the multiple effects of the exoge-
nously added protein, galectin-1 gene disruption
in mice did not apparently cause major sponta-
neous phenotypic abnormalities [107]. This
observation suggests that different members of
the galectin family can at least partially compen-
sate for the lack of galectin-1. However, galec-
tin-2, which is structurally related to galectin-1
and is known to share its pro-apoptotic function,
clearly operates through a different pathway to
galectin-1 [108]. Careful examination of gal-1
gene deficient mice is beginning to reveal subtle
but critical differences in the regulation of
inflammatory responses.

Notwithstanding such functional differences,
some similarities between the activities of
galectins-1 and -2 do exist. For example,

galectin-2 and can shift the balance of T-cell-
derived cytokines towards a Th2 profile, an in
vitro property shared by galectin-1 [108]. Interest-
ingly, galectin-2 appears to regulate lymphotoxin-
α secretion, and subtle genetic variants of galec-
tin-2 are reported to differentially influence the
extent of inflammation during myocardial infarc-
tion [109]. In this regard, a cross-sectional genetic
study performed in a British population indicated
a striking correlation between plasma glucose,
serum insulin and the galectin-2 genotype [110]. 

Although no evidence exists for the ability of
other exogenously-added single-CRD galectins to
affect cell survival, transfection of galectin-7 (p53-
induced gene 1) in epithelial tumor cell lines did
reveal its potential intracellular proapoptotic
activity [111].

Regarding the immunosuppressive activities of
tandem-CRD galectins, recent evidence indicates
that galectin-9 can suppress the progression of
experimental autoimmune encephalomyelitis by
selectively killing Tim-3-positive IFN-γ-producing
cells [50]. Interestingly, T-cell-mediated neuroin-
flammation was exacerbated in mice treated with
galectin-9 small interfering (si)RNA suggesting
that knocking-down galectin-9 expression during
disease induction may affect the progression of the
disease (Figure 1). In addition, Tsuchiyama and col-
leagues reported tha the effect of galectin-9 inhib-
its the infiltration of CD8+ T cells in an
experimental rat model of nephritis [112]. Further-
more, recent evidence indicates that galectin-9
may inhibit glomerular hypertrophy in db/db dia-
betic mice via inhibition of cyclin-dependent
kinase inhibitors [113]. Thus, future studies are
warranted to investigate the different mechanisms
involved in the immunosuppressive activities of
individual members of the galectin family.

Galectins & tumor-immune escape
Galectins have been shown to modulate different
events of tumor progression [3]. Interestingly,
expression of galectin-1 (as well as other
galectins) in cancer cells positively correlates
with the aggressiveness of tumors [114,115]. This
suggested that secretion of galectin-1 by tumor
cells may be a mechanism by which immunosup-
pressive microenvironments at tumor sites can
be created. This hypothesis was supported using
a combined in vitro and in vivo strategy: galec-
tin-1-mediated immunoregulation clearly had
an important role in tumor immune escape [116].
Local galectin-1 blockade allowed CD4+ and
CD8+ tumor-specific T-cell responses to be
mounted, causing a reduction in tumor mass.
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Given its potent immunosuppressive effects,
galectin-1 may be a useful target for therapeutic
intervention in cancer. 

Since galectins-2, -3 and -9 have also been
shown to affect T-cell survival, future studies are
warranted to investigate the potential role of
these proteins in tumor-cell evasion of immune
responses in vivo. 

Therapeutic potential of galectins as 
novel immunosuppressive agents
In a study using the DAB/1 collagen-induced
arthritis model, we found a strong correlation
between the apoptotic properties of galectin-1
in vitro and its therapeutic potential in vivo [97].
We demonstrated that, at the day of disease
onset, a single injection of syngeneic DAB/1
fibroblasts engineered to secrete galectin-1

could abrogate clinical and histopathological
manifestations of arthritis. This process
involved an increased susceptibility of lymph-
node cells to antigen-induced apoptosis and a
shift from a Th1 to a Th2-polarised immune
response. Interestingly, galectin-1-expressing
fibroblasts also inhibited antigen-dependent IL-
2 production in a collagen type-II-specific T-cell
clone (Figure 1). In addition, in synovial tissue
from juvenile RA patients, we found an interest-
ing correlation between the levels of galectins-1
and -3 and the regulation of apoptosis [117].
Given the contrasting immunoregulatory func-
tions of different members of the galectin fam-
ily, we speculate that individual members of the
galectin family might play different roles in the
context of an inflamed joint during the
development and resolution of RA (Figure 2). 

Figure 2. Potential role of galectins in the immunopathology of rheumatoid arthritis. 
 

The potential role of individual members of the galectin family in the context of inflamed synovial tissue. Galectins are expressed by a 
number of different inflammatory, stromal cells and synovial fibroblasts, and may regulate the function of these cells, thereby affecting 
the development of inflammatory responses. As illustrated in this diagram, galectins can behave as pro- or anti-inflammatory mediators 
by modulating the physiology and responses of immune cells, including macrophages, synovial fibroblasts, Th1 and Th2 cells, B cells, 
neutrophils and mast cells. By positively or negatively affecting the inflammatory response, galectins may indirectly influence the clinical 
course of rheumatoid arthritis. 
GAL: Galactin; IFN: Interferon; IL: Interleukin; Th: T helper; TNF: Tumor necrosis factor.
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Similarly, in T-cell-dependent animal models
of liver injury [98] and inflammatory bowel
disease [99], galectin-1 pretreatment has been
shown to abrogate tissue damage and T-cell
infiltration (Figure 1). Again the immunosup-
pressive mechanism involved the selective cull-
ing of antigen-activated T cells and inhibition
of pro-inflammatory cytokine secretion from
T cells and macrophages. Remarkably, even in a
murine model of graft-versus-host disease,
treatment with galectin-1 substantially sup-
pressed inflammation without compromising
the engraftment of donor cells [100]. Finally,
given the potential role of galectin-1 in the
maintenance of immune privilege in organs
such as the eye, we have recently investigated
the immunoregulatory effects of this protein in
experimental autoimmune uveitis (EAU), a
Th1-mediated model of retinal disease [101].
Interestingly, treatment with galectin-1 either
early or late in the course of EAU was sufficient
to suppress clinical ocular pathology, inhibit
leukocyte infiltration and counteract patho-
genic Th1 cells [101]. Administration of galec-
tin-1 ameliorated retinal inflammation by
skewing the uveitogenic response towards non-
pathogenic Th2 or T regulatory (IL-10 and
TGF-β)-mediated anti-inflammatory responses
(Figure 1). These results highlight the ability of
this endogenous lectin to counteract Th1-
mediated responses through different, but
potentially overlapping, anti-inflammatory
mechanisms. In addition, a striking correlation
was found between the levels of antiretinal
galectin-1 autoantibodies in sera from uveitic
patients and the severity of autoimmune retinal
inflammation [118]. 

In addition, the ability of galectin-9 to negatively
regulate Th1 responses [50], to suppress neuro-
inflammation [50] and to inhibit glomerular hyper-
trophy and nephritis [112,113] suggest that this
tandem-repeat galectin may also be used as a potent
target in autoimmunity and chronic inflammation.

Conclusions & future perspective
As we have seen, galectins can modulate both
innate and adaptive immune responses by acting
intracellularly and extracellularly, as chemokines,
adhesion molecules, differentiation factors,
death triggers and survival inducers. However,
before the use of galectin-based therapeutic

agents can be fully realized, a more thorough
understanding of the lesser studied galectins is
required. To what extent is there functional
redundancy and specificity of action within the
galectin family? What doses are required to
achieve immunosuppression and what are the
tolerated ‘nontoxic’ doses of these sugar-binding
proteins in vivo? What are the optimal vehicles
for galectin-1 delivery and the most efficient
administration routes? 

The tolerogenic potency of galectin-1 is such
that tumors dysregulate its expression to attain
immune privilege [116]. Indeed, specific galectin-1
inhibitors might prove to be potent anticancer
agents [119]. Future studies are warranted to investi-
gate the immunosuppressive effects of other mem-
bers of the galectin family, including galectins-2, -3
and -9, within tumor microenvironment. 

Contrarily, synthetic glycoconjugates or lectins
may prove to be excellent therapeutic immuno-
suppressive drugs for treating chronic inflamma-
tory and autoimmune conditions [120–122].
Furthermore, galectin-3 gene silencing may be a
very effective treatment for preventing
fibrosis [13]. Our current knowledge promises a
future scenario in which individual members of
the galectin family may be use as immunoregu-
latory agents (e.g., galectins-1 and -9) or targets
for anti-inflammatory drugs in autoimmune
disorders, including RA. Future studies should
be focussed on the careful examination of galec-
tin-1 or -9-based immunosuppressive agents
[123] or specific galectin-3 inhibitors [124] for the
treatment of chronic inflammation in vivo. 
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Executive summary

Galectin family

• Structurally distinct subgroups; galectins with a single-carbohydrate recognition domain (CRD), galectins with two CRDs in 
tandem and chimera-type galectins that contain a single CRD fused to unusual tandem repeats of short amino acid stretches.

• Galectins are secreted by nonclassical mechanisms.
• Galectins can act in an autocrine and paracrine manner to positively or negatively regulate the inflammatory response within 

tissue microenvironments.

General considerations for extracellular galectin signaling

• The repertoire of glycosylated cell-surface molecules available for galectin binding is determined by the specific activities of 
glycosyltransferase enzymes within the cell. Some create and expose galectin ligands, whilst others mask them.

Functions of the tandem-CRD galectins

• Members of the tandem-CRD galectin subgroup have not been investigated as widely as galectin-1 (the prototypical single-CRD 
subgroup member) and galectin-3 (the only chimera-type subgroup member). However recent findings suggest intriguing roles 
for two-CRD ‘tandem-repeat’ galectins in the regulation of inflammation.

• Pro-inflammatory functions have been described for galectins -8 and -9 in the innate arm of the immune response. 
• In the context of adaptive immunity, galectin-4 has been shown to affect T-cell activation and interleukin (IL)-6 production and 

galectin-9 modulates dendritic cell maturation. 
• A pro-apoptotic function has also been reported for galectin-9. 
• Recent evidence indicates that galectin-9 is a ligand of Tim-3, a T helper (Th)1-specific cell-surface molecule. Galectin-9 negatively 

regulates Th1 responses, through binding to Tim-3,

Regulation of the inflammatory response by galectin-3 (the only chimera-type galectin)

• Galectin-3-deficient mice mount a poor inflammatory response to intraperitoneal thioglycollate injection.
• Galectin-3 activates superoxide burst in neutrophils.
• This chimera-type lectin acts as a chemoattractant for monocytes and macrophages.
• It has been demonstrated that this protein is critical for phagocytic function of macrophages.
• Interestingly, galectin-3 acts intracellularly to prevent apoptosis, while exogenously added galectin-3 promotes T-cell apoptosis.

Galectin-3 in rheumatoid arthritis, bone development & fibrosis

• Galectin-3 is highly expressed together with galectin-3-binding protein (Mac-2BP/90K) at the sites of joint erosion in rheumatoid 
arthritis (RA) patients.

• Potentially, this protein has an antiapoptotic role in chondrocytes and osteoclasts during embryonic osteogenesis.
• Galectin-3 is a necessary factor for transforming growth factor-β-induced myofibroblast differentiation in the fibrotic response to 

tissue damage.

Immunosuppressive & proapoptotic functions of one-CRD galectins

• Galectin-1 can suppress acute inflammation in vivo by preventing neutrophil extravasation.
• Galectin-1 induces thymocyte and activated peripheral T-cell apoptosis through binding to a variety of glycoreceptors, including 

CD2, 7, 43 and 45.
• Galectin-1 suppresses proximal signals through the T-cell receptor and downregulates the release of pro-inflammatory cytokines 

from T cells.
• Galectin-2 promotes apoptosis of activated T cells and induces a bias toward a Th2 response in vitro.

Galectin-1 & tumor immune escape

• Tumors dysregulate the expression of galectin-1 to attain an immune-privileged microenvironment. 
• The ability of other members of the galectin family (e.g., galectins-2, -3 and -9) to suppress T-cell responses and their high levels 

in certain tumor types suggest the potential contribution of these proteins to tumor-cell evasion of immune responses.

Therapeutic potential of galectins as novel immunosuppressants

• Galectin-1 suppresses pathology in several T-cell-dependent animal models of disease, including collagen-induced arthritis, 
experimental autoimmune encephalomyelitis, experimental autoimmune uveitis, concanavalin a-induced hepatitis, inflammatory 
bowel disease and graft-versus-host disease.

• In most cases, galectin-1 achieved immunosuppression by specific culling of activated T cells, together with immune deviation to 
a Th2-type response.

• Interestingly, galectin-9 suppresses experimental autoimmune encephalomyelitis by specifically killing Tim-3-positive Th1 
pathogenic cells.
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