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  REVIEW

Role of percutaneous left  
ventricular assist devices in  
preventing cerebral ischemia

  REVIEW

Percutaneous left ventricular assist devices improve hemodynamics in acute heart failure. The devices can 
be deployed rapidly and with a low risk of complications, and may thereby offer potential advantages 
compared with surgical assist systems in the critically ill. Cerebral hypoperfusion with cerebral injury is a 
major challenge in acutely ill cardiac patients, especially when cardio–pulmonary resuscitation is performed. 
There is no indication that catheter-based left ventricular assist devices confer more cerebrovascular 
complications than current percutaneous angiographic and interventional procedures. Recent data suggest 
that microcirculation in the head may be improved during percutaneous assist device support in cardiogenic 
shock. Specific assessment of the effect of a percutaneous device during cardiac arrest and impaired 
cerebral circulation has been performed in newly published experimental protocols. The available data 
indicate that a percutaneous intracardiac impeller device may be able to sustain cerebral perfusion during 
cardiac arrest. Assessment of metabolic markers in the brain, using intracerebral microdialysis during 
ventricular fibrillation, indicates ischemic brain injury may be avoided during cardiac arrest lasting  
20–40 min without simultaneous chest compressions. The use of percutaneous left ventricular assist devices 
may have the potential to prevent ischemic brain damage and improve clinical outcomes for patients with 
cardiac collapse and impaired cerebral circulation. Randomized clinical studies are necessary to validate 
these new treatment concepts. 
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Left ventricular assist devices (LVADs) pro-
vide systemic blood delivery and myocardial 
unloading in severe heart failure, including 
the acute setting [1–7]. Recently developed per-
cutaneous ventricular assist devices (PVADs) 
have the advantage of rapid deployment. Safety 
and feasibility for short-term use have been 
established, and PVADs have been assessed 
in acute myocardial infarction, cardiogenic 
shock, severe heart failure, in high-risk coro-
nary recascularization, and as a bridge to per-
manent treatment in decompensated heart fail-
ure [8–15]. PVADs unload the heart and improve 
vital organ perfusion, and recent data indicate 
the ability of such a device to maintain cerebral 
and myocardial perfusion during experimental 
cardiac arrest [16,17]. 

Contrary to the substantial advances seen 
in the treatment of chronic heart failure, acute 
severe heart failure with circulatory insufficiency 
still has a poor prognosis [18–21]. In cardiogenic 
shock, tissue hypoperfusion is regularly present, 
and vital organ dysfunction with tissue dam-
age is frequent [22–24]. In resuscitated patients, 
cerebral injury is the major limiting factor for 
clinical outcomes in survivors [25–27].

In this overview, we aim to focus on the poten-
tial of PVAD technology to provide protection 
against acute ischemic cerebral injury in acute 
hemodynamic collapse.

Current treatment 
Treatment strategies for reducing cerebral and 
myocardial ischemic injury (cardiocerebral 
resuscitation) make use of urgent hypothermia 
and coronary revascularization in addition to 
conventional cardiopulmonary resuscitation 
(CPR) and have improved clinical outcomes in 
recent investigations (Figure 1) [28].

Acute hemodynamic interventions in these 
critically ill patients, including urgent cardio-
pulmonary bypass, sophisticated resuscitation 
algorithms and medical therapy, have been stud-
ied but have not resulted in better outcomes in 
clinical practice [29–31]. 

Moreover, vasopressors and inotropes may 
have detrimental circulatory and metabolic 
effects despite the intuitive benefit of increased 
arterial pressures. Experimentally, both cerebral 
and coronary perfusion have been shown to be 
impaired with the use of vasopressor therapy 
during cardiac arrest [32–34]. Adverse effects 
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have also been indicated on clinical outcomes 
in resuscitation [35]. Intra-aortic ballon pump 
(IABP) therapy has been extensively used in 
cardiogenic shock, but has not been demon-
strated to improve mortality. Furthermore, IABP 
use has been associated with an increased risk of 
stroke in ST elevation myocardial infarction in 
a recent meta‑analysis [36]. 

Mechanical cardiac assist devices are estab-
lished treatment choices in chronic heart failure 
and reduce left ventricular workload and oxygen 
consumption with possible beneficial effects on 
myocardial metabolism and function [37,38]. In 
acute cardiac disease with very low cardiac output 
state, it has been suggested that emergent use of 
heart assist therapy may unload the left ventricle 
and may also augment perfusion of the vital organs 
[39–41] . In particular, brain damage due to cere-
bral hypoperfusion represents a major limitation 
for clinical outcomes for patients surviving acute 
hemodynamic collapse [42,43] and LVAD support 
may increase cerebral blood flow (CBF) [44,45]. 

Surgical LVADs have been implanted success-
fully in acute decompensated heart failure and 
may be useful as a bridge to permanent treatment 
or recovery for selected patients after initial sta-
bilization [46,47]. Available cardiac assist systems 
also include cardiopulmonary bypass (CPB) and 
extracorporeal membrane oxygenation (ECMO) 

and extracorporeal life support (ECLS), which 
have the potential to sustain circulation during 
cardiac standstill [48–51]. Reports on the use of 
ECMO, ECLS and CPB in cardiogenic shock 
and cardiac arrest have shown the feasibility of 
such interventions, but the potential to improve 
survival has not been established in these set-
tings [52–57]. Acute implantation has a high risk 
of complications and requires highly specialized 
personnel and facilities, thus emergency surgical 
LVAD support is not routinely available in the 
treatment of acute heart failure and technical 
limitations may represent a substantial drawback 
in a critical setting.

Percutaneous left ventricular 
assist devices
Ideally, intervention in acute cardiac collapse 
should sustain sufficient cerebral perfusion to 
avoid ischemic injury in order to allow for treat-
ment of the underlying disease. Moreover, the 
intervention should be readily available, easy to 
establish and any risk of complications should be 
minimized. Percutaneous assist devices have  the 
potential to meet these requirements.

There are several benefits of percutaneous 
devices over surgical devices. The generally 
smaller size and reduced vascular trauma with 
percutaneous devices can reduce the risk of bleed-
ing and vascular compromise during implanta-
tion and use. By permitting rapid hemodynamic 
support with less complicated implantation pro-
cedures, a percutaneous approach seems especially 
useful for the acute treatment of patients with 
hemodynamic collapse. Systemic blood delivery 
may be sufficient to prevent short-term tissue isch-
emia [58–61]. Depending on the ability to maintain 
vital organ blood delivery over time, such devices 
may also be of use during surgical cardioplegia 
and cardiac arrest.

The two systems in clinical use are the 
TandemHeart® and the Impella® LP  2.5 
(Figure 2). Both of these devices fulfil the criteria 
for a true LVAD, being able to reduce myocardial 
workload, and to transport oxygenated blood 
into the systemic circulation [62]. Hemodynamic 
and experimental findings indicate both sys-
tems may be effective, and clinical data have 
suggested low complication rates when used for 
an extended time-period [15,63–66]. For both the 
devices, bleeding and limb ischemia represent 
the majority of reported rare but severe complica
tions; both have been studied in unstable and 
stable patients, and indications for use in clinical 
practice include high-risk percutaneous coronary 
intervention and cardiogenic shock [8–15].

50

40

30

20

10

0

N
eu

ro
lo

g
ic

al
ly

 in
ta

ct
 s

u
rv

iv
al

 (
%

)

CPR 3 years CCR 3 years

p = 0.002

14/92

36/89

15%

40%

Figure 1. Survival and neurological recovery in patients with ST elevation 
myocardial infarction resuscitated from cardiac arrest. CPR 3 years: 3‑year 
survival without neurological sequelae for cardiac arrest patients treated with 
conventional CPR. CCR 3 years: 3‑year survival without neurological sequelae for 
cardiac arrest patients treated with CCR (includes urgent hypothermia and 
coronary revascularization).  
CCR: Cardiocerebral resuscitation; CPR: Cardio–pulmonary resuscitation. 
Reprinted with permission from [28].
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The TandemHeart device is a catheter-based 
left atrial-to-femoral bypass system delivering 
up to 10  l of blood per minute. Implantation 
requires large diameter catheters (21  F), and 
trans-septal–septal puncture. Deployment time 
is approximately 30 min and complication rates 
have been reported to be low during clinical 
use [67]. The Impella LP 2.5 device is a miniature 
impeller pump that is placed retrogradely into 
the left ventricle via a 13 F femoral artery sheath 
with a capacity to pump 2.5 l of blood per minute 
into the ascending aorta. Placement into the left 
ventricle may be rapidly performed and the risk 
of complications has been found to be low [67]. 

In the presence of femoral or iliac artery dis-
ease, access may be obtained with stenting of ste-
notic vessels prior to implantation of the PVAD. 
In uncomplicated cases, the Impella LP 2.5 may 
be deployed within a few minutes, which may be 
of clinical importance in the treatment of acutely 
decompensated patients. Transient hemolysis 
has been reported for the Impella device. This 
does not regularly represent a clinical problem 
and measurement of free hemoglobin in serum 
will reliably differentiate between hemolysis and 
bleeding if anemia or clinical hematuria is pres-
ent. Furthermore, potential aortic regurgitation 
represents a theoretical limitation with the trans-
valvular device, but hemodynamically signifi-
cant regurgitation has not been found to be an 
issue with regular use in patients with intrinsic 
heart rhythm [8,65]. 

The TandemHeart device requires a more 
complicated deployment procedure but has 
a higher delivery than the Impella LP  2.5. 
Although both devices deliver a substantially 
higher output than can be achieved by IABP 
devices, no clinical benefit has been demon-
strated with PVAD compared with IABPs 
thus far [8,9], and despite intuitively beneficial 
potential, no PVAD has so far been able to dem-
onstrate clinically beneficial outcomes during 
temporary use in critically ill patients [68].

The potential of the Impella LP 2.5 for improv-
ing blood flow to the head in awake subjects has 
been indicated [42]. However, the clinical role of 
PVADs in prevention of cerebral injury is likely 
to be most relevant for unconscious patients 
with severely compromised CBF. During car-
diac standstill and profound hypotension, the 
potential for cerebral injury is obvious, and the 
settings of resuscitated hemodynamic collapse 
and cardiac arrest represent clinical situations 
where percutaneous cardiac assist systems may 
be of particular use. The Impella LP 2.5 has its 
inlet and outlet proximal to the carotid arteries, 

whereas only the inlet of the TandemHeart 
device is situated in the precerebral arterial cir-
culation with the outlet in the femoral artery 
(Figure 2). The outlet of the Impella device in the 
ascending aorta can allow for preferential flow 
to the cerebral and myocardial vessels [16,17,61,69]. 
Thus, the design of the Impella device could 
theoretically represent an advantage compared 
with a left atrial-to-femoral artery bypass system, 
although the TandemHeart device has a higher 
maximum output.
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Figure 2. Percutaneous left ventricular assist devices currently in clinical 
use. (A) Impella® Recover LP 2.5. 1: Device; 2: Intracardiac part, schematic; 
reprinted with permission from Abiomed (MA, USA). (B) TandemHeart®. 
Reprinted with permission from CardiacAssist (PA, USA).
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According to currently available data, no cere-
bral embolic complications have been reported 
with either of the two devices. However, only 
limited patient data have been published and 
specific assessment of cerebral injury has, to our 
knowledge, not been assessed during clinical 
PVAD support. 

Role of percutaneous left ventricular 
assist devices in preventing 
cerebral injury
A benefit of PVADs in preventing cerebral injury 
is unlikely to be found in awake patients where 
cerebral circulation is adequate to maintain 
consciousness. Accordingly, in most conscious 
cardiogenic shock patients, cerebral circulation 
may be sufficient to avoid short-term ischemic 
brain damage without additional LVAD therapy. 

In cardiac arrest, prognosis remains poor, and 
even with the immediate start of chest compres-
sions, and urgent percutaneous coronary revas-
cularization and cooling, cerebral injury is still 

a major problem in patients surviving the acute 
phase [70]. Thus, in patients with cardiac arrest 
and pulseless electrical activity requiring resusci-
tation, PVAD support may have the potential to 
significantly improve the delivery of oxygenated 
blood to the brain. 

The delivery of oxygenated blood to the arterial 
circulation depends on adequate filling of the left 
heart from the pulmonary circulation. Measures 
that improve venous return can augment the avail-
able left-side blood volumes [71]. Intravenous fluid 
loading may be useful for this purpose [14,16,72]. 
Furthermore, abdominal compression devices can 
increase total peripheral resistance and vital organ 
perfusion pressures without the potential detri-
mental effect of medical vasopressor substances 
in this setting [73,74]. 

The use of PVAD therapy in cardiac arrest 
patients may be relevant as an adjunct to established 
resuscitation during concommittant chest com-
pressions in the hyperacute setting, with a possible 
synergistic effect on vital organ blood delivery. 

C
ar

d
ia

c 
O

u
tp

u
t 

(m
l)

Cerebral cortex Myocardium0.5

0.4

0.3

0.2

0.1

0.0

Baseline 15 30 45
Time (min)

Baseline 15 30 45
Time (min)

5000

4000

3000

2000

1000

0

Baseline 15 30 45
Time (min)

2.0

1.5

1.0

0.5

0.0

F
lo

w
 (

m
l/m

in
/g

)

Figure 3. Hemodynamics in cardiac arrest with percutaneous ventricular assist device support. Experimental data with the 
Impella® LP 2.5. Subjects with sustained vital organ perfusion during percutaneous ventricular assist device support indicated in 
continuous lines, subjects without vital organ perfusion in dotted lines. Individuals in thin lines, means in fat lines. Time (min): time after 
start of ventricular fibrillation. Device was started directly after induction of cardiac arrest and run on maximal attainable output level.  
Reprinted with permission from [17].
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Further benefits of PVAD therapy may be 
possible with a device able to obviate the need 
for chest compressions and vasopressor during 
ventricular fibrillation (VF), which could allow 
for more optimal coronary revascularization 
and medical stabilization of the patient. In order 
to achieve this, blood delivery from the device 
should be able to prevent acute cerebral injury 
and the hemodynamic and clinical effects of 
the device should not be inferior to established 
methods for cardiopulmonary resuscitation. 

Impella LP 2.5 in cardiac arrest
To our knowledge, the Impella LP 2.5 is the only 
percutaneous LVAD that has been studied dur-
ing cardiac arrest. Experimental data from pigs 
have demonstrated the ability of this device to 
maintain cerebral and myocardial perfusion for 
a limited period of VF, and results were improved 
with intravenous fluid loading [16]. 

Using the LP 2.5 together with fluid loading, 
CBF by microspheres could be consistently main-
tained above 60% of baseline values for a limited 
period and flow levels above 40% were sustained 
up to 45 min after onset of VF (Figure 3) [17]. 

During VF, cerebral ischemia was assessed 
with cerebral microdialysis. Measurements of 
metabolic markers of hypoxia and injury in 
the brain indicated that cerebral injury was 
avoided for 20 to 40  min of cardiac arrest 
(Figure  4)  [17]. In this study, brain injury and 
cerebral perfusion were reliably identified by 
end-tidal CO

2
 monitoring via the ventilator, 

allowing for the direct and continuous assess-
ment of cerebral and systemic hemodynamics 
in a clinical situation with PVAD-assisted car-
diac arrest [17]. Moreover, data were favorable 
when compared with conventional resuscita-
tion with chest compressions and vasopressor 
therapy (Figure 5) [75].
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Reprinted with permission from [17].
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In addition, in a recent experimental study in a 
porcine model, cerebral perfusion, hemodynamics 
and rates of successful defibrillation were found 
to be comparable to optimal manual resuscitation 
with open chest cardiac massage, and no added 
benefit was found with the larger Impella LP 5.0 
during 15 min of ischemic VF [69]. 

Although initial experimental findings sug-
gest that percutaneous LVAD support sustains 
vital organ perfusion during cardiac arrest, 
previous studies have indicated only a limited 
clinical effect of LVAD support, despite initially 
promising hemodynamic data. Current experi-
mental data from percutaneous LVAD support 
during VF should obviously be interpreted with 
caution based on these previous experiences. 

In clinical use, the larger Impella LP 5.0, of 
similar design with maximum output of 5 l per 
minute, is often preferred to the smaller LP 2.5 
owing to its higher delivery and increased 
mechanical stability. However, the LP 5.0 is more 
bulky and requires surgical cut-down for arterial 
access, thus implantation can be somewhat more 
complicated than for the true percutaneous ver-
sion. Once inserted, the larger device can achieve 
higher systemic blood delivery and could have the 
potential to improve hemodynamics compared 
with the LP 2.5. However, the device requires suf-
ficient filling from the right side in order to achieve 
its output potential and efficacy may be limited by 

poor filling of the left ventricle. Experimental data 
indicate this may be a particular issue during VF 
where sufficient circulatory blood volumes cannot 
be obtained [69].

Cerebral injury during 
circulatory support
Cerebral hypoperfusion may be present during 
LVAD support, but severe neurological impair-
ment is not common during long-term use in 
stabilized patients [43,76,77]. 

During cardiopulmonary bypass, CBF and 
cerebral perfusion pressure (CPP) are related to 
device output [78]. Furthermore, blood oxygen-
ation, hemoglobin levels, arterial microembo-
lization and anesthetic use have been demon
strated to affect the risk of cerebral injury [79–82]. 
Vasopressor therapy, inotropes and blood trans-
fusions may be useful in preventing cerebral 
ischemia during controlled cardioplegia and in 
heart failure, but may be counterproductive in 
the case of treatment for acute circulatory col-
lapse [32–34,83,84]. Intra-arterial device therapy 
can theoretically be complicated by the intro-
duction of air and thrombi, which may embo-
lize into the cerebral circulation and contribute 
to brain injury. The devices may further cause 
blood clot activation and thrombus dislodge-
ment owing to blood flow turbulence from the 
pumps. In addition, mechanical fragmentation 
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of aortic plaque material, and also leakage of 
air via the intravascular catheters, can occur 
during use. With current surgical heart assist 
technologies and adequate anticoagulation, the 
risk of clinically relevant embolization has been 
minimized [85,86]. It is likely that with cautious 
implantation and adequate anticoagulation, the 
risk of cerebral damage caused by PVAD systems 
may be comparable with conventional cardiac 
catheterization procedures [87].

Assessment of cerebral injury
Clinical data of cerebral damage during PVAD 
support have not been reported. Generally, 
examination of cerebral perfusion and metabo-
lism can involve complicated and invasive pro-
cedures and may in some cases be in conflict 
with guidelines for accepted intervention. The 
experimental setting allows for controlled hemo-
dynamic intervention, and experimental models 
make feasible more sophisticated monitoring of 
cerebral circulation, metabolism and injury. 
Animal models include the possibility for direct 
intracardiac and intravascular monitoring and 
sampling, and also tissue flow measured with 
labeled microsphere injections, which is consid-
ered a gold standard approach for the assessment 
of tissue perfusion. Analysis requires harvesting 
of tissue for photometroscopic analysis, which 
complicates the use of this method in human 
subjects [88,89]. 

The newly developed cerebral microdialysis 
represents a method for the direct assessment 
of cerebral metabolism and redox state and is 
related to cerebral perfusion and to neurological 
injury [90–92]. With this technique, a minia-
ture intracerebral dialysis catheter implanted 
via a cranial burr hole allows for continuous 
sampling of intracerebral molecules (Figure 6). 
Intracerebral dialysate can be analyzed for 
metabolic markers during clinical and experi-
mental cerebral ischemia or injury. The method 
has been validated clinically and experimen-
tally and is established in clinical use for moni-
toring of patients with cerebral injury [93–97]. 
Available data include reports from cerebral 
trauma, intracranial hemorrhage, cardioplegia 
and resuscitated cardiac arrest [17,98,99]. During 
cerebral hypoperfusion, markers of ischemia or 
injury can be sampled and analyzed continu-
ously, and changes in the metabolic status of 
the cerebral cortex can be detected with little 
delay and followed over time. It is likely that 
this technique will be useful in future stud-
ies of cerebral status in hemodynamically 
compromised patients.

Various other tools for monitoring of cerebral 
circulation are available in the acute clinical set-
ting. CBF can be estimated at the bedside with 
transcranial Doppler flow measurements [100,101]. 
CBF values of 20–40% of normal baseline val-
ues have been suggested to be sufficient for pre-
vention of acute cerebral injury [102,103]. CPP can 
be monitored using intracranial pressure trans-
ducers and arterial pressures to guide clinical 
treatment, although the minimal CPP values 
indicative of sustained cerebral perfusion have 
not been definitively resolved [104–106]. 

End-tidal CO
2
 values from the ventilator have 

been demonstrated to be associated with CBF 
and outcomes after cardiac arrest. In patients 
where intrinsic cardiac function is insufficient to 
sustain circulation, end-tidal CO

2
 values can be 

used for continuous assessment of the effect of 
hemodynamic support and of prognosis [107,108]. 
Generally, higher values are associated with near-
normal systemic and cerebral circulation, whereas 
very low values can be used to predict death in 
prolonged resuscitation [109–111]. Similar correla-
tions have been found in experimental studies of 
percutaneous LVAD support during VF [17]. 
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Figure 6. Microdialysis principle. A microdialysis probe of concentric design is 
shown. The magnified membrane region illustrates net diffusion of a compound 
(analyte) of interest (blue circles) into the probe, as well as the net diffusion of the 
calibrator (red circles), which has been added to the perfusate, from the probe to 
the extracellular space. 
Redrawn with permission from [90].
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Recently, brain-specific peptides released into 
the bloodstream have been demonstrated to cor-
relate with the extent of neurological damage 
and with prognosis for patients with brain injury, 
and could be useful as an indirect measure of 
cerebral circulatory status [112–114]. However, 
current data assessing neuron-specific enolase 
during LVAD support without cerebral ischemia 
found results to be unspecific and interpretation 
unclear in the presence of concomitant cardiac 
disease [115]. 

Blood f low to the head can be indirectly 
assessed with sidestream dark-field analysis [42], 
which permits direct and continuous assessment 
of mirocirculation in the tongue. The method is 
easy to use and attractive in clinical use but has not 
been validated with regards to cerebral injury or 
neurological injury after cerebral hypoperfusion.

Future clinical studies should be designed to 
assess both cerebral perfusion and injury dur-
ing the acute treatment phase, and to detect 
and quantify neurological injury in survivors. 
The use of transcranial Doppler flow, infrared 
technology, neuropeptide markers and cereberal 
microdialysis may all give rapid information 
with regards to cerebral circulatory and meta-
bolic state. In stabilized patients, neurological 
testing can be supplemented with CT, MRI and 
PET-scan imaging for evaluating brain injury 
and dysfunction [95]. 

Conclusion
Recently developed PVAD technology improves 
hemodynamics and tissue perfusion as indi-
cated by clinical and experimental studies, but 
a mortality benefit has not been found. 

Experimental data suggest the Impella LP 2.5 
device may be able to sustain cerebral perfusion 
in cardiac arrest, and that systemic circulation 

and cerebral perfusion can be monitored via 
end-tidal CO

2
. Cerebral injury is a major limi-

tation of outcomes after resuscitation and these 
recent findings indicate PVAD support may be 
of benefit in this setting. 

The available data indicate a possible role for 
PVAD therapy for prevention of brain injury 
in cardiac arrest. Further studies are required 
to elucidate the potential of PVAD support to 
prevent cerebral hypoperfusion compared with 
conventional CPR in the clinical setting.

Future perspective
Percutaneous ventricular assist devices repre-
sent a future potential for improving outcomes 
in patients with critical cerebral hypoperfu-
sion secondary to acute heart failure or car-
diac arrest. The use of Impella support during 
coronary revascularization in cardiac arrest 
may be of particular advantage as revascular-
ization could be performed without concomi-
tant chest compressions and without the use of 
vasopressor drugs. If pulse-generating rhythm 
is restored, the PVAD may have a beneficial 
effect on myocardial oxygen consumption 
during the recovery phase. Investigation of the 
effect of PVAD therapy for preventing cerebral 
ischemia in different clinical scenarios should 
be the scope of future clinical studies.
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Executive summary

Cerebral ischemia in cardiac collapse
�� Brain injury limits outcomes after successful resuscitation; novel therapeutic approaches may be warranted.

Percutaneous ventricular assist device therapy in acute cardiac collapse
�� Allows safe and rapid hemodynamic support in cardiogenic shock and high-risk percutaneous coronary intervention, and may have the 

potential to improve outcomes compared with more complicated surgical devices.

Cerbral blood flow with percutaneous ventricular assist devices in clinical use
�� There are no clinical reports on cerebrovascular complications. Percutaneous ventricular assist devices (PVADs) may improve 

microcirculation in the head in cardiogenic shock.

Prevention of cerebral ischemia with PVADs
�� The Impella® LP 2.5 device can maintain cerebral perfusion at a clinically relevant level during experimental cardiac arrest. Cerebral 

ischemia assessed with cerebral microdialysis may be avoided during the initial 20 to 40 min of ventricular fibrillation.

Conclusion
�� PVAD therapy may represent a promising strategy for improving outcomes after cardiac arrest and severe hemodynamic compromise. 
�� Adjunctive treatment, including fluid loading, may have the potential to further enhance the effect of PVADs.
�� Clinical trials should be performed to further investigate the potential of PVAD therapy in preventing cerebral ischemia.
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