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Given their crucial role in immunologic tolerance and immune activation, dendritic cells 
are considered important orchestrators of autoimmunity. Research over the past decade 
has revealed multiple potential mechanisms by which dendritic cells contribute to the 
immunopathogenesis of systemic lupus erythematosus. Genetic abnormalities in systemic 
lupus erythematosus can result in dendritic cells with aberrant uptake, maturation and 
presentation capabilities. Dysregulated apoptosis in lupus can provide a source of 
autoantigens for uptake by inappropriately activated dendritic cells. These cells then 
present autoantigen to autoreactive lymphocytes, stimulating autoantibody and immune 
complex formation. In addition to depositing in tissues and causing damage, these 
immune complexes can stimulate plasmacytoid dendritic cells via Toll-like receptors 7 
and 9 to synthesize IFN-α. This cytokine exerts a host of pathogenic effects on various 
effector cells, including myeloid dendritic cells, generating a feedback loop that promotes 
a persistently and aberrantly activated immune system. Therapies that target dendritic cells 
may thus allow modulation of numerous immunologic abnormalities in lupus and other 
autoimmune diseases.

Immunopathogenesis of systemic 
lupus erythematosus
Systemic lupus erythematosus (SLE) is an
autoimmune disease of unclear etiology, charac-
terized by the presence of autoantibodies (auto-
Abs), primarily to nuclear material, and by the
deposition of immune complexes (ICs) in vari-
ous tissues. Studies evaluating the immuno-
pathogenesis of SLE have classically focused on
the role of lymphocytes. While a wide range of
T- and B-cell abnormalities have been demon-
strated [1–3], it is unclear which aspects of
lymphocyte dysfunction are intrinsic and which
are secondary to external factors. The potential
for dendritic cells (DCs) to contribute to aber-
rant lymphocyte function and the overall abnor-
mal immunologic milieu described in SLE is of
great interest. DCs have powerful and wide-
spread effects on all aspects of the immune sys-
tem. As such, breakdown of DC regulation can
lead to loss of tolerance on multiple levels, and
thereby promote autoimmune responses. In this
review, we will summarize the current evidence
implicating a role for DCs in the pathogenesis
of SLE.

Biology of human dendritic cells
There are at least two distinct subsets of human
DCs, arising from a common CD34+ hemato-
poietic stem cell (reviewed in [4]). Myeloid DCs
(mDCs) are thought to derive from a common
myeloid progenitor and are CD11c+; they reside

in tissues and lymphoid organs, and circulate as
monocytic precursors. mDCs are studied in vitro
by culturing human monocytes or murine bone
marrow cells with IL-4 and granulocyte–macro-
phage colony-stimulating factor. The other
major subset of DCs, plasmacytoid (p)DCs,
circulates in blood and is thought to derive
from a common lymphoid precursor; pDCs are
CD11c- and express both the IL-3 receptor and
BDCA2. pDCs are considered the primary
source of IFN-α, which, as will be discussed
below, makes them potentially very relevant to
the immunopathology of SLE.

Dendritic cells regulate both innate and adap-
tive immune effector cells, and are pivotal in
maintaining the balance between tolerance and
immune response (reviewed in [5]). Tissue and
lymphoid DCs reside in an inactive, highly
phagocytic state at sites of potential antigen
(Ag) exposure. These immature DCs continu-
ously sample the environment, usually encoun-
tering self or harmless Ags. They migrate at low
levels to regional lymph nodes, where Ag pre-
sentation induces tolerance or anergy in resident
lymphocytes. Thus, DCs are crucial for generat-
ing and maintaining peripheral tolerance, a key
component in the prevention of autoimmunity. 

Uptake of pathogenic Ags in the presence of a
variety of accessory danger signals (such as micro-
bial-derived pathogen-associated molecular pat-
terns [PAMPs], inflammatory products, necrotic
cells, heat-shock proteins and oxidation products)
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induces DC maturation, manifested by downreg-
ulation of phagocytic receptors, and upregulation
of Ag presentation machinery and costimulatory
molecules. These activated DCs secrete chemo-
kines that attract innate and adaptive responders
to the site of injury. Activated DCs also upregulate
the chemokine receptor CCR7, and migrate to
lymphoid tissues to trigger secondary specific
immune responses, which vary depending on the
environment and signals encountered during DC
activation. DCs stimulate naïve T cells, generating
immunological memory. In addition, DCs present
Ag to Ag-specific T cells by classical and non-
classical pathways, and can trigger both Th1 and
Th2 responses. DCs secrete and express a wide
variety of cytokines and surface molecules that
help directly control B-cell proliferation, differen-
tiation and isotype switching. DCs can also mod-
ulate the functions of nonspecific effectors such as
natural killer cells and natural killer T cells.

Thus, there are a number of mechanisms by
which aberrant DC function and regulation could
have immunologic consequences of relevance to
the pathogenesis of SLE. These include imbal-
ances in DC number, subsets and locations;
altered uptake and response to benign and harm-
ful antigenic stimuli; dysregulated activation states
and altered migratory capacity; and aberrant
interactions with other immune effector cells,
triggering inappropriate downstream responses.

Dendritic cell phenotype in SLE
Several groups have documented decreased num-
bers of circulating pDCs and sometimes mDCs in
the peripheral blood of SLE patients [6–8]. It has
been postulated that this is due to increased
migration into peripheral tissues. Indeed,
increased numbers of DCs have been found in
various tissues and organs of lupus patients. Renal
specimens from patients with active SLE nephritis
demonstrated accumulation of pDCs in
glomeruli [7] and the tubulointerstitium [8]. The
onset of proliferative glomerulonephritis and pro-
teinuria in NZB/W lupus-prone mice is associ-
ated with infiltration of renal tissue by activated
DCs [9]. In addition, lymphoid organs of lupus-
prone mice [10,11] and lupus cutaneous
lesions [12,13] also demonstrate increased numbers
of DCs.

Increased intrinsic migratory capacity of lupus
DCs has not been documented. However, as
increased migration normally follows activation
and maturation of DCs, the maturation status of
lupus DCs is important to define. Our group has
demonstrated that monocyte-derived DCs from

human SLE patients display an activated, pro-
inflammatory phenotype, characterized by:
accelerated differentiation from the monocyte to
the myeloid DC stage in vitro and in vivo;
increased expression of the maturation markers
CD80, CD86 and MHC class II; blunted
responses to maturation stimuli; and increased
production of the proinflammatory cytokine
IL-8. In addition, lupus mDCs promote signifi-
cantly increased proliferation and activation of
allogeneic control T cells, relative to allogeneic
DCs from healthy controls [14]. These findings
suggest that lupus mDCs are more mature and
more stimulatory than DCs from healthy con-
trols. Enhanced baseline lupus DC maturation
could potentially result in accelerated migration
into lymphoid organs, and thus represents one
explanation for the decreased numbers of circu-
lating DCs seen in SLE. Furthermore, mature
DCs can break tolerance and induce lupus auto-
Abs in normal hosts [15], which is another poten-
tial pathologically relevant consequence in SLE.
While some groups have corroborated our find-
ings with both human and murine DCs [16,17],
other groups have found varying phenotypic
abnormalities in lupus mDCs (reviewed in [18]).
These differences appear to be highly dependent
on the species studied and the method of DC
isolation, culture and purification.

These phenotypic abnormalities, at least in
part, appear to be intrinsic to the mDCs, as the
addition of lupus serum to healthy control or
lupus mDCs could not reproduce or increase
the aberrant phenotype in our system [14].
Nevertheless, various groups have found that
DCs may be activated by factors present in
serum, including ICs and cytokines, such as
IFN-α (discussed below).

Relationship between type I IFN & 
dendritic cells in SLE
The association between type I IFNs and SLE was
first noted in 1982 [19], but only more recently has
the extent of their role in the pathogenesis and
perpetuation of disease been investigated. Type I
IFNs, which, in humans, include α, β, κ, ω and ε
IFNs [20], are key mediators in the defense against
viral pathogens. IFN-α synthesis is triggered pre-
dominantly by viral-associated DNA/RNA that is
recognized by a number of different receptors on
various cells. Type I IFNs have numerous
immunomodulatory effects on many different cell
types (Box 1) [21–24]. While many cells can synthe-
size small amounts of IFN-α, the primary
IFN-α-producing cell appears to be the pDC [25]. 
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The exact role of type I IFNs in the induc-
tion/perpetuation of autoimmunity in lupus is
complex. Microarray analysis has revealed
marked overexpression of IFN-related gene
expression (the ‘IFN signature’) in the leukocytes
of some SLE patients [26,27], as well as in the
glomeruli of patients with lupus nephritis [28].
However, not all patients with SLE exhibit ele-
vated IFN-α levels in serum or IFN gene signa-
tures [24]. Serum levels of type I IFN have been
shown to correlate with lupus disease activity
and severity [29] and also with auto-Ab levels [30].
A subset of patients receiving type I IFN treat-
ment for other conditions develop a lupus-like
condition, with auto-Ab synthesis and organ
damage [31]. Furthermore, IFN-α has recently
been linked to abnormal vascular repair and,
potentially, to atherosclerosis development in
SLE [32,33]. 

Mouse models of lupus present a conflicting
picture. The induction of IFN-α in lpr/lpr mice
aggravated lupus-like disease, an effect that was
ameliorated by IFN receptor deletion [34]. Type I
IFN receptor deficiency ameliorates disease in
NZB lupus-prone mice [35]. Adenovector-medi-
ated delivery of IFN-α to pre-autoimmune
NZB/W mice resulted in accelerated disease and
mortality [36]. However, IFN-α receptor defi-
ciency in the MRL/lpr model of murine lupus
worsened clinical, serological and pathological

disease manifestations [37]. In addition, IFN-α
blockade also worsened auto-Ab production in
the B6.Sle2 murine lupus model [38]. It has been
postulated that some of these disparate findings,
in addition to being due to mouse strain-related
differences in disease pathogenesis, may also be
secondary to differential IFN effects in SLE
depending on the stage and severity of ongoing
disease [39].

The potential relationship between IFN-α
and DCs in lupus, while not fully investigated,
appears to be more straightforward. IFN-α in
SLE serum induces the transformation of
peripheral blood monocytes into DCs and pro-
motes their maturation and allostimulatory
capacity [29,40], thereby enhancing their intrinsi-
cally aberrant phenotype. IFN-primed mDCs
exhibit enhanced chemokine-directed migration
in vitro via upregulation of CCR7 [41] and matrix
metalloproteinase 9 expression [42], suggesting
other possible mechanisms by which DCs in
SLE could leave the circulation and migrate to
peripheral and lymphoid tissues. 

In addition, pDCs produce IFN-α upon
in vitro stimulation with lupus serum [43]. How-
ever, depletion of pDCs from SLE blood results
in only partial abrogation of type I IFN produc-
tion capability [40], thereby indicating that other
cells might also be responsible for type I IFN
synthesis in SLE. These additional cell subsets
have not been well characterized, although a
monocyte-like circulating cell population has
been implicated in one murine model of
SLE [44]. The IFN-inducing serum factors
include DNA- and RNA-containing ICs com-
posed of auto-Ags from chromatin and other as
yet undefined ligands [45–48]; these ICs are also
capable of stimulating the production of other
chemokines and cytokines implicated in
autoimmunity [49]. 

Aberrant apoptosis, dendritic cells & SLE
Normally, chromatin containing auto-Ags are
sequestered in the intracellular compartment
and do not stimulate immune responses. Dys-
regulated apoptosis is a potential source of
increased and/or modified self Ag. Lupus
patients exhibit increased rates of apoptosis of
numerous cells, including lymphocytes [50], neu-
trophils [51], monocytes and macrophages [52,53].
In addition, they exhibit decreased levels of apo-
ptotic clearance and elevated levels of circulating
nucleosomes (reviewed in [54,55]). Our group has
shown that increased macrophage apoptosis is
sufficient to break tolerance in non-lupus-prone

Box 1. Effects of IFN-α on target cells.

Dendritic cells

• Promotes monocyte differentiation into dendritic cells
• Induces immature dendritic cell activation
• Upregulates IFN-γ production
• Autocrine survival factor
• Upregulates B-lymphocyte stimulator and APRIL expression (B-cell 

survival factors)
• Promotes Th1 skewing phenotype
• Promotes crosspriming of CD8+ cells

T cells

• Antiproliferative, proapoptotic (direct effects)

B cells

• Promotes development, proliferation
• Increases survival, resistance to Fas-mediated apoptosis
• Promotes immunoglobulin isotype switching
• Induces plasma cell differentiation
• Enhances antibody responses

Macrophages

• Promotes development and maturation

Natural killer cells

• Enhances cytotoxicity
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mice, as well as worsening nephritis and auto-
immune responses in lupus-prone mice [56].
Immunostimulatory DCs may take up auto-Ags
exposed from the increased apoptotic burden
and cross-present them to autologous cytotoxic
T lymphocytes in the lymph nodes. Histological
analysis of lymph nodes in a subgroup of SLE
patients has shown that apoptotic cells are not
properly cleared from the germinal centers; con-
sequently, nuclear auto-Ags bind to follicular
DCs, possibly providing survival signals for
autoreactive B cells [57,58]. In combination with
auto-Abs, nucleic acids released by apoptotic
cells are efficiently processed by DCs and stimu-
late Ag-specific T-cell proliferation [59]. Both
ICs [47] and purified apoptotic bodies [60] can
stimulate IFN-α production by pDCs, which
may then promote accelerated monocyte differ-
entiation into mDCs. Bone marrow-derived
DCs from lupus-prone NZB/W F1 mice, when
pulsed with apoptotic cells, worsened clinical
disease in lupus mice, and induced auto-Ab
production in non-autoimmune mice [61,62].

However, other groups have reported that apo-
ptotic cell uptake by human DCs does not result
in DC maturation or cross-presentation [63,64],
and that DCs exposed to necrotic, but not apop-
totic, cells are involved in the induction of
autoimmunity in susceptible mouse strains [65].
These discrepancies may be due to what type of
apoptotic cell is used and the variable effects of
early- and late-stage apoptotic cells on DC matu-
ration [66]; the apoptotic burden [61]; and the sur-
rounding cytokine milieu (reviewed in [54]). In
addition, the differing in vitro findings may not
necessarily be mutually exclusive in vivo in SLE.
In the absence of a fully functional clearance sys-
tem, secondary necrosis of uncleared apoptotic
material may generate a proinflammatory milieu
that enhances DC maturation, activation and
migration. In addition, repeated challenge of the
chronically primed and activated SLE immune
system with a large apoptotic burden could even-
tually generate an environment capable of break-
ing normal processing of apoptotic material. This
could potentially allow for the generation of an
immune response to apoptotic material, even in
the absence of other signals such as necrosis. 

Toll-like receptors, type I IFNs & dendritic 
cells in SLE
Autoimmune responses against chromatin, the
hallmark of SLE, are often triggered by infections,
which are well-known triggers of lupus flares.
Indeed, clinical SLE will often first manifest after

a viral infection [67]. Thus, autoimmunity may
result when imperfect discrimination of self from
nonself occurs. This discriminatory function is
assisted by the functioning of several innate
pathogen-recognition systems that respond to
PAMPs, including the Toll-like receptors (TLRs)
[68]. There are ten of these highly conserved type I
transmembrane receptors in humans, with a vari-
ety of viral, bacterial and fungal ligands (reviewed
in [69]). Upon engagement of a TLR with its
ligand, a signal transduction cascade is triggered,
ultimately activating downstream transcription
factors required for the production of various
mediators, including type I IFNs. 

In recent years there has been great interest
in the relationship between TLRs and IFN-α in
the immunopathogenesis of SLE (reviewed
in [24,70]). TLR 7 and 9 are thought to be of par-
ticular importance. Their distribution appears to
be limited to B cells and pDCs in humans [71];
they are localized intracellularly and require endo-
somal acidification to trigger immune responses.
pDCs treated with chloroquine, a blocker of
endosomal acidification, are unable to synthesize
IFN-α and other activation-related cytokines
upon stimulation with DNA-containing lupus
ICs [72,73]. In addition, treatment of NZB/W
mice with a TLR7/9 inhibitor resulted in
reduced auto-Ab production and diminished
nephritis [74]. Thus, a unifying hypothesis has
been proposed whereby self nucleic acid-
containing ICs, generated through dysregulated
apoptosis and internalized via FcγRIIa [72], and,
potentially, other uptake receptors, engage TLR7
and/or 9 to stimulate IFN-α production and
thereby promote and perpetuate SLE [75–77] (the
‘interferon/Toll hypothesis’).

Several recent studies have attempted to elu-
cidate the specific contribution of TLR7
versus 9. The ribonucleoprotein auto-Ags Ro
and Sm/RNP stimulate DC maturation and
IFN production via TLR7 [78–80]. The Y chromo-
some-linked ‘autoimmune accelerator’ locus
(Yaa) in lupus-susceptible mice is a duplication
of a segment of X-chromosomal DNA that
doubles 17 gene dosages, including that of
TLR7 [81,82]. This effect was subsequently con-
firmed to be specific to TLR7, as lowering the
TLR7 dosage ablated the hyper-responsiveness
caused by the Yaa allele, and TLR7 transgenic
mice developed a lupus-like disease with prolif-
eration of highly activated DCs [83]. Further-
more, compared with male-control pDCs,
female-control pDCs produce significantly higher
IFN-α upon TLR7 engagement, suggesting an
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intriguing mechanism for the higher prevalence
of lupus in women [84]. However, other studies
have documented decreased IFN-α production
in response to certain stimuli, with the use of
TLR7 ligands [85,86].

The specific role of TLR9 signaling in SLE is
also unclear [87]. pDCs from NZB lupus-prone
mice express high levels of TLR9 mRNA and
IFN-α upon TLR9 engagement [88]. In addition,
TLR9-deficient mice are unable to produce anti-
dsDNA Abs in MRL/lpr mice [89]. TLR9 signal-
ing in an FcγRIIB-deficiency antinucleosome
knock-in model is needed for auto-Ab produc-
tion [90]. Certain TLR9 polymorphisms have
been associated with increased risk of SLE in
Japanese patients [91], although there is no differ-
ence in TLR9 expression on peripheral blood
mononuclear cells from SLE patients and
healthy controls [92]. However, several groups
have found that TLR9 deficiency worsened
lupus-like disease manifestations in several dif-
ferent MRL strains, with varying effects on auto-
Ab production [93,94]. Again, some of these dis-
parate results appear to be due to strain differ-
ences in the various murine lupus models, with
differing cellular requirements for disease
manifestation in different genetic backgrounds.

SLE genetics & dendritic cells
A number of studies have attempted to identify
genetic risk factors in SLE, and have been well
reviewed [95–97]. In the past, researchers per-
formed genome-wide linkage studies in families
whose prevalence of SLE was high, while
another technique involved a candidate gene
approach and population-association studies.
Although biased towards the gene variants
present in the families under linkage investiga-
tion or the group of candidate genes in an asso-
ciation study, these studies provided evidence of
several susceptibility loci. Among them, several
genes with potential relevance to DC pheno-
type and function showed strong associations
with SLE. These include the HLA DR-B1 in the
HLA class II locus, FCGR2A/2B, FCGR3A/3B,
STAT4, CRP, and the TLR5 genes on chromo-
some 1. Genes in the type I interferon pathway
have recently been associated with SLE. Among
them are the IFN regulatory factor 5 (IRF5)
gene on chromosome 7, as well as the IRF3 and
TYK2 genes on chromosome 19 [98,99]. IRF5 is
expressed on pDCs and appears to be very
important for TLR7 signaling [100]. As yet,
there is no functional association between the
IRF5 risk haplotype and type I IFN production.

Recently, several genome-wide association
studies have confirmed previously identified risk
alleles and discovered new risk alleles in specific
patient populations with SLE [101–103]. These
studies are important because they provide the
first genome-wide analysis of risk alleles without
the bias inherent in candidate gene and linkage
study approaches. Interestingly, in addition to
the previously identified HLA class II locus,
FCGR2A and the IRF5 gene, several new suscep-
tibility regions have now been reported. Among
them is the ITGAM gene, which encodes inte-
grin-α M (also known as CD11b, CR3 or Mac-
1). This gene product is expressed on numerous
cell types, including DCs, and aberrancies can
result in a host of functional impairments,
potentially even contributing to the accelerated
vascular damage seen in SLE.

Other mediators
A number of other mediators have been impli-
cated as potential DC modulators and/or con-
tributors to aberrant DC functioning in SLE,
including prolactin [104], vitamin D [105] and
estrogen [106,107]. In addition, there are plausible
rationales for how other contributory agents
(UV light, genetic predisposition and so on)
could mediate their effects, at least in part, via
DC modulation [13,81,108].

Dendritic cells & immunomodulatory 
drugs in SLE
A number of medications used in the therapy of
SLE and other autoimmune conditions exert
effects on DCs. The best studied are gluco-
corticoids, which downregulate the IFN signa-
ture [26] via effects on pDCs [109]. Dexamethasone
downregulates CCR7 expression, resulting in
decreased migration in vitro [110]. Both glucocor-
ticoids and mycophenolate mofetil cause
impaired differentiation and maturation of
monocytes into mDCs, although there are vary-
ing reports as to their effects on subsequent T-cell
interactions [111,112]. Antimalarials, commonly
used in SLE, block lysosomal acidification,
thereby potentially interfering with MHC anti-
genic peptide loading in DCs. It is postulated
that this might result in diminished presentation
of low-affinity self peptides and thus diminished
autoimmunity [113]. Impaired endosomal acidifi-
cation impairs TLR7/9 signaling [114], suggesting
that another potential mechanism of antimalarial
action in SLE may be related to their effects on
IFN pathways. One of the postulated mecha-
nisms by which anti-B-cell-directed therapy with
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rituximab might work is through DC modula-
tion [115]. In vitro treatment with intravenous
immunoglobulin also interferes with DC differ-
entiation and maturation in the presence of lupus
serum, and inhibits nucleosome uptake [116].

TNF-α antagonists are used in the treatment
of rheumatoid arthritis and other autoimmune
diseases. It is well documented that a subset of
treated patients can develop serological and clin-
ical manifestations of SLE [117]. A potential
mechanism for this phenomenon is through the
alteration of the balance between TNF-α and
IFN-α. Neutralization of TNF-α results in sus-
tained IFN-α release by pDCs, and patients
treated with TNF-α blockade exhibit increased
IFN signatures [118]. 

Conclusion
There are multiple mechanisms by which DCs
can trigger and promote autoimmunity, includ-
ing their interactions with effector cells, their
functions in apoptosis and their role in critical
cytokine production (Figure 1). While our under-
standing of the role of DCs in SLE pathogenesis

has greatly increased, there are still many areas
that are not fully clarified. While type I IFNs
are implicated in the aberrant phenotype of
DCs in lupus, other mechanisms are likely to
be involved in this abnormality, including
intrinsic genetic defects that are only recently
being elucidated, as well as extrinsic environ-
mental and/or infectious factors. It is also nec-
essary to determine the other cytokines that
contribute to the autoimmunity-promoting
milieu influencing DCs during their activation
and maturation. Identifying other DC recep-
tors involved in the inappropriate processing of
apoptotic material and the aberrant secretion of
autoimmunity-promoting cytokines will be
very important. In addition, while a compelling
body of evidence supports a potential patho-
genic role for type I IFNs, the contradictory
mouse model reports and the absence of a doc-
umentable IFN signature in a significant
number of adult lupus patients warrant further
exploration. Clarifying these issues will be cru-
cial to moving forward in the age of cell-specific
and cytokine-directed therapies.

Figure 1. Role of dendritic cells in the immunologic milieu of SLE and how 
immunosuppressive medications may exert effects on dendritic cells.
 

Auto-Ab: Autoantibody; Auto-Ag: Autoantigen; IVIG: Intravenous immunoglobulin; mDC: Myeloid dendritic 
cell; pDC: Plasmacytoid dendritic cell; SLE: Systemic lupus erythematosus; TLR: Toll-like receptors. 
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Future perspective
Given our current understanding of normal
DC biology and aberrant DC function in
SLE, there are a number of future directions
possible, including:

• Development of a rapid and inexpensive assay
screening for the presence of a strong inter-
feron signature or other cytokine-related gene
upregulation on an individual level. This
could help determine which patients might
benefit from specific anticytokine therapy;

• Assessing the effect of anti-IFN-α therapy in
human SLE patients. There are ongoing
Phase I trials utilizing anti-IFN-α monoclonal
antibodies [119];

• Generation of ‘tolerizing’ DCs by ex vivo
manipulation with peptides and anti-
inflammatory cytokines;

• Development of receptor- and surface mole-
cule-blocking and stimulating antibodies for
use in patients. Anti-β-lymphocyte stimula-
tor therapy is already undergoing extensive
study. Future targets could include BDCA-2
(involved in downregulation of IFN-α
production by pDCs [120,121]) and TLR7
and 9;

• Identifying specific genotype–phenotype
correlations with newly identified genetic
risk loci. Further genetic investigations will
likely involve resequencing efforts to identify

Executive summary

Immunopathogenesis of SLE

• Systemic lupus erythematosus (SLE) research has focused primarily on adaptive immunity.
• There is a growing body of literature implicating a role for dendritic cells (DCs) in many of the disease manifestations.

Biology of dendritic cells

• There are two major subsets of DC: myeloid and plasmacytoid.
• DCs generate peripheral tolerance by presenting harmless or self antigen to lymphocytes in the absence of other signals.
• In the presence of danger signals, DCs mature/activate and migrate to lymphoid tissue, where they stimulate naive and 

antigen-specific T cells as well as other effector cells.

Dendritic cell phenotype in SLE

• Circulating DCs are decreased in SLE; this is thought to be due to enhanced migration into peripheral affected tissues.
• While there is variability between in vitro studies, SLE DCs exhibit an aberrantly mature and activated phenotype.

Relationship between type I IFN & dendritic cells in SLE

• IFN-α is produced primarily, but not exclusively, by plasmacytoid DCs.
• IFN-α exerts numerous immunomodulatory effects on many cell types of potential relevance in SLE. A subset of SLE patients 

exhibit overexpression of the IFN signature in various tissues. 
• IFN-α is implicated in the development of accelerated atherosclerosis in SLE patients.
• Mouse models have generated conflicting reports as to the role of IFN-α in SLE.

Aberrant apoptosis, dendritic cells & SLE

• There is strong evidence for dysregulated apoptosis in SLE. This provides a potential source of circulating nuclear auto-Ag which 
may promote autoantibodies and immune complex generation.

• Immunostimulatory DCs can take up immune complexes and present them to autoreactive T cells.

Toll-like receptors & dendritic cells in SLE

• Toll-like receptors (TLRs) are pathogen recognition systems that identify highly conserved molecular patterns that help distinguish 
self from non self.

• Immune complexes can stimulate IFN-α production from plasmacytoid DCs via TLR7 and 9.

SLE genetics & dendritic cells

• Recent powerful genome-wide association studies have confirmed previously reported susceptibility genes in SLE and identified 
several new ones, some of which could potentially alter DC functioning. These include IRF5 and ITGAM.

Other mediators

• Hormones, vitamin D, and other mediators may exert some of their effects in SLE via DCs.

Dendritic cells & immunomodulatory drugs in SLE

• Steroids decrease maturation, activation and migration of DCs, and downregulate the IFN signature in SLE.
• Antimalarials may modulate disease by inhibiting TLR7/9 signaling.
• TNF-α blockade may trigger/exacerbate SLE by disrupting the TNF-α/IFN-α balance.
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rare gene variants at the identified risk loci
and examination of possible copy-number
variation to understand gene dosage effects. 
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