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Role of abnormal sarcoplasmic reticulum function 
in atrial fibrillation

Atrial fibrillation (AF) is the most common sus-
tained cardiac arrhythmia with a lifetime risk 
of 20–25% [1]. The major cause of morbidity 
is thromboembolism leading to stroke, which 
arises from stasis of blood in the atria due to 
decreased atrial contractility. Impaired intra-
cellular Ca2+ handling is believed to underlie 
atrial mechanical dysfunction [2]. The smaller 
amplitude of systolic Ca2+ transient is a major 
determinant of decreased contractility in AF [3]. 
Nevertheless, the predisposition to spontane-
ous diastolic sarcoplasmic reticulum (SR) Ca2+ 
release might contribute to arrhythmogenesis in 
AF by promoting triggered activity [4]. In this 
article, we will review the cellular and molecu-
lar basis of abnormal SR Ca2+ handling in AF 
and discuss how new drug therapies might be 
developed to reverse these defects.

Excitation–contraction coupling in 
atrial myocytes
Excitation–contraction coupling is the funda-
mental process by which an action potential ini-
tiates contraction of a cardiomyocyte [5]. Plasma-
membrane depolarization leads to the influx of 
Ca2+ via voltage-gated L‑type Ca2+ channels, 
which, in turn, triggers a much greater release of 
Ca2+ from the SR via ryanodine receptor type 2 
(RyR2) channels (Figure 1). The ensuing systolic 
Ca2+ transient leads to the binding of Ca2+ to 
troponin C, which induces a conformational 
change in the regulatory complex, eventually 
leading to actin and myosin filaments sliding 
past each other and, thereby, shortening the 
sarcomere. During diastole, Ca2+ is sequestered 
into the SR by sarco/endoplasmic reticulum 

Ca2+‑ATPase (SERCA2a), reducing cytosolic 
Ca2+ concentrations and facilitating myocyte 
relaxation [6]. To a smaller extent, Ca2+ is also 
removed from the cytosol through the forward 
mode of the Na+/Ca2+-exchanger (NCX). The 
extent of reloading the SR with Ca2+ critically 
determines the amplitude of the subsequent 
Ca2+ transient and myocyte contractility.

Activation of a physiological stress reaction, 
such as the fight-or-flight response, leads to 
enhanced cardiac contractility. At the level of 
cardiomyocytes, this is mediated by increased 
SR Ca2+ release and reuptake during the excita-
tion–contraction coupling cycle. The amplitude 
of the L‑type Ca2+ current (I

Ca,L
) is enhanced by 

phosphorylation by protein kinase  A (PKA), 
which is activated by the stimulation of b‑adre-
noceptors on the plasmalemma [7]. PKA also 
phosphorylates RyR2 and SERCA2a-inhibitor 
phospholamban (PLN), thereby enhancing 
the release from and reuptake of Ca2+ into the 
SR, respectively. In addition, Ca2+/calmodulin-
dependent kinase II (CaMKII) has been dem-
onstrated to increase RyR2-mediated SR Ca2+ 
release and to relieve the effects of PLN inhibition 
on SERCA2a activity [8,9]. Thus, several intra
cellular signaling pathways involving protein 
phosphorylation of Ca2+ channels and transport-
ers dynamically modulate excitation–contraction 
coupling to maintain homeostasis.

There are important differences in the sub
cellular architecture of atrial and ventricular car-
diomyocyte Ca2+ release units that provide the 
structural framework for intracellular Ca2+ release 
and reuptake associated with excitation–contrac-
tion coupling. For example, the Ca2+ transient 
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is smaller and spatially more dispersed in rat 
atrial myocytes compared with ventricular myo-
cytes [10]. In rat atrial cells, systolic Ca2+ transients 
arise at the cell periphery and then propagate, as 
waves, into the cells interior, presumably owing 
to the relative absence of transverse T‑tubules [11]. 
Reuptake of Ca2+ into the SR is more robust in 
atrial myocytes, and relatively, there is a greater 
content of SR Ca2+ compared with ventricular 
myocytes. Whereas the enhanced SR Ca2+ load 
might facilitate arrhythmogenesis in pathologi-
cally remodeled atria, spontaneous Ca2+ release 
does not occur in healthy atria. Please refer to 
Dobrev for a detailed review of Ca2+ signaling 
features unique to atrial myocytes [12].

Regulation of SR Ca2+ release in 
the atria
As in ventricular myocytes, RyR2 are the prin-
cipal Ca2+ release channels responsible for Ca2+-
induced Ca2+ release in atrial myocytes. The 

simultaneous opening of a group of RyR2s leads 
to Ca2+ sparks, which are elementary SR Ca2+-
release events that can be visualized using con-
focal microscopy [13]. Many individual sparks 
coalesce to give a characteristic Ca2+ wave that 
initiates the global Ca2+ transient associated with 
myocyte contractility [14].

A unique property of atrial myocytes is that 
inositol 1,4,5‑trisphosphate receptors (IP

3
Rs) 

are located close to RyR2 in the subsarcolem-
mal space [15]. It is believed that IP

3
Rs can 

increase local Ca2+ concentrations in the vicin-
ity of a RyR2, thereby facilitating Ca2+-induced 
Ca2+ release during excitation–contraction 
coupling  [16]. Expression levels of IP

3
R are 

approximately five- to ten-times higher in rabbit 
atria compared with ventricular myocytes [17]. 
Consistent with this observation, direct applica-
tion of IP

3
 to permeabilized rat atrial myocytes 

evoked a five-times larger global Ca2+ transient 
compared with ventricular cells [15]. 
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Figure 1. Representation of excitation–contraction coupling in an atrial myocyte. With the 
advent of an action potential, L‑type Ca2+ channels are activated resulting in the influx of Ca2+. This 
influx of Ca2+ activates the adjacent ryanodine receptors resulting in outpouring of Ca2+ stored in 
the sarcoplasmic reticulum (SR) into the cytosol. IP

3
R are also activated alongside RyR2 and have a 

role in both inducing independent SR Ca2+ release and amplifying SR Ca2+ release through RyR2. The 
release of Ca2+ activates the contractile proteins initiating systole. The increased cytosolic Ca2+ 
inactivates L‑type Ca2+ channels, activates Na+/Ca2+-exchanger (causing efflux of Ca2+) and activates 
SERCA2a (causing reuptake of Ca2+ into SR). This results in the termination of systole and the onset 
of diastolic phase. 
I
Ca,L

: L‑type Ca2+ current; IP
3
R: Inositol 1,4,5‑trisphosphate receptors; NCX: Na+/Ca2+-exchanger; 

PLN: Phospholamban; RyR2: Ryanodine receptor type 2; SERCA2a: Sarco/endoplasmic reticulum 
Ca2+‑ATPase; SLN: Sarcolipin; TnC: Troponin C.
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The release of Ca2+ via RyR2 is also regulated 
by accessory subunits that bind directly to the 
RyR2 macromolecular complex [18]. Whereas 
most initial studies on the composition of the 
RyR2 protein complex were performed on ven-
tricular myocardium, several recent studies sug-
gest that atrial RyR2 are comprised of the same 
subunits and binding partners [19–23]. RyR2 are 
tetramers comprised of four RyR2 subunits, each 
of which associates with several regulatory sub-
units. Calmodulin (CaM) is an accessory pro-
tein that binds to and regulates RyR2 gating [24]. 
The FK506-binding protein 12.6 (also known as 
calstabin2) stabilizes the RyR2 closed conforma-
tional state [20,25] and facilitates coupled gating 
between connected RyR2 channels [26]. Marx 
et al. demonstrated that PKA and protein phos-
phatases, PP1 and PP2A, bind to RyR2 via spe-
cific targeting molecules [18]. These same proteins 
are present in the atrial RyR2 complex [21]. It has 
also been demonstrated that atrial RyR2 are a 
substrate of both PKA and CaMKII-mediated 
phosphorylation. PKA phosphorylation of an 
RyR2 at its main phosphorylation site (S2808) 
increases the RyR2 open probability [25,27]. More 
recent studies using recombinant RyR2 demon-
strated that PKA can also phosphorylate S2030, 
but the functional implications of this phosphory
lation event remain somewhat unclear [28]. The 
enzyme CaMKII, on the other hand, phosphory-
lates S2814 [8,19]. CaMKII phosphorylation of 
S2814 increases the sensitivity to Ca2+-induced 
activation and increases RyR2 open probability. 
Taken together, the atrial RyR2/Ca2+-release 
channel gating properties appear to be similar 
to those of RyR2 in the ventricle [29]. Additional 
proteins that bind to the luminal side of RyR2 
include junctin and triadin  [30]. Finally, RyR2 
function is also regulated by the intra-SR Ca2+-
buffering protein calsequestrin [31]. The signifi-
cance of these latter interactions remains to be 
established in the atria.

Regulation of Ca2+ removal 
mechanisms in the atria
Compared with ventricular myocytes, SR Ca2+ 
reuptake is enhanced in rat atrial myocytes, 
in part, owing to higher expression levels of 
SERCA2a [10]. In addition, levels of PLN are 
lower than in the ventricle [10,32]. Since the 
SERCA2a/PLN ratio is approximately four-
times higher in the atria, SR Ca2+ reuptake is 
enhanced and relaxation of atrial myocardium 
is facilitated. In the atria, SERCA2a is also reg-
ulated by sarcolipin (SLN) [33]. Whereas SLN 
is predominantly expressed in the atria, PLN 

expression is more abundant in mouse ventri-
cles [34]. SLN shares a 30% homology with the 
transmembrane domain of PLN, and its struc-
ture and function are very similar to this PLN 
domain  [35]. SLN inhibits SERCA2a activity 
by decreasing the apparent Ca2+ affinity of the 
pump [36], a process that is dynamically regu-
lated by phosphorylation. Similar to PLN, stim-
ulation of b‑adrenoceptors phosphorylates SLN 
at T5 and enhances contractility by decreasing 
SERCA2a inhibition [37]. Thus, SLN plays an 
important regulatory role in the atria.

It has been reported that, in human atria, 
levels of the NCX are approximately half of 
those found in the ventricle [38]. Lower NCX 
levels result in smaller NCX currents compared 
with ventricular cells [10]. However, atrial myo-
cytes are smaller than ventricular myocytes and 
when the NCX current amplitude was corrected 
for cell size, rat atrial cells were found to have 
a larger NCX current density compared with 
ventricular cells [10]. Thus, remodeling-related 
increases in SR Ca2+ leak, together with elevated 
NCX expression levels, may generate large depo-
larizing Na+/Ca2+ exchange currents, which may 
cause delayed afterdepolarizations and triggered 
activity, supporting AF maintenance (see later).

Atrial myocytes exhibit markedly increased 
SR Ca2+ content and cellular Ca2+ buffer-
ing capacity [10], consistent with enhanced SR 
Ca2+ reuptake via SERCA2a. In addition, the 
Ca2+ efflux via sarcolemmal pathways, includ-
ing NCX, is reduced in atrial cells, and Ca2+ 
entry via L‑type Ca2+ channels is increased. It 
has been also suggested that changes in myofila-
ment properties may contribute to the enhanced 
Ca2+ buffering properties of atrial myocytes [39]. 
As will be discussed, the greater SR Ca2+ con-
tent in atrial cells may facilitate arrhythmogenic 
spontaneous SR Ca2+ releases in fibrillating atria.

Cellular & molecular mechanisms 
underlying AF
The two major mechanisms believed to cause 
AF at the organ level include re-entry and ecto-
pic activity. Sources of these abnormalities are 
often localized at one of the pulmonary veins 
or in the posterior wall of the left atrium, near 
the pulmonary vein junction [40]. Risk factors 
(i.e., age) and cardiovascular diseases (i.e., heart 
failure) increase susceptibility to AF by caus-
ing specific electrical and structural substrates 
that promote arrhythmia maintenance once AF 
has been induced. Cardiovascular diseases can 
also contribute to the triggers (i.e., acute atrial 
dilatation) that initiate AF. Thus, the structural 
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substrate, caused by risk factors and concomi-
tant disease conditions preceding AF, is key for 
perpetuation of AF [41].

Re-entry requires a susceptible substrate as 
well as a trigger, usually provided by an ectopic 
beat. According to the ‘leading circle’ concept, 
re-entry results from a balance between tissue 
refractoriness and conduction speed [42]. Short 
refractoriness and slow conduction make induc-
tion of continuous conduction in a re-entry 
zone more likely. According to the ‘spiral wave’ 
concept [43,44], re-entry is maintained by high-
frequency reentrant sources (rotors) with a spiral 
wave rotating around a central ‘core’. The stabil-
ity of the rotor is determined by the tissue excit-
ability and refractoriness – higher excitability 
and shorter refractoriness allow the spiral wave 
to rotate faster, stabilizing the rotor. 

Ectopic activity may contribute to AF initia-
tion by acting as a trigger of re-entry. Ectopic 
activity is caused by abnormal local spontaneous 
discharges that can be due to afterdepolariza-
tions. Afterdepolarizations are oscillations of the 
membrane potential of an atrial myocyte that 
occur during repolarization (early afterdepolar-
izations [EADs]) or following completion of the 
action potential (delayed afterdepolarizations 
[DADs]). Left atrial sources of ectopic activity 
appear to be of particular importance in a subset 
of patients with paroxysmal AF [45].

Early afterdepolarizations occur when an 
abnormal depolarization starts during phase 2 
or  3 of the preceding action potential, and 
are commonly associated with bradycardia or 
pauses [46]. Pulmonary veins are a preferred site 
for EADs in canine atria [47]. Excessive action 
potential prolongations with reactivation of the 
L‑type Ca2+ current or late Na+ current predis-
pose to the development of EADs in isolated 
canine right atria [46]. EADs can also occur 
in the absence of intracellular Ca2+-handling 
abnormalities. Recently, late phase  3 EADs 
were suggested to contribute to AF reinitia-
tion  [46]. This type of EAD may occur under 
sympathovagal discharges if acetylcholine-
induced action-potential duration abbrevia-
tion (parasympathetic effect) is coupled with 
increased Ca2+ transients (sympathetic effect; 
Ca2+-transient triggering) [48]. It was postu-
lated that this mechanism involves an increase 
in intracellular Ca2+ concentrations during 
final action potential repolarization, at voltages 
negative to the equilibrium potential for NCX. 
These changes are presumed to increase  the 
inward NCX current to generate EADs and trig-
ger activity [47,49].

Delayed afterdepolarizations result from 
spontaneous diastolic SR Ca2+ releases, typically 
caused by either SR Ca2+ overload or dysfunction 
of the SR Ca2+-release channels. They manifest 
as an individual or a series of small-amplitude 
membrane oscillations that could eventually lead 
to full-blown action potentials. The spontane-
ous SR Ca2+ releases activate a transient inward 
current that underlies the DAD voltage oscilla-
tion [5,50]. The occurrence of DADs have been 
demonstrated in multicellular preparations from 
isolated diseased human atrial appendages [51]. 
Electrical remodeling increases the likelihood of 
DADs during AF.

Altered SR Ca2+ handling in AF
It is well recognized that AF is a progressive 
disease and that the arrhythmia itself induces 
electrical remodeling that increases susceptibility 
and stability of AF [52]. Several factors contribute 
to electrical remodeling, including shortening 
of the atrial effective refractory period, which is 
primarily caused by action-potential shortening 
[53,54]. At the cellular level, there are profound 
alterations in mRNA and protein expression 
levels of various ion channels (for review [55]). 
Besides reduced I

Ca,L
 [56,57], increased function 

of inward rectifier K+ currents may play a critical 
role as they abbreviate the effective refractory 
period and hyperpolarize the resting membrane 
potential [58,59], thereby, increasing Na+ channel 
availability (and thus excitability) and enhanc-
ing rotor frequency [60]. Whereas some of these 
molecular and cellular alterations are well docu-
mented in humans and/or animals with AF, it 
often remains unknown whether these changes 
are a cause of AF or a consequence of the chronic 
atrial arrhythmia. We will review AF-associated 
changes in proteins involved in intracellular Ca2+ 
release and reuptake.

Structural remodeling of the atria also plays 
an important role in the susceptibility to atrial 
arrhythmias. The presence of areas of slow con-
duction or block may cause spatial dissociation 
of wavelets and promote re-entry [42]. Atrial dila-
tation also increases the likelihood of AF due to 
increased heterogeneity of conduction [61]. The 
increase in atrial size is often associated with 
depressed atrial contractility, and together, these 
changes increase the risk for thromboembolic 
complications [62].

Multiple studies have shown that abnormal SR 
Ca2+ handling plays a central role in the initia-
tion and/or maintenance of AF in humans [21,55]. 
Defective Ca2+ handling, which may facilitate 
re-entry and contribute to triggered activity, was 
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demonstrated to lead to an increase in sponta-
neous Ca2+ release events from the SR in atrial 
myocytes isolated from patients in chronic AF [4]. 
Unexpectedly, SR Ca2+ load was not increased in 
atrial myocytes from patients in AF [4], suggest-
ing that the spontaneous SR Ca2+ releases most 
likely occurred owing to alterations in RyR2. By 
contrast, Liang et al. found that the frequency 
and amplitude of Ca2+ sparks were comparable 
in human atrial myocytes of patients in sinus 
rhythm and in AF [63]. However, the frequency 
of small and global Ca2+ waves increased in atrial 
myocytes of AF patients. The authors suggested 
that the spatiotemporal properties, but not the 
frequency of Ca2+ sparks, were affected in atrial 
myocytes from patients in AF. These findings 
and results from animal models point to abnor-
mal SR Ca2+ function in AF. Abnormal SR Ca2+ 
release can act as a local trigger generator, ini-
tiating a local re-entry circuit or ectopic focal 
activity in sheep atria [64]. 

�� Downregulation of L‑type 
Ca2+ channel
Most studies in atrial myocytes isolated from 
patients in chronic AF have demonstrated a 
reduction of I

Ca,L
 (Figure 2) [56,57]. A reduced I

Ca,L
 

current results in the shortening of both the 
action-potential duration and effective refractory 

period, which can promote AF maintenance [65]. 
In addition, reduced I

Ca,L
 contributes to depressed 

atrial contractility by decreasing Ca2+-induced 
Ca2+ release from the SR [66]. 

At the molecular level, inconsistent results 
have been reported regarding mRNA expression 
of the a

1C
 (Ca

V
1.2) subunit of voltage-depen-

dent, L‑type Ca2+ channel, I
Ca,L

, in a variety of 
animal models and human tissue studies. Some 
investigations revealed decreased expression of 
Ca

V
1.2 [67,68], a2/d1 [69], b

1B
 [69] and a

1D
 [68], 

whereas other studies demonstrated unchanged 
Ca

V
1.2 [70], b

1A,C
 [69] or b

2A
 subunit expression of 

I
Ca,L

 [57,66]. Several factors might explain these 
discrepancies, including species differences 
and time-dependent changes in remodeling in 
animal models. A recent study in mice lack-
ing the Ca

V
1.3 subunit of I

Ca,L
 demonstrated an 

increased vulnerability to AF, suggesting that a 
reduction of I

Ca,L
 may be causally linked to AF 

pathogenesis [71].
In addition, it has been demonstrated that 

abnormal post-translational regulation of I
Ca,L 

might contribute to AF. The I
Ca,L

 subunits are 
phosphorylated by CaMKII [72,73] and dephos-
phorylated by PP1 and -2A. The increase of 
protein phosphatase activity in humans with AF 
[23,57,70] may overcome the enhanced CaMKII 
activity in AF, reducing I

Ca,L
 amplitude [57,73]. 
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Figure 2. Model of electrical remodeling in atrial fibrillation. Impaired phosphorylation-
dependent regulation of Ca2+ handling and contractility in human chronic atrial fibrillation. 
The arrows indicate the direction of change in protein function or phosphorylation. 
DAD: Delayed afterdepolarization; I

Ca,L
: L‑type Ca2+ current; IP

3
R: Inositol 1,4,5‑trisphosphate 

receptors; NCX: Na+/Ca2+-exchanger; PLN: Phospholamban; RyR2: Ryanodine receptor type 2; 
SERCA2a: Sarco/endoplasmic reticulum Ca2+‑ATPase; SLN: Sarcolipin.
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These results suggest that imbalances in 
kinase/phosphatase signaling may contribute 
to the reduction of I

Ca,L
 in patients with chronic 

AF. Whereas these findings might explain the 
reduced contractility in AF, they do not explain 
the increased incidence of spontaneous Ca2+ 
release events from the SR.

�� Enhanced RyR2 activity in AF
As mentioned previously, there is ample evidence 
for defective SR Ca2+ handling in AF. Whereas 
reduced systolic SR Ca2+ release can be attrib-
uted to downregulation of the I

Ca,L
 current, other 

mechanisms are likely to be responsible for the 
paradoxal increase in diastolic nonevoked SR 
Ca2+ release events [4]. Single-channel record-
ings revealed an increased open probability of 
RyR2 isolated from dogs in chronic AF [21]. It 
is likely that enhanced RyR2 activity plays a 
role in AF pathogenesis, as mice with a gain-of-
function mutation in RyR2 exhibit an increased 
susceptibility to pacing-induced AF [19]. Using 
these knock-in mice, it was demonstrated that 
increased SR Ca2+ leak in atrial myocytes can 
promote triggered activity and atrial arrhythmias.

Expression levels of RyR2 were found to be 
unaltered [74,75] or reduced in dogs and patients 
with chronic AF [76–78]. However, and perhaps 
more importantly, the binding levels of acces-
sory subunits and post-translational modifica-
tions were altered in chronic AF in humans [21,23]. 
For example, the level of the RyR2-stabilizing 
subunit FKBP12.6 (calstabin2) was reduced 
by approximately 50% in patients with chronic 
AF, which could explain why RyR2 channels 
fail to remain fully closed during diastole  [21]. 
Interestingly, mice deficient in FKBP12.6 
exhibit an increased vulnerability to pacing-
induced AF and enhanced spontaneous SR Ca2+ 
leak [20]. Reduced calsequestrin 2 levels may also 
contribute to SR dysfunction in AF [78].

Changes in the phosphorylation level of RyR2 
have been reported consistently in chronic AF. 
Vest et al. demonstrated increased PKA phos-
phorylation of S2808 on RyR2 in dogs with 
chronic pacing-induced AF and patients with 
chronic AF [21]. Although total protein phos-
phatase levels and activity of PP1 and -2A are 
increased in the atria of patients in chronic 
AF, it is still unclear what happens to PP1 and 
-2A levels within the RyR2 macromolecular 
complex  [23]. PP1 is regulated by inhibitor  1 
and 2 [79]. El-Armouche et al. demonstrated that 
the levels of inhibitor 1 and 2 were not altered 
in patients with AF, but that inhibitor 1 phos-
phorylation at T35 was increased [23], which 

should lead to a strong inhibition of PP1 within 
the SR compartment, possibly contributing to 
enhanced RyR2 phosphorylation [80].

Ryanodine receptor type 2 is further phos-
phorylated by CaMKII at S2814 in human atrial 
samples from patients in chronic AF [19,81]. It was 
demonstrated that enhanced CaMKII activity 
and CaMKII phosphorylation of RyR2 led to 
an increased propensity to diastolic SR Ca2+ leak 
and atrial arrhythmias. Goats with sustained AF 
also demonstrated enhanced autophosphoryla-
tion and, thus, activity of CaMKII along with 
increased CaMKII-dependent RyR2 phos-
phorylation [22], clearly suggesting that the high 
atrial rate is sufficient to cause these alterations. 
Notably, goats with atrial dilatation, but absence 
of sustained AF, also exhibit increased CaMKII 
activity and CaMKII-dependent RyR2 phos-
phorylation [22], pointing to the possibility that 
structural atrial diseases may predispose to AF 
by producing changes in cellular Ca2+ signaling. 
Indeed, genetic and pharmacological inhibition 
of CaMKII phosphorylation of RyR2 reduced the 
inducibility of AF in mice, suggesting that hyper-
phosphorylation of the RyR2 at S2814 might play 
a central role in AF pathogenesis [19]. The absence 
of carbachol-induced AF in RyR2-S2814A knock-
in mice, in which RyR2 phosphorylation by 
CaMKII was genetically inhibited, confirms the 
importance of this single phosphorylation event 
in the pathogenesis of atrial arrhythmias [19].

Diastolic Ca2+ leak persistence is promoted 
only if normal or enhanced SR Ca2+ load can be 
maintained [82]. In AF patients, PLN is hyper-
phosphorylated at both Ser‑16 (PKA site) and 
Thr‑17 (CaMKII site), respectively, and this may 
prevent SR Ca2+ depletion in AF, explaining the 
preserved SR Ca2+ content [4,23,81,83]. Dogs with 
experimental heart failure show increased SR 
Ca2+ load, along with enhanced CaMKII phos-
phorylation of PLN and increased frequency of 
DAD events in atrial cells [78]. Together, these 
data and the results discussed earlier suggest that 
part of the changes detected in patients with 
chronic AF might result from structural changes 
of the atria, heart failure and other risk factors 
and clinical conditions. Further extensive work 
in suitable patient populations and experimental 
models is needed to dissect the specific contribu-
tions of the preceding cardiac pathologies to the 
promotion of AF. 

�� Enhanced IP3R activity in AF
Yamda et  al. demonstrated an upregulated 
expression of IP

3
R in atrial tissue samples from 

patients with chronic AF [84]. Other studies 
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have confirmed this in human atrial tissue [85] 
and a canine model of rapid atrial pacing [77]. 
Since activation of IP

3
R increases the frequency 

of spontaneous Ca2+ sparks [86], Ca2+ waves [87] 
and arrhythmogenic contractions [88], it is likely 
that the additional presence of IP

3
R contrib-

utes to spontaneous Ca2+ release events from 
the SR  [89,90]. Activation of IP

3
R facilitates the 

generation of EADs and DADs in atrial myo-
cytes, and these effects can be counteracted by 
an IP

3
R blocker, such as aminoethoxydiphenyl 

borate 2 [91,92]. In addition, a causal link between 
IP

3
R and arrhythmias were demonstrated in 

IP
3
R2-deficient mice, as endothelin failed to 

induce arrhythmogenic spontaneous Ca2+ release 
events in the knockout mice [93]. Thus, upregu-
lation of IP

3
R may play a role in enhancing SR 

Ca2+-release defects in AF. Further studies are 
clearly required to elucidate the complex interplay 
of IP

3
R and RyR2 in the pathogenesis of AF.

�� Reduced SR Ca2+ reuptake
The levels of SERCA2a are downregulated by 
approximately 25% in patients with chronic 
AF [23]. Nevertheless, several reports have demon-
strated that mRNA and protein expression levels 
of PLN are unaltered in patients with chronic AF 
[23,94–96]. However, there is evidence that both 
PKA- and CaMKII-mediated phosphorylation 
of PLN are increased in patients with chronic 
AF [23]. Interestingly, elevated PLN phosphory-
lation occurs despite globally increased activ-
ity levels of PP1 and -2A [23], which highlights 
the importance of local differences in protein 
phosphatase activity and/or targeting within 
different microdomains in atrial myocytes.

In addition, it has been demonstrated that the 
expression of SLN is decreased in chronic AF in 
humans [96]. Together with the changes in PLN 
regulation, reduced SLN binding to SERCA2a 
could, theoretically, be expected to enhance 
SR Ca2+ reuptake, which may offset the Ca2+ 
loss due to increased SR Ca2+ leak, potentially 
explaining the preserved SR Ca2+ content in 
patients with chronic AF [4]. A recent genetic-
association study has suggested that some sin-
gle-nucleotide polymorphisms in the SLN gene 
might be associated with AF [97]. 

�� Upregulation of NCX function in AF
Expression levels of NCX are upregulated in 
patients and goats with chronic AF [23,94]. 
Despite potentially increased reverse-mode 
activity of NCX, contractile function is typically 
decreased in chronic AF, which could possibly 
be attributed to reduced I

Ca,L
 in combination 

with increased myofibrillar Ca2+ sensitivity and 
impaired atrial relaxation [23,94]. Nevertheless, 
if sufficient SR Ca2+ is released into the cytosol 
during diastole, the greater abundance of NCX 
protein may result in a larger NCX inward cur-
rent (forward-mode action) for a given Ca2+ 
release, possibly promoting the occurrence of 
DADs and triggered activity that may contribute 
to AF maintenance.

Taken together, there is emerging evidence 
that altered cellular Ca2+ signaling in the atria 
may contribute to both re-entry and trig-
gered activity, thereby promoting AF mainte-
nance. However, there are important gaps in 
our knowledge regarding impaired atrial Ca2+ 
handling. For instance, persistence of diastolic 
Ca2+ leak requires a maintained SR Ca2+ load 
[82]. Although preliminary results in AF patients 
point to preserved global SR Ca2+ load and 
enhanced functional NCX [83], it remains to be 
determined whether increased SR Ca2+ leak and 
sufficient SR Ca2+ load occur at the subsarcolem-
mal SR compartment. The current evidence of 
increased SR Ca2+ leak in AF patients is indirect 
[19,21,81]. Precise quantification of SR Ca2+ leak in 
atrial myocytes from AF patients in combination 
with single-channel recordings of RyR2 proper-
ties are clearly required. The quantitative rela-
tion between SR Ca2+ leak, probability of occur-
rence of diastolic Ca2+ waves and amplitude of 
NCX is currently unknown and it remains to be 
determined whether the size of the NCX cur-
rent associated with SR Ca2+ leak is sufficient 
to depolarize the membrane to the threshold 
needed to trigger an action potential. In addi-
tion, future work should also address the time 
course of reversibility of SR Ca2+ abnormalities. 
Finally, although Ca2+-dependent focal sources 
are suggested to contribute to the maintenance 
of clinical AF [98], direct experimental evidence 
of the causal relationship between Ca2+-related 
cellular proarrhythmic events and focal sources 
in fibrillating human atria is still lacking.

Novel therapeutic approaches 
targeting abnormal SR function in AF
Traditionally, AF has been treated pharmaco-
logically using drugs that block voltage-gated 
ion channels. Most of these agents, however, are 
also characterized by a profound proarrhythmo-
genic potential, which strongly limits their clini-
cal applicability. New therapeutic strategies have 
emerged during the past 5 years as a result of a 
better understanding of the molecular pathways 
involved in atrial arrrhythmogenesis (reviewed 
in [99]). It was suggested that the commonly 
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used AF drug, amiodarone, might prevent atrial 
arrhythmias, at least in part, by preventing the 
AF-related downregulation of I

Ca,L
 and thus 

electrical remodeling [100].
New therapeutic modalities may include 

compounds that inhibit spontaneous SR Ca2+ 
leak by normalizing the function of the RyR2 
macromolecular complex (reviewed in [5]). The 
JTV519 (K201) has been demonstrated to pre-
vent AF in a canine model of sterile pericardi-
tis [101]. JTV519 was also demonstrated to reduce 
RyR2-mediated SR Ca2+ leak in mice by revers-
ing disease-associated loss of FKBP12.6 binding 
to RyR2 [21,102,103]. Lehnart et al. demonstrated 
that, in mouse ventricular myocytes, JTV519 
could block spontaneous SR Ca2+ releases and 
DADs that arise as a consequence of the SR Ca2+ 
leak [50]. In another study, JTV519 reduced firing 
rates in rabbit pulmonary vein cardiomyocytes, 
decreased amplitude of DADs, prolonged action 
potential duration and reduced incidence of 
provoked AF [104].

Other drugs may have similar effects on 
RyR2. For example, tetracaine was able to com-
pletely suppress Ca2+ sparks in atrial myocytes 
from patients in chronic AF [63]. The type 1C 
antiarrhythmic drug flecainide, better known 
for its Na+ channel-blocking effects, was demon-
strated to effectively inhibit arrhythmias induced 
by SR Ca2+ leak in mouse myocytes [105]. Hilliard 
et  al. demonstrated that f lecainide inhibits 
SR Ca2+ leak by blocking RyR2 in the open 
state [106]. Flecainide was also demonstrated 
to inhibit intracellular Ca2+ waves, probably 
owing to a combined effect on RyR2 gating and 
voltage-gated Na+ channels [106,107].

Dantrolene, a drug generally used to treat 
malignant hyperthermia, effectively prevents 
abnormal Ca2+ release via type 1 RyR2 in skeletal 
muscle. Kobayashi et al. recently demonstrated 
that dantrolene may also inhibit spontaneous 
SR Ca2+ leak in the heart [108]. Therefore, dan-
trolene or its derivatives may also be promising 
therapeutic agents for the treatment of cardiac 
arrhythmias, including AF. In addition to direct 
inhibition of RyR2, SR Ca2+ leak may also be 
reduced by suppressing the activity of CaMKII 
in the atrium. Chelu et al. demonstrated that 
pharmacological inhibition of CaMKII could 
inhibit the induction of AF in mice by reducing 
SR Ca2+ leak [19].

Inhibition of Ca2+ influx via reverse-mode 
NCX (Ca2+ influx) might decrease Ca2+ over-
load and halt the progression of the remodeling 
process. The NCX inhibitor KB‑R7943 pre-
vents short-term electrical remodeling-induced 
action potential duration shortening in dogs 
[109] and prevents DADs and triggered activity 
in rabbit pulmonary veins [110]. A blockade of 
forward-mode NCX (Ca2+ efflux) should sup-
press DADs and trigger activity, but is expected 
to worsen Ca2+ overload. Although NCX 
inhibitors, such as KB‑R7943, are suggested 
to block NCX more efficiently in the reverse 
(Ca2+ influx) mode than forward (Ca2+ efflux) 
mode [111], KB‑R7943 is not selective and 
blocks L‑type Ca2+ channels [112] and transient 
receptor potential channels [113]. Compounds 
specif ically reducing forward-mode NCX 
without interference with other key ion chan-
nels and transporters, may prove efficient for 
AF treatment.

Executive summary

Fundamental mechanisms of atrial fibrillation include re-entry & triggered activity/automaticity
�� Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is induced and maintained by a combination of re-entry and 

triggered activity/automaticity mechanisms.

Electrical remodeling promotes AF 
�� AF induces electrical remodeling of atrial myocytes resulting in altered expression levels and post-translational modifications of various 

ion channels and transporters.
�� Reduced L‑type Ca2+ current and enhanced inward rectifier K+ currents underlie the shortening of the atrial effective refractory period, 

which promotes the formation and maintenance of re-entry circuits.

Impaired Ca2+-induced Ca2+ release leads to contractile dysfunction in AF
�� Reduced Ca2+ influx via L‑type Ca2+ channels as a trigger for Ca2+-induced Ca2+ release decreases systolic Ca2+ release from the 

sarcoplasmic reticulum (SR), which may be associated with atrial contractile failure.

Spontaneous diastolic Ca2+ releases from the SR are proarrhythmic
�� Changes in subunit composition and post-translational regulation of intracellular Ca2+ release channels/ryanodine receptors increases the 

likelihood of spontaneous SR Ca2+ release events despite preserved SR Ca2+ content. This can generate depolarizing Na+/Ca2+-exchanger 
current, which may induce delayed afterdepolarizations and triggered activity.

�� Increased activity of Ca2+/calmodulin-dependent protein kinase II in AF can potentiate SR Ca2+ leak and may promote AF inducibility.

Conclusion
�� Defective SR Ca2+ handling may contribute to both the induction and perpetuation of AF.
�� Pharmacological inhibition of aberrant SR Ca2+ release might be a promising new strategy for the treatment of AF.
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Conclusion & future perspective
There is emerging evidence from animal models 
and human studies that abnormal Ca2+ handling 
by the SR plays an important role in AF. Reduced 
I

Ca,L
 current may be key to contractile dysfunc-

tion in AF. However, an increased incidence of 
spontaneous diastolic SR Ca2+ release events 
might contribute to both the induction and 
maintenance of AF. Increased PKA and CaMKII 
phosphorylation of RyR2, and reduced binding 
of the FKBP12.6 subunit to RyR2, might evoke 
triggered activity [21,114]. Relatively increased 
SERCA2a function, due to alterations in PLN 
phosphorylation and SLN expression, may 
enhance SR Ca2+ reuptake, compensating for the 
RyR2-mediated diastolic SR Ca2+ leak. Recent 
work in genetically-modified mice has provided 
important insights into the causal relationships 
between molecular alterations of single molecules 
in the context of AF susceptibility. However, it 
remains to be established whether cellular Ca2+-
related proarrhythmic events are the underly-
ing mechanism of atrial arrhythmogenic foci 
in patients in vivo. Nevertheless, new pharma-
cological agents are being developed to inhibit 

potentially arrhythmogenic diastolic SR Ca2+ 
leak. These drugs might offer unique therapeutic 
advantages as they could improve atrial contrac-
tility and may reduce atrial arrhythmogenesis by 
normalizing SR Ca2+ handling.
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