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Rheumatoid arthritis is a chronic inflammatory systemic autoimmune disease that destroys 
cartilage and peri-articular bone. Recent therapeutic advances for this disease have 
yielded promising results, the most notable of which have been pharmacologic agents that 
block tumor necrosis factor (TNF)-α. Despite these advances, the search for new therapies 
continues, amongst which stem cells are being developed for potential applications in 
cartilage- and bone-tissue engineering. Given the large clinical demand for such stem-cell 
applications, muscle-derived stem cells are being heavily investigated  due to their ease of 
isolation and ability to differentiate into multiple lineages, including osteogenic and 
chondrogenic lineages. Furthermore, when genetically modified ex vivo to express growth 
factors, these cells can repair bone and cartilage in animal models. Accordingly, 
regenerative therapies and tissue engineering that are based on muscle-derived stem cells 
are emerging with promising experimental results thus far for treating various types of bone 
and cartilage injuries, including those caused by rheumatoid arthritis.

Current treatments for 
rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic systemic
autoimmune disease characterized by pain, swell-
ing and the subsequent destruction of joints. This
disease involves the synovial membrane, which
becomes inflamed and exposed to inflammatory
cytokines that progressively destroy bone and car-
tilage and portents patients to functional disabil-
ity, substantial morbidity and even accelerated
mortality [1]. 

For many years, RA has been treated with dis-
ease-modifying anti-rheumatic drugs (DMARDs),
albeit with limited effects on the radiological pro-
gression of the disease that now has restricted use
of these agents primarily to methotrexate and sul-
fasalazine, all of which have had better clinical out-
comes compared with other DMARDs [2]. Efforts
to seek alternative therapies and recent progress in
biotechnology have led to our enhanced under-
standing of the immunopathogenesis for RA, con-
sequently facilitating the development of novel
therapies that target specific dysregulated compo-
nents of the immune system. Such therapies focus
on targeting pro-inflammatory cytokines that play
a crucial role in the pathogenesis of this disease,
including tumor necrosis factor-α (TNF-α), inter-
leukin (IL)-1 and -6 [3–5]. For some time now,
TNF-α inhibitors in particular have yielded dra-
matic therapeutic improvements and revolution-
ized treatment paradigms for RA [6–8]. Despite
improvements seen with these agents – most of
which displayed virtually no serious adverse effects
on initial studies – the expanded use of TNF

antagonists has begun to unmask complications
that include hematologic abnormalities such as
aplastic anemia and lymphoma, as well as other
cancers, lupus-like autoimmune disease and multi-
ple sclerosis-like demyelinating disorders, severe
allergy, infection, aseptic meningitis, vasculitis and
liver disease [9–16,201]. Whereas these side effects are
quite rare, researchers now pursue new strategies
for treating RA that may reduce such limitations
and side effects or replace these drugs.

Bone- & cartilage-tissue engineering 
using stem/progenitor cells
Bone-tissue engineering
A recently evolving strategy for treating various
diseases, including RA, has been to develop the
use of stem cells for regenerative medicine and
tissue engineering. Stem cells display multi-
potency toward various lineages of organ-specific
precursors and progenitor cells that enable them
to repopulate and differentiate into multiple
types of tissues. Adult stem and progenitor cells
of the mesenchymal lineages in particular are the
focus of intense research as they are readily acces-
sible from various tissues and organs such as
bone marrow (BM) [17–19], peripheral blood or
blood vessels [20–22], adipose tissue [23,24], syn-
ovium [25,26], umbilical cord blood [27,28] and
skeletal muscle [29,30].

A specific focus in regenerative medicine has
been to use BM-derived mesenchymal stem cells
(BMMSCs) to regenerate large segmental bone
defects that result from trauma and tumor resec-
tion, as well as joint destruction that results from
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metabolic and autoimmune diseases (AD) such
as RA. While segmental defects are presently
treated with bone auto- and allografts, there are
only limited quantities of bone that can be har-
vested from a single donor, making tissue engi-
neering with these and other highly proliferating
stem cells an attractive therapeutic alternative
that has been successful thus far in animal mod-
els [31–36]. Based on the preclinical success of this
cell-based therapy for addressing bone injuries
[37] and even addressing osteogenesis imperfecta
[38], the transplantation of whole BM cells or
BMMSCs for bone regeneration is now entering
clinical trials [39]. 

As with BMMSCs, human peripheral blood
endothelial progenitor cells (EPCs) [40–42] are
being investigated to specifically address the
problem of delayed and atrophic non-unions in
fracture healing, which has a significantly high
(5–10%) annual incidence amongst all long bone
fractures and result from an inadequate local
blood supply around the zone of injury [43,44].
Because securing an adequate blood supply to
this area is crucial for bone healing to occur
[45,46], as would be evidenced radiographically by
the formation of bridging callus along a former
fracture gap, an emerging focus in regenerative
medicine is to develop EPCs to promote neoang-
iogenesis. EPCs are appealing for this task in
large part because the link between angiogenesis
and the development of native bone on a larger
scale has led to the discovery on a cellular level
that there exists a developmental reciprocity
between endothelial cells and osteoblasts [47].
EPCs are also appealing for this task because a
more traditional approach for enhancing the
local vascularity along a non-union or delayed
union has been to perform vascular bone graft-
ing, which requires painstaking microvascular
surgical skills [43].

The osteogenic potential of human peripheral
blood EPCs has been discovered to occur both
directly through osteogenic differentiation [48–51]

as well as indirectly via local induction of osteo-
genesis and/or angiogenesis [51–53]. With regards
to the former, 20% of human circulating CD34+

cells co-express the osteoblast-specific marker,
osteocalcin, as detected by single-cell reverse tran-
scriptase (RT)-PCR [51]. In addition to these
peripheral blood endothelial progenitors, circulat-
ing skeletal progenitor cells have also been isolated
[20,21], with recent reports demonstrating that
37% of osteocalcin-sorted osteoprogenitor cells
co-expressed the CD34 cell-surface marker, thus
suggesting that these skeletal progenitor cells

somehow overlap developmentally with EPCs [54].
As EPCs are highly and readily accessible within
the peripheral circulation and comprise a popula-
tion of cells with high osteogenic and endothelial
potential, they represent an important cell popu-
lation for up-and-coming strategies for overcom-
ing the problem of large segmental bone defects,
as well as delayed and non-unions. 

Cartilage-tissue engineering
Cartilage is often subject to full-thickness injuries
and osteochondral defects that are caused by dis-
eases such as RA and osteoarthritis (OA). To com-
plicate matters, this tissue has a poor vascular, nerve
and lymphatic supply, all of which makes it diffi-
cult to regenerate this tissue and render patients
with a poor prognosis for healing after damage.
Over time, unabated cartilage damage lead to
advanced osteoarthritis, which often requires sub-
stantial surgery such as total knee arthroplasty.
Accordingly, there is a great demand for advances
in the field of cartilage-tissue engineering.

In the past decade, autologous chondrocyte
implantation (ACI) has emerged as a novel ther-
apy for cartilage regeneration, in which autolo-
gous chondrocytes are isolated from a cartilage
biopsy, expanded in vitro, and seeded a periosteal
flap for implantation onto the site of an osteo-
chondral defect. While this procedure has been
received with much excitement, its efficacy has
been the focus of numerous clinical investiga-
tions through which its inherent limitations have
been exposed [55–62]. Among these limitations
are: the low cell density of each mature donor
cartilage harvest; the concern for a potential
leakage of the cells from the acceptor-site defect;
and an uneven distribution of remaining cells
below the periosteal flap, all of which confer a
substantial risk for uneven surface, hypertrophy
and ossification. In order to address these prob-
lems, chondrocyte-seeded collagen type I/III
membranes have substituted the periosteal seal as
a way to secure the implanted cells to the defect
area [63]. This biomaterial thus far seems clini-
cally promising [64], and a similar chondrocyte-
seeded hyaluronan-based biodegradable polymer
scaffold has also yielded good short-term results
[65,66]. Presently, however, the long-term utility
of chondrocyte transplantation remains unclear,
in part because of reports on this cell-type’s ded-
ifferentiation and loss of reparative ability over
time [67–69].

More recently, implantation of stem cells for
cartilage regeneration has been the subject of
much interest in regenerative medicine, in large
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part because these cells display a superior prolif-
erative capacity and tolerance for stress when
compared with aged chondrocytes. BMMSCs in
particular can undergo in vitro chondrogenesis
when exposed to TGF-β and incubated in a 3D
culture environment (e.g., cell pellets and micro-
masses). These cells can also upregulate the
in vivo expression of type II collagen and aggre-
can, as well as the in vivo synthesis of cartilage
matrix for up to 4 weeks after being lipofected
and injected into a sheep model [70]. To date, sev-
eral reports on BMMSCs indicate that these cells
have great potential for cartilage regeneration and
repair in experimental cartilage injury models
[71–75], with studies on autologous stem cell-based
tissue engineering now entering clinical phases
for cartilage repair and regeneration [76,77]. 

In addition to BMMSCs, stem cells isolated
from the synovium are being investigated for
their chondrogenic potential. Following the first
report on synovium-derived stem cells by De Bari
et al. [25], Sakaguchi et al. have reported that com-
pared with BM-, periosteum-, adipose-, and mus-
cle-derived stem cells, these cells have the best
potential for chondrogenesis in vitro [26,78]. Sub-
sequent in vivo experiments have confirmed that
synovium-derived stem cells do contribute to
cartilage regeneration [79]. 

Muscle derived cells – a putative source 
of stem cells
A population of regenerative cells that has recently
been heralded for its remarkable potential in the
field of tissue engineering and regenerative medi-
cine is that of muscle-derived cells (MDCs).
These cells are rapidly gaining popularity because
they can be safely obtained in a minimally-inva-
sive manner through a skeletal muscle biopsy, sub-
sequently tolerate ex vivo manipulation very well,
and are thereby easily transduced with a variety of
viral vectors. Because of this, they have been used
in several clinical trials [80–84]. 

MDCs consist of a heterogeneous group of cells
that predominantly consists of two broad popula-
tions, including satellite cells and a subset of
multipotent adult muscle-derived stem cells
(MDSCs) [85–87]. The satellite cells are located
beneath the basal lamina of mature skeletal muscle
fibers and have long been considered to only give
rise to cells of the myogenic lineage, whereas
MDSCs to date have been isolated from skeletal
muscle of postnatal mice by using the pre-plate
technique (Figure 1) and are being recognized for
their multipotency [88–92]. While there are also
side-population cells, mesoangioblasts and peri-

cytes that are starting to become considered as
other categories of skeletal muscle cells with regen-
erative potential [30,86,93], the origin of these cells
and their relationship to satellite cells or MDSCs
remains unclear. 

As noted, MDSCs can be isolated from skeletal
muscle through the preplate technique in a highly
purified fashion. These cells exhibit the capacity
for long-term proliferation, immune-privileged
behavior and multilineage differentiation both
in vitro and in vivo [30,94], all of which are impor-
tant features for regenerative therapies. MDSCs
are isolated in low ratios of 1:100,000 from
murine skeletal muscle, yet they maintain great
fidelity to their cellular characteristics by the time
they are sizeably populated, much as is seen with
BMMSCs [92]. Accordingly, only a small muscle
biopsy is sufficient for large-yield therapeutic
gains. The therapeutic application of MDSCs has
already been demonstrated in a mouse model for
Duchenne muscular dystrophy with great success,
where, unlike with satellite cells and myoblasts,
MDSCs have significantly improved the effi-
ciency of muscle regeneration and the delivery of
dystrophin to dystrophic muscle.

While the isolation of MDSCs is currently lim-
ited to the murine model, our group has recently
isolated a population of myoendothelial cells from
adult human skeletal muscle, which is a newly dis-
covered type of MDC. These cells differ from satel-
lite and endothelial cells that are isolated from the
same source in that they uniquely co-express myo-
genic and endothelial cell markers. These myoen-
dothelial cells demonstrate a very good capacity for
regenerating injured skeletal muscle and undergo-
ing myogenic, chondrogenic and osteogenic differ-
entiation in vitro [95]. A similar type of regenerative
cell that we have isolated from humans is the well-
known pericyte, which is isolated from microvas-
cular walls. Using flow cytometry, our group and
those of others have isolated human pericytes that
are myogenic precursors distinct from satellite cells,
and may be a promising candidate for upcoming
cell-therapy endeavors [22,95,96]. 

As we will highlight, skeletal MDCs or
MDSCs are being used to improve musculo-
skeletal healing after injury in bone and cartilage,
similar to BMMSCs and EPCs. These cells may
also be used for the healing of muscle, ligament
and meniscus, although more research in this
area is necessary. In any case, MDSCs are able to
effectively deliver growth factors and cytokines
through gene therapies for musculoskeletal
diseases (e.g., Duchenne muscular dystrophy)
and beyond (e.g., hemophilia B and diabetes),
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making these cells excellent candidates for the
development of therapies for bone and cartilage
injuries secondary to RA.

Bone- and cartilage-tissue engineering 
using muscle-derived cells
Bone-tissue engineering
Our initial work on bone-tissue engineering
involved experiments with severe combined
immunodeficiency (SCID) mice in which their
osteogenic potential is achieved by exposing them
to bone morphogenetic proteins (BMPs), or also
as genetically modified MDSCs to express BMP-
2. In each case, MDSCs formed ectopic bone
along the hindlimb muscle and elicited complete
closure of critical-sized skull defects of the recipi-
ent mice [97,98]. Through this research, we con-
firmed that MDSCs do indeed differentiate
towards the osteogenic lineage by identifying,
amongst MDSCs containing a LacZ marker gene,
a portion of cells that co-express β-galactosidase
and the osteogenic differentiation marker, osteo-
calcin [99,100]. Additionally, from ectopic bone and
rat calvarial defect regenerates formed from genet-
ically engineered MDCs and MDSCs, our group
clonally isolated MDSCs and found that 95% of
these cells exhibited osteogenic differentiation [88]. 

In a similar fashion, we performed experi-
ments on immunocompetent rats in which we
transduced MDSCs with a BMP-4-eoncoding
retrovirus and subsequently formed de novo bone
where we transplanted these cells. While these
mice did generate a local immune reaction, this
did not interfere with osteogenesis [101]. It there-
fore appears that MDSCs have a lower immuno-
genicity, which thereby permits them to persist
longer at the sites of transplantation, perhaps
making them better cellular vehicles than pri-
mary MDCs for bone formation through ex vivo
gene therapy. Several studies on genetically engi-
neered primary MDCs have confirmed that
these cells can induce ectopic ossification and
heal rat calvarial defects [102–104].

As fracture healing relies heavily on the local
blood supply, we transduced MDSC–BMP-2
and MDSC–BMP-4 with VEGF to determine
whether this would impact bone-tissue engineer-
ing. We implanted these cells into the muscle
pockets of mouse calvarial defects, and noted
that in the early phase of endochondral ossifica-
tion, VEGF did not significantly impact
chondrogenesis in the BMP-2 group, but did so
for the BMP-4 group, and by the end of this
process, there was a larger amount of bone

Figure 1. Isolation of muscle derived stem cells using the pre-plate technique.
 

Muscle-derived cells are enzymatically dissociated from mouse skeletal muscle. Myogenic cells are seeded – 
thus, the population of nonadhering cells is re-plated for 1 h to obtain a second pre-plate population. This 
procedure is then repeated in 24 h intervals until the sixth pre-plate population, in order to further purify the 
myogenic cells. The sixth pre-plate population takes an additional 24–72 h to attach to collagen-coated 
dishes, and this adhesive population is used as muscle-derived stem cells.
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Muscle biopsy
(mice)
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formed in the latter compared with the former
[105,106]. Overall, recipients of the VEGF–BMP
constructs displayed greater amounts of bone for-
mation compared with mice receiving MDSCs
expressing BMP but not VEGF. In citing this
work, it is important to note that increasing the
local vascular supply may, in addition to provid-
ing tissues with homeostatic nutrients, provide a
portal by which other stem cells that are present
in the circulation can be chemo-attracted at the
site of injury.

It is likely that by enhancing the local vascular-
ity, VEGF enhances the oxygenation of local tis-
sues and cells. This is worth mentioning because
it appears that oxygen tension provides an
environmental stimulus that drives stem cells to
differentiate into either osteogenic, chondrogenic
or fibroblastic lineages. In a pioneering study by
Urist et al. in which BMP was discovered, the
mixture of connective tissue cells and BMP
formed cartilage when placed in an avascular
environment, and bone within a vascular envi-
ronment [107]. Additionally, Bassett and Her-
rmann formed bone and cartilage when MDCs
were exposed to low oxygen tensions with com-
paction, and fibroblasts when these cells were
exposed to high oxygen concentrations with
mechanical tension [108]. Several studies since
then have confirmed that low oxygen tension
steers mesenchymal stem cells (MSCs) to differ-
entiate into the chondrocyte lineage, in part by
upregulating a program of chondrocyte-specific
gene expression under the control of hypoxia-
inducible factor 1 (HIF-1) [109–112]. Additionally,
numerous clinical reports implicate hypoxia in
the pathogenesis of heterotopic ossification, by
which MSCs pathologically form bone along the
soft tissues [113–116]. Not surprisingly, our research
indicates that bone formation is influenced by
the ratio of VEGF to BMP, where bone healing
occurs with low VEGF:BMP-4 ratios [105]. 

While it is important to devise ways in which
stem cells can produce bone, it is equally impor-
tant to have them do so in a controlled fashion.
In order to accomplish this, we engineered a self-
inactivating tet-on retroviral vector to modulate
BMP-4 expression in vitro and regulate bone for-
mation in vivo [117]. After implanting MDSCs
transduced with this vector into critical-sized cal-
varial defects, we initially noticed residual bone
formation without induction and bony over-
growth after induction, even after reducing the
number of implanted cells. We then co-
implanted MDSCs expressing BMP-4 with those
expressing Noggin, a BMP antagonist, into the

hindlimbs of mice and critical sized calvarial
defects, and were subsequently able to inhibit the
amount of bone formation in a dose-dependent
manner. This permits us to obtain a tighter con-
trol of osteogenesis with gene therapy [118,119].
Remarkably, the bone that we have generated
through these experiments is anatomically and
histologically similar to native bone. 

Finally, BMP-4-expressing MDSCs have thera-
peutic applications for orthopedic patients with
large segmental bone defects secondary to the
resection of tumors or infected and noninfected
non-unions, as well as to acutely comminuted
open fractures. While allografts and autografts are
traditionally used to occupy defects that are void
of bone, allografts have a limited healing capacity
and autografts are limited by their low availability.
By contrast, stem cells can be combined with var-
ious scaffolds to promote bone healing. Most scaf-
folds possess osteoconductive properties and must
be infused with osteoinductive agents, including
growth factors or cells engineered to secrete BMPs
to induce de novo bone formation. Our group has
used collagen and gelatin sponge scaffolds carry-
ing BMP-4-expressing MDCs to regenerate
mouse calvarial defects, albeit with bony over-
growth. While spongeous materials are also availa-
ble for such use, gel scaffolds have the distinct
advantage that they can be applied to a defect
through an injection rather than through an open
surgical wound.

Cartilage-tissue engineering
Several groups including ours have successfully
repaired full-thickness cartilage defects in the
knees of rats and rabbits by combining stem-cell
therapy with ex vivo gene therapy. In our studies,
we adenovirally transduced skeletal MDCs with
either insulin growth factor-I (IGF-I) or BMP-4,
and seeded these cells into collagen gel or fibrin
sealant matrices for implantation [120]. These
defects healed remarkably well when compared
with untreated rabbits, without any evidence that
our delivery device adversely affected the in vivo
viability, proliferation or differentiation of our
MDCs. Using the same animal model, Adachi
et al. transduced purified MDCs with LacZ, cul-
tured these cells in vitro for 3 weeks, and seeded
them into bovine type I collagen gels for delivery
into injured knees [121]. This group compared the
healing of osteochondral defects of these animals
to that of rabbits receiving chondrocyte trans-
plantations, and showed that autologous MDCs
healed defects with better integration and more
expression of type II collagen for up to 24 weeks.
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Using immunodeficient rats, Kuroda et al. [122]

obtained similar results using MDSCs trans-
duced with BMP-4 and, additionally, detected
LacZ transgene expression in repaired tissues at
12 weeks post-transplantation, as well as a persist-
ent repair of the osteochondral defects in histo-
logical grading up to 24 weeks after surgery.
These studies suggest that MDCs serve as both a
gene-delivery vehicle and a population of stem
cells that differentiate into chondrocytes capable
of repairing cartilage defects. 

As previously noted, there is emerging evi-
dence that cartilage-tissue engineering can be
augmented by inhibiting the expression of and
antagonizing VEGF. A characteristic of chondro-
genesis is that, in its terminal stages, there are
high levels of VEGF expression and angio-
genesis. This vascularity lead to endochondral
ossification [123,124], making it important to con-
trol VEGF signaling during the chondrogenic
differentiation of stem cells in order to steer these
cells toward the formation of articular cartilage
rather than bone. Using MDSCs retrovirally
transduced with chondrogenic genes such as
BMP-4, our group has suppressed VEGF expres-
sion and used the VEGF antagonist, s-Flt1, to
block angiogenesis. As a result, we increased the
expression of these genes by MDSC, ultimately
improving the regeneration of articular cartilage
(Matsumoto T, Stem Cell Research Center, Children’s Hospital of

Pittsburgh and the Department of Orthopedic Surgery, University of

Pittsburgh Medical Center, PA, USA. Unpublished Data). In the
study, sFlt1 gene therapy improved BMP4-
induced chondrogenic gene expression of
MDSCs in vitro, and improved the persistence of
regenerated articular cartilage by preventing vas-
cularization and bone invasion into the regener-
ated articular cartilage (Matsumoto T. Unpublished Data).
These phenomena were confirmed not only in a
full-thickness cartilage defect model, but also in
a model for osteoarthritis (OA) in immunodefi-
cient rats (Matsumoto T. Unpublished Data). When deliv-
ered via intracapsular injection into these rats,
BMP-4-transduced MDSCs differentiated into
chondrocytes and displayed an increase in chon-
drogenesis compared with nontransduced
MDSCs via BMP-4 in an autocrine/paracrine
manner, while s-Flt1-transduced MDSCs
blocked VEGF to provide an environment in
which chondrocytes underwent proliferation
rather than apoptosis. By combining both cells,
there was ultimately substantial cartilage regener-
ation and healing. It is interesting to note that
these data are consistent with our discussion
above on bone regeneration and prior data on

VEGF, and the likely role of oxygen tension on
steering stem-cell differentiation toward various
different lineages. 

Therapeutic potential of stem cells for 
rheumatoid arthritis
Joint destruction in RA results from a systemic
autoimmune process in which therapy has accord-
ingly focused on the use of anti-inflammatory and
immunosuppressant drugs. Much as in other AD,
such as multiple sclerosis, systemic sclerosis, juve-
nile idiopathic arthritis and systemic lupus ery-
thematosus, RA is caused by an immunologic
imbalance and a loss of immunologic tolerance in
which the immune system ultimately approaches
major histocompatibility complex (MHC)-II
antigens along host tissues as foreign bodies,
rather than native proteins, and thereby attacks
various organs that specifically express these anti-
gens. This process can be initially mediated by
immune complexes, circulating autoantibodies or
autoreactive T lymphocytes. 

While conventional AD therapies are effective
in most patients, resistance to anti-inflammatory
and immunosuppressant agents is not uncom-
mon. Furthermore, some patients are capable of
responding only to high doses of such medica-
tions, placing them at risk for serious adverse
effects such as infection, cancer and poor tissue
healing, amongst other ill effects. In such cases,
stem cells may provide an important clinical strat-
egy for treating these diseases either alone or with
the combination of anti-inflammatory and
immunosuppressive drugs. Accordingly, the thera-
peutic potential of stem cells for treating RA is
currently being developed through animal
research on bone- and cartilage-tissue engineering
with various multipotent cells, including hemato-
poietic, mesenchymal and muscle-derived stem
cells. These emerging therapeutic avenues will be
discussed below. 

Hematopoietic stem cells 
While the immune system and mesenchymal tissue
are comprised of cells with different functional
roles, there is mounting evidence that hemato-
poietic stem cells (HSCs) are cellular precursors of
the immune system and can interact with osteo-
blasts to regulate this system [125–128]. This is an
important discovery, as patients with AD are often
immunosuppressed by drastic methods such as
immunoablation, and subsequently require BM
reconstitution with HSCs. According to studies
using experimental animal models of AD [129], as
well as clinical reports on AD patients, HSC
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transplants (HSCT) conferred autologous toler-
ance and disease remission, respectively [130,131],
making HSCT a promising therapy for severe AD
such as RA, multiple sclerosis, systemic sclerosis,
juvenile idiopathic arthritis and systemic lupus ery-
thematosus in the past several decades [132–141]. In
addition to supplementing high-dose immunosup-
pression with HSCT, HSC mobilization with
granulocyte-colony stimulating factor has also
become a therapeutic approach for many immune-
mediated diseases. Of note, HSCT has been shown
in JIA patients to restore CD4+/CD25+ T cells,
which are the principal regulators of the immune
system [142]. 

Despite these encouraging findings, there are
limitations to combining immunoablation with
HSCT. Specifically with RA, some patients enter
relapses in which analyses of synovial-infiltrating
lymphocytes suggests that the initial ablation was
incomplete, as local or lesional T cells were found
to be derivatives of the pre-treatment BM [143].
This suggests that even after BM reconstitution
with HSCT, some level of immunosuppression is
still required to be therapeutically desired. 

Mesenchymal stem cells
The combination of HSCT with just the right
amount of immunosuppression may be obtained
by engrafting HSCs with MDSCs at the time of
BM reconstitution. These cells are not only
multipotent, but also confer anti-proliferative
and immunomodulatory effects on the recipient
immune system, thereby reducing the risk for
transplant rejection, and perhaps even disease
recurrence from T cells that persist from before
immunoablation. Accordingly, while HSCT
provides a way to reconstitute BM and thereby
address aplasia, it is the MSCs that may actually
be responsible for the direct therapeutic effects of
immunosuppression.

In support of the immunosuppressive role that
MDSCs can play, several researchers have reported
that T- and B-lymphocyte proliferation, either
occurring in mixed lymphocyte cultures or
induced in vitro by mitogens and antibodies, can
be suppressed by these cells in a dose-dependent
and MHC-independent fashion [144–151]. This sup-
pression persists in human cell cultures even after
separating MSCs from lymphocytes in transwell
assays, indicating that cell-to-cell contact is not
required [144,148,152]. From an in vivo standpoint,
an immunosuppressive effect of MSC was first sug-
gested in a baboon model, where infusion of
ex vivo-expanded donor or third-party MSC
delayed the time to rejection of histoincompatible

skin grafts [149]. Based on these findings, researchers
employed MSCs to successfully treat experimental
T-cell-mediated autoimmune encephalomyelitis in
an animal model [153,154]. 

While the immunosuppressive effects of MSCs
are appealing in many regards, this effect also war-
rants caution. Fortunately, clinical trials in which
ex vivo-expanded MSCs have been intravenously
infused have thus far been free of any adverse
events during and after infusion [155–159]. While
low levels of engrafted MSCs have been detected
in several tissues, durable stromal cell chimerism
has been difficult to identify [156,159,160]. In light of
this, it is worth highlighting a recent case report in
which the systemic infusion of MSCs suppressed a
grade IV graft-versus-host disease in a 9-year-old
child who had previously received a BM trans-
plant [161]. Therefore, thus far MSCs represent
promising avenues through which to direct the
local paracrine production of therapeutic growth
factors and provide a form of immunosuppressive
therapy that shows no evidence, to date, of adverse
effects that accompany more traditional forms of
immunosuppression and immunomodulation.

As mentioned, a potential therapeutic
approach for AD may be to combine more tradi-
tional immunosuppressive modalities, such as
anti-inflammatory drugs or steroids, with stem-
cell therapy [162]. When considering such combi-
nation therapies, however, it is important to rec-
ognize that the proliferation and differentiation
potential of at least some types of stem cells may
be compromised by the use of steroids, in partic-
ular. In one study, Cui et al. demonstrated that
pluripotential BM stromal cells become increas-
ingly adipogenic and less chondrogenic over time
when exposed to dexamethasone in a dose-
dependent fashion [163]. While this work con-
sisted of in vitro experiments, it is conceivable
that in an in vivo AD model in which BM recon-
stitution is being performed with stem cells, ster-
oids may compromise the pluripotency of
implanted stem cells and perhaps induce fatty
infiltration of the marrow. Interestingly, this same
group found that this adipogenesis can be inhib-
ited with lovastatin both in vitro and in a chicken
model for osteonecrosis of the femoral head [164].
In contrast to these results, Kastrinaki et al.
found no difference in the clonogenic and prolif-
erative potentials of MSCs of RA patients
untreated and treated with antirheumatic agents
such as methotrexate, corticosteroids or anti-
inflammatory agents [165]. However, they did find
a difference between RA and healthy patients
when comparing these parameters in isolated
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stem cells. This may suggest that BMMSCs from
healthy patients may be therapeutically beneficial
when transplanted into RA patients. 

Muscle-derived stem cells
As MDSCs are a novel population of highly pro-
liferative, self-renewing and multipotent muscle
stem cells that display an immune-privileged
behavior, these cells have tremendous potential for
bone and cartilage regeneration in RA patients.
Full-thickness articular cartilage defects in our
experimental models have already been very
promising to this end, as described above [122].
Recently, we found gender differences in the treat-
ment efficacy of this model, in which the trans-
duction of male MDSCs with BMP-4 displays
greater proliferation and better chondrogenic
potential in vitro, as well as cartilage regeneration
in vivo when compared with female MDSCs
(Matsumoto T. Unpublished Data). While the prevalence of
RA is higher in females than in males, it is unclear
how these findings will, if at all, impact the treat-
ment of different genders. Specifically, it remains
to be seen whether joint repair in females through
the use of MDSCs would be more efficacious

with autologous cells or with allogeneic cells
obtained from male donors. If the latter proves to
be the case, then this gender difference may pro-
vide a clinical strategy for the allogeneic use of
MDSCs to repair the joints of RA.

Finally, purified MDSCs are capable of differen-
tiating into hematopoietic lineages from which the
immune system develops [88,166–176]. In fact,
MDSC express the hematopoietic stem cell mark-
ers CD34 and Sca-1, suggesting that these cells
contain intrinsic characteristics of HSCs that may
make them capable of not only regenerating bone
and cartilage, but also of maintaining BM homeo-
stasis and possibly even reconstituting immunoab-
lated BM (Figure 2). While limited evidence
suggests that these cells are not too immunosup-
pressive, it remains to be seen whether their sup-
pressive effects are sufficient to render RA patients
with an effective therapeutic modality, and thereby
give these cells an advantage over the other stem
cells for treating this and other similar AD.

Conclusions & future perspective
Stem cells are capable of multilineage differentia-
tion toward bone and cartilage, reconstituting the

Figure 2. Therapeutic potential of muscle-derived stem cells for rheumatoid arthritis.
 

Muscle-derived stem cells have capacities for multilineage differentiation, especially toward bone and 
cartilage, suggesting the possibility in therapeutic application for joint destruction of rheumatoid arthritis. 
The potential of muscle-derived stem cells for hematopoietic differentiation also provides a useful strategy 
and widens clinical application for rheumatoid arthritis.
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BM, and inducing anti-inflammatory and immu-
nomodulatory effects in activated target cells, all of
which are emerging criteria for an effective clinical
treatment strategy for RA. MDSC-based regenera-
tive therapy and tissue engineering using ex vivo
gene therapy provide promising approaches for
treating various types of bone and cartilage inju-
ries, including those caused by RA.

We believe that stem cell-based therapy and tis-
sue engineering may one day provide the solution
for patients suffering from RA. Before we can
employ the routine use of stem cells in clinical set-
tings, further in vitro and in vivo investigations are
required to better delineate their mechanisms and
better define each clinical concept that is necessary
for effective therapies. Toward this end, some have
recently reported on the anti-inflammatory and
immunomodulatory effects of BMMSCs with

promising clinical results for treating RA. As these
cells share many characteristics with MDSCs, it is
likely that MDSCs may be the focus of such studies
targeting RA and other AD in the future. 
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Executive summary

Bone- & cartilage-tissue engineering using stem cells

• Sources of stem cells: bone marrow (BM), peripheral blood or blood vessels, adipose tissue, synovium, umbilical cord blood and 
skeletal muscle. 

• Bone-tissue engineering: BM-derived mesenchymal stem cells (BMMSCs), circulating skeletal progenitor cells and circulating 
CD34+ cells (endothelial progenitor cells), amongst others. 

• Cartilage-tissue engineering: autologous chondrocyte implantation (ACI), second-generation of ACI, BMMSCs and 
synovium-derived stem cells combined with various scaffolds, amongst others. 

Muscle-derived stem cells (MDSCs)

• Capacity for differentiation toward the myogenic lineage and mesenchymal multilineage.
• Long-term proliferation ability and the capacity for self-renewal and immune-privileged behavior.
• Human-muscle-derived cells: myoendothelial cells that co-express myogenic and endothelial cell markers with a superior capacity 

to regenerate injured skeletal muscle and multipotent differentiation toward myogenic, chondrogenic and osteogenic lineage, 
when compared with other muscle cells.

Bone & cartilage tissue engineering using MDSCs

• Bone-tissue engineering: MDSC-based ex vivo gene therapy with a retrovirus encoding bone morphogenic protein (BMP)-2 or -4, 
and MDSC-based ex vivo gene therapy with a retrovirus encoding BMP-2 or -4, as well as VEGF.

• Cartilage-tissue engineering: muscle-derived cell (MDC)-based ex vivo gene therapy, MDSC-based ex vivo BMP-4 gene therapy, 
and MDSC-based ex vivo BMP-4 and sFlt1 (VEGF antagonist) gene therapy combined with collagen gel or fibrin sealant matrices.

Therapeutic potential of stem cells for rheumatoid arthritis

• Stem cells including MDSCs with a high potential for bone- and cartilage-tissue engineering in rheumatoid arthritis (RA).
• Hematopoietic stem cells (HSCs) with the capacity to reconstitute BM for maintaining homeostasis.
• Mesenchymal stem cells (MSCs) with multipotent differentiation, supporting cells for HSC engraftment and anti-proliferative and 

immunomodulating cells.
• MDSCs with the potential for hematopoietic as well as osteogenic and chondrogenic-lineage differentiation.

Conclusion & future perspective

• Stem cell (including MDSCs) based regenerative therapy and tissue engineering using ex vivo gene therapy have capacities for 
multi-lineage differentiation toward bone and cartilage, reconstituting BM and inducing anti-inflammatory and 
immunomodulatory effects in activated target cells, providing the clinical strategy for the treatment of RA.

• Allogeneic use of stem cells in the clinical setting of RA needs further in vitro and in vivo investigations for identification of the 
mechanism of each concept.
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