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Rapid Creation of Creative Energy 
Materials Using Machine Learning

Introduction
Most material-related data in databases is 
generally not used at all or is used very little. 
In this instance, finding a novel research 
strategy is crucial to increasing the rate of 
material innovation. Artificial intelligence 
(AI) is now ushering in a new age in material 
science research. The main algorithmic 
framework and a solid hardware basis have 
been developed to enable AI after more 
than 60 years of advancement [1]. From a 
simple perceptron to intricate multilayer 
neural networks, this development has 
grown. Some extremely sophisticated AI 
systems have even been able to outperform 
human world champions in an assortment 
of games, including chess, Go, and other 
strategic games [2]. As a result of the field’s 
heavy reliance on data, the community 
places significant. Due to the control of 
material science’s dependence on data, the 
community places an extensive amount of 
its focus on AI because of its superior data-
mining skills. Big data and AI can be used 
to combine a tonne of pre-existing data to 
create still untested hypotheses that might 
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direct future study. However, this method 
is useful for managing sophisticated 
composite spaces or nonlinear processes, 
which makes it easier to handle the 
difficulties now faced in material research 
[3]. To clarify the compatibility between 
post-treatment amine molecules and 
the halide perovskite films and to predict 
the stability of perovskite films, a model 
that uses machine learning (ML) was 
developed based on experimental data. 
Additionally, successful synthesis of six 
perovskite substances that had suitable 
band gaps using the Xgboost approach. 
Additionally, portable electric gadgets, 
consumer electronics, and grid-scale 
energy storage all make extensive use of 
secondary batteries. They’re perfect for 
recharging high-efficiency methods, such 
as mobile phones or electric vehicles. By 
more rapidly and accurately determining 
the composition-structure-property 
correlations of rechargeable battery 
materials, ML will become a feasible 
computational tool for rechargeable 
battery materials .PCM is a class of star 
materials that can be employed in high-
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power electronic (photovoltaic and wind) 
and electrification operations [4].

Algorithmic learning techniques

The foundation of mind order to find novel 
materials, this is done in order to create a 
model that can be applied without repeating 
the same experiment or computation. 
Using ML, we can reveal insights that were 
previously hidden. Once ML approaches 
have learnt the rules from a particular set 
of data, they may build a model and make 
predictions [5]. One of them is supervised 
learning, one of ML’s most fundamental 
procedures, which includes having a subject 
matter expert examine the data. Despite the 
fact that accurate labelling of the data is vital 
for this technique to be successful, supervised 
learning is an incredibly effective tactic when 
employed in appropriate circumstances [6].

Benefits and drawbacks of various machine 
learning methods in materials science

With enough information in the right 
format, a model for analysing materials may 
be constructed. The modelling procedure 
involves choosing appropriate algorithms, 
practising using practise data, and making 
accurate forecasts. Four different ML 
approaches are discussed in the section that 
follows: supervised learning, unsupervised 
learning, semi-supervised learning, and 
reinforcement learning. Since the related 
outputs of the training data have been 
labelled, supervised learning is sometimes 
referred to as “learning with a teacher”. In 
contrast, the matching results of the training 
data are unlabeled in unsupervised learning. 
In semi-supervised learning, just a portion 
of the training data is labelled while the 
remaining portion is left unlabeled. The 
unlabeled data frequently outweigh the 
labelled data in terms of quantity. Reward 
signals provided by the environment are 
used to gauge the model’s performance 
rather than giving it instructions on how to 
create actual behaviours [7,8]. The accuracy, 
drawbacks, and benefits of each ML 
method in recently published articles were 
summarised and the proportion of usage of 
each algorithm in recently published papers 
is shown. The four different ML approaches 
mentioned above may be implemented 
using algorithms, which can be divided into 
two categories: deep learning and shallow 
learning. The benefits, drawbacks, and 

applications of each method were examined 
in Table 6 for advanced energy materials. 
Suggested using the linear regression model 
to estimate solar radiation in Perlis, which 
is located in Northern Malaysia. There is a 
linear relationship between the amount of 
solar radiation and the average air there 
is a 0.7780 linear association between air 
temperature and solar radiation. After taking 
into account outliers, it falls to 0.7473. The 
correlation coefficient and the value of R2 
are raised when the outliers are taken into 
consideration based on these findings [9,10].

Conclusion
The most accurate way for forecasting 
material and system behaviour at the 
moment is machine learning (ML) 
applications in energy materials research. 
Finding an appropriate method to use with 
ML is usually difficult, and researching the 
various algorithms takes a lot of effort. The 
most commonly utilised algorithm for solar 
cells, batteries, and PCMs was ANN (MLP), 
based to the data we gathered from our 
investigation and comparison of the most 
current articles published. This is presumably 
due to the fact that the input data points for 
energy materials are typically between 100 
and 1000, and the MLP algorithm works well 
for networks with little data. MLP and other 
basic neural networks have less separation 
power than SVM and other robust neural 
networks. Such a network can perform 
even better than a backup vector machine 
by including hidden layers, employing a 
powerful activation function, and selecting 
the right number of hidden layer neurons. 

References
1. Ziheng L. Computational discovery of energy materials 

in the era of big data and machine learning: a critical 
review. Materials Reports Energy.1, 100047(2021).

2. Logan M. A general-purpose machine learning 
framework for predicting properties of inorganic 
materials. Comput Mater.2, 1-7(2016).

3. Peterson, Gordon GC, Brgoch J. Materials discovery 
through machine learning formation energy. j phys 
energy. 3, 022002(2021).

4. Baduge, Kristombu S. Artificial intelligence and smart 
vision for building and construction 4.0: Machine 
and deep learning methods and applications. Autom 
Constr.141, 104440(2022).

5. Berggren K, Likharev KK., Strukov DB et al. Roadmap 
on emerging hardware and technology for machine 
learning. Nat Nanotechnol.32, 012002(2020).

mailto:https://www.sciencedirect.com/science/article/pii/S2666935821000823?via%3Dihub
mailto:https://www.sciencedirect.com/science/article/pii/S2666935821000823?via%3Dihub
mailto:https://www.sciencedirect.com/science/article/pii/S2666935821000823?via%3Dihub
mailto:https://arxiv.org/ftp/arxiv/papers/1606/1606.09551.pdf
mailto:https://arxiv.org/ftp/arxiv/papers/1606/1606.09551.pdf
mailto:https://arxiv.org/ftp/arxiv/papers/1606/1606.09551.pdf
mailto:https://iopscience.iop.org/article/10.1088/2515-7655/abe425
mailto:https://iopscience.iop.org/article/10.1088/2515-7655/abe425
mailto:https://www.sciencedirect.com/science/article/pii/S0926580522003132?via%3Dihub
mailto:https://www.sciencedirect.com/science/article/pii/S0926580522003132?via%3Dihub
mailto:https://www.sciencedirect.com/science/article/pii/S0926580522003132?via%3Dihub
mailto:https://iopscience.iop.org/article/10.1088/1361-6528/aba70f
mailto:https://iopscience.iop.org/article/10.1088/1361-6528/aba70f
mailto:https://iopscience.iop.org/article/10.1088/1361-6528/aba70f


50

Rapid Creation of Creative Energy Materials Using Machine Learning Editorial

6. Karniadakis GE, Kevrekidis IG, Yang L et al. Physics-
informed machine learning.Nat Rev Phys. 3, 422-
440(2021).

7. Mahdi MN, Ahmad AR, Qassim QS et al. From 5G 
to 6G technology: meets energy, internet-of-things and 
machine learning: a survey. Appl Sci. 11, 8117(2021).

8. Mueller T, Hernandez A, Wang C. Machine learning for 

interatomic potential models. J Chem Phys. 152, 050902 
(2020).

9. Louie SG, Chan YH, Jornada FH et al. Discovering 
and understanding materials through computation. Nat 
Mater. 20, 728-735(2021).

10. Saraswat S, Yadava GS. An overview on reliability, 
availability, maintainability and supportability (RAMS) 
engineering. Int J Qual Reliab Manag. 25, 330–
344(2008).

mailto:https://sites.brown.edu/crunch-group/
mailto:https://sites.brown.edu/crunch-group/
mailto:https://pdfs.semanticscholar.org/c237/35dbfdde0afca65bf88b1aebdabcdb130aad.pdf?_gl=1*1j9nb9v*_ga*MTYxNjExOTQ5NS4xNjg2MTI4NDgw*_ga_H7P4ZT52H5*MTY4ODcwOTc0OC4xOS4xLjE2ODg3MTIxNDEuNTUuMC4w
mailto:https://pdfs.semanticscholar.org/c237/35dbfdde0afca65bf88b1aebdabcdb130aad.pdf?_gl=1*1j9nb9v*_ga*MTYxNjExOTQ5NS4xNjg2MTI4NDgw*_ga_H7P4ZT52H5*MTY4ODcwOTc0OC4xOS4xLjE2ODg3MTIxNDEuNTUuMC4w
mailto:https://pdfs.semanticscholar.org/c237/35dbfdde0afca65bf88b1aebdabcdb130aad.pdf?_gl=1*1j9nb9v*_ga*MTYxNjExOTQ5NS4xNjg2MTI4NDgw*_ga_H7P4ZT52H5*MTY4ODcwOTc0OC4xOS4xLjE2ODg3MTIxNDEuNTUuMC4w
mailto:https://pubs.aip.org/aip/jcp/article/152/5/050902/199257/Machine-learning-for-interatomic-potential-models
mailto:https://pubs.aip.org/aip/jcp/article/152/5/050902/199257/Machine-learning-for-interatomic-potential-models
mailto:https://www.nature.com/articles/s41563-021-01015-1
mailto:https://www.nature.com/articles/s41563-021-01015-1
mailto:https://www.emerald.com/insight/content/doi/10.1108/02656710810854313/full/html
mailto:https://www.emerald.com/insight/content/doi/10.1108/02656710810854313/full/html
mailto:https://www.emerald.com/insight/content/doi/10.1108/02656710810854313/full/html

