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Bone erosion is a major complication associated with rheumatoid arthritis (RA) and is a key 
contributing factor to the functional disability of RA patients. Tumor necrosis factor-α and 
interleukin-1 are well recognized as important factors causing bone erosion in RA. As such, 
current therapeutic regimens have relied primarily on the agents blocking the function of 
tumor necrosis factor-α and interleukin-1. The discovery of the receptor activator of NF-B 
(RANK) and its ligand (RANKL) has not only revealed an essential role for the RANKL/RANK 
system in arthritic bone erosion, but also indicated that the system can serve as effective 
therapeutic targets for arthritic bone erosion. In this review, the role of the RANKL/RANK 
system in bone erosion in RA, and the therapeutic agents, which are currently under 
development that target the system, will be discussed. Moreover, the rationale for exploring 
certain RANK signaling pathways as better therapeutic targets will also be discussed. 

Rheumatoid arthritis (RA) is a chronic auto-
immune disease characterized by inflammatory
synovitis and progressive destruction of cartilage
and bone in joints [1]. The structural damage to
cartilage and bone contributes significantly to
the decline in the functionality and often has
detrimental effect on quality of life in RA
patients [2]. Previously, the cartilage and bone
destruction were viewed as end-point results of
the disease, but several studies have revealed that
the cartilage and bone loss occurs at early stages
of the disease [3,4]. Thus, an effective early inter-
vention may be critical for preventing the pro-
gression of the structural deterioration in the
cartilage and bone.

While cartilage degradation in RA results
from action of matrix metalloproteinase pro-
duced by chondrocytes and pannus [5], bone
destruction is primarily mediated by osteoclasts,
the sole bone resorbing cells that have been con-
vincingly identified to date [6]. Two inflamma-
tory cytokines, tumor necrosis factor (TNF)-α
and interleukin (IL)-1, which are involved in the
pathogenesis of inflammation in RA, also play a
role in arthritic bone erosion [2]. Both IL-1 and
TNF-α are potent pro-osteoclastogenic factors
and stimulate bone loss in RA by activating the
formation and function of the osteoclasts [6]. An
anti-IL-1 agent (anakinra, IL-1 receptor antago-
nist) and several TNF-α-blocking drugs (inflixi-
mab, etanercept and adalimumab) have been
developed for RA [7,8]. However, these agents are
only moderately effective in preventing arthritic
bone destruction [7,8]. Moreover, it has increas-
ingly become clear that these drugs may cause
several adverse sideeffects in RA patients [7,8]. 

The discovery of the receptor activator of
nuclear factor-κB ligand (RANKL)/RANK
system in the late 1990s has not only signifi-
cantly advanced our understanding of osteo-
clast biology, but also revealed that aberrant
alterations in the system are implicated in bone
loss associated with various pathological condi-
tions, including RA [9]. More significantly, it
has also become clear that RANKL is essential
for IL-1 and TNF-α-mediated osteoclasto-
genesis, establishing the RANKL/RANK sys-
tem as a potent therapeutic target for arthritic
bone erosion [6]. Consequently, tremendous
efforts have been devoted to developing thera-
peutic agents targeting the system for bone
loss. The agents currently under development
include osteprotegerin (OPG), RANK-Fc and
anti-RANKL antibodies, which all function to
block the RANKL–RANK interaction [10–12].

This article will start with an updated
review of the cellular and molecular mecha-
nisms underlying the pathogenesis of bone
destruction in RA, with a special emphasis on
the essential role of the RANKL/RANK sys-
tem in the pathological process. Then, the
therapeutic potentials and associated limita-
tions of the therapeutic agents targeting the
RANKL/RANK system, which are currently
under development, will be discussed. More-
over, the author’s perspectives on exploring
certain RANK signaling pathways as more spe-
cific therapeutic targets will be provided to
encourage further discussion, which may help
harness the ultimate therapeutic potential of
the RANK/RANK system for RA therapy in
the future. 

For reprint orders, please contact:
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Cellular & molecular mechanisms of 
bone erosion in RA 
Osteoclast as the principal cell mediating 
bone erosion 
The definitive identification of cell type(s)
involved in bone erosion in RA is critical for
developing effective therapy for arthritic bone
loss. Numerous early studies suggested that bone
erosion in RA may result from combined actions
of several distinct cell types, including osteo-
clasts, synovial fibroblasts and macrophages.
While an electron-microscopic study initially
implicated the macrophage as a major cell type
causing arthritic bone erosion (primarily due to
the predominant presence of macrophages at the
synovial–bone junction [13]), numerous other
studies indicated that osteoclasts are also abun-
dantly localized in the areas of bone erosion in
the inflamed joints [14,15], suggesting that the
osteoclast is also involved in arthritic bone destruc-
tion. Moreover, synovial fibroblasts were also sug-
gested to play a role in arthritic bone loss [16].
However, several recent studies using animal
models demonstrated that the osteoclast is the
principal cell mediating bone destruction in RA.
For instance, OPG, a strong inhibitor of osteo-
clastogenesis, blocks bone erosion in both
TNF-α and collagen-induced arthritis in animal
models [17,18]. 

The most unambiguous evidence supporting
the osteoclast as the principal cell type causing
bone loss in RA came from the following two
animal model studies using mice lacking osteo-
clasts [19,20]. In the first study, inflammatory
arthritis was induced in the RANKL-/- mice,
which completely lack osteoclasts using a
serum transfer model [20]. The experimental
animals exhibited minimal bone erosion while
they developed significant inflammation [20],
supporting the suggestion that the osteoclast
plays a predominant role in inducing arthritic
bone erosion. The second animal model study
involved the cross-breeding of transgenic mice
expressing human TNF (hTNFtg), which
develop a severe and destructive arthritis, with
osteopetrotic c-fos-deficient mice (c-fos-/-),
which completely lack osteoclasts [19]. The
resulting mutant mice (c-fos-/-hTNFtg) devel-
oped a TNF-dependent arthritis in the absence
of osteoclasts and, importantly, these mice
were completely protected against bone
destruction, despite the presence of severe
inflammatory changes, confirming that the
osteoclast is the principal cell type causing
arthritic bone erosion [19].

Inflammatory cytokines & bone erosion 
Now that the osteoclast has been established as the
principal cell mediating bone destruction in RA,
the next critical issue is how osteoclast differentia-
tion and function are regulated in the inflamed
joints. Osteoclasts differentiate from cells of the
monocyte/macrophage lineage upon stimulation
of two essential factors: monocyte/macrophage-
colony-stimulating factor (M-CSF) and RANKL
(Figure 1) [21,22]. Thus, the osteoclast formation
requires three basic components: the osteoclast
precursors (namely macrophages), M-CSF and
RANKL. Inflamed joints possess a pro-osteoclas-
togenic environment. Macrophages are abun-
dantly present in inflamed joints (Figure 1) [1].
RANKL is produced by both activated T cells [23]

and synovial fibroblasts [24]. The other essential
osteoclastogenic factor M-CSF is mainly pro-
duced by synovial fibroblasts [25,26]. While M-
CSF and RANKL serve as essential factors for
osteoclastogenesis in arthritic joints, two proin-
flammatory cytokines IL-1 and TNF-α also play
significant roles in osteoclast formation and func-
tion (Figure 1) [5]. IL-1 and TNF-α are believed to
be produced primarily by macrophages [27], and
they regulate osteoclastogenesis by two distinct
mechanisms: directly and indirectly (Figure 1).
First, macrophages express receptors for these two
cytokines and these two cytokines directly bind to
their receptors on macrophages to activate intracel-
lular pathways involved in osteoclastogenesis [22,28].
Moreover, they also indirectly enhance osteoclast
formation and function by stimulating the
RANKL expression in stromal/osteoclastic cells
(Figure 1) [29]. 

RANKL/RANK system as a potent 
therapeutic target for bone erosion in RA
RANKL, also known as OPGL, ODF and
TRANCE, was identified independently by two
bone biology groups [30,31] and two immunology
groups [32,33] in the late 1990s. RANKL exerts its
functions by binding and activating its receptor
RANK expressed on target cells [32]. RANKL
also has a decoy receptor, OPG, which inhibits
RANKL function by competing with RANK for
binding RANKL [34,35]. To date, the
RANKL/RANK system has been shown to play
pivotal roles in regulating various biological
processes, such as immune function [32,36], mam-
mary gland development [37] and bone homeo-
stasis [31,38]. In the immune system, RANKL is
expressed by T cells, and it binds to RANK on
dendritic cells to regulate dendritic cell function
and survival [32,33,39]. In mammary glands, both
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RANKL and RANK are expressed on mammary
gland epithelial cells, and they stimulate mam-
mary gland epithelial cell proliferation in an
autocrine fashion [37].

In normal bone remodeling, RANKL is
expressed by osteoblasts/stromal cells [30,31] and
binds to RANK on osteoclast precursors to regu-
late osteoclast formation [9,22,38]. Mice lacking
the gene for either RANK or RANKL develop
osteopetrosis due to complete failure to form
osteoclasts, indicating that the RANKL/RANK
system is essential for osteoclast differentiation
[40–42]. Consistently, mice deficient in OPG
develop early onset of osteoporosis due to ele-
vated osteoclast differentiation [34], whereas

transgenic mice overexpressing OPG exhibit
osteopetrosis, resulting from a decrease in late
stages of osteoclast differentiation [35]. More-
over, RANKL is also an important modulator of
osteoclast function and survival [43–46].

While the studies with RANKL-/- and
RANK -/- mice revealed that the
RANKL/RANK system is absolutely required
for osteoclast differentiation during normal
bone remodeling [40–42], subsequent investiga-
tions further established that the system is also
essential for osteoclastogenesis in pathological
conditions such as RA. In particular, it has been
established that IL-1- and TNF-α-mediated
osteoclastogenesis requires RANKL. For exam-
ple, administration of IL-1 to RANK-/- mice
fails to promote osteoclast formation [42]. Con-
sistently, IL-1 is unable to mediate osteoclast for-
mation in vitro in the presence of M-CSF [47,48].
Similarly, TNF-α-mediated osteoclastogenesis
also requires RANKL [49]. Given that the
RANKL/RANK system is essential for osteo-
clast formation in RA, therapeutic targeting of
the system has a great potential to give rise to
unprecedented potency.

Current strategy for targeting the 
RANKL/RANK system 
Shortly after the unraveling of the essential role
for RANKL/RANK regulatory system in osteo-
clast formation, the promising potential of the
system as a therapeutic target for bone loss asso-
ciated with various pathological conditions was
quickly appreciated. As a result, a significant
amount of effort has been focused on developing
agents capable of blocking RANKL–RANK
interaction, which include OPG, soluble
RANK-Fc and anti-RANKL antibodies [10–12].
Among these agents, OPG and a highly specific
anti-RANKL antibody (denosumab, formerly
known as AMG 162) have been advanced to be
tested in clinical trials [11,50]. Denosumab may be
considered as the more promising candidate
since it has been the only one shown to be able to
cause an increase in bone mineral density
(BMD) in the clinical trial to date [11]. However,
the increase in BMD is similar to or slightly
higher than that of a bisphosphonate-based ther-
apy [11], indicating that the new agent is not sig-
nificantly more effective than the currently
available antiresorptive drugs in treating general-
ized bone loss, such as postmenopausal osteo-
porosis. While the efficacy of the new agent in
treating arthritic bone loss remains to be deter-
mined, there is a concern about the potential risk

Figure 1. Molecular mechanism of bone erosion in 
rheumatoid arthritis. 

 

RANKL, primarily produced by activated T cells, synovial fibroblasts and 
stromal/osteoblastic cells in inflamed joints, plays an essential role in 
osteoclastogenesis in rheumatoid arthritis (RA). The other critical 
osteoclastogenic factor M-CSF is expressed mainly by synovial fibroblasts. 
Macrophages are major sources of TNF-α and IL-1, two key proinflammatory 
cytokines implicated in the pathogenesis of RA, which are also important 
osteoclastogenic factors. TNF-α and IL-1 promote osteoclastogenesis either 
directly, by targeting macrophages in an autocrine manner to activate pro-
osteoclastogenic signaling pathways, or indirect, by stimulating 
stromal/osteoblastic cells to produce RANKL. 
c-fms: Receptor for M-CSF; IL: Interleukin; IL-1R: IL-1 receptor; 
M-CSF: Monocyte/macrophage-colony-stimulating factor; RANK: Receptor 
activator of nuclear factor κB; RANKL: RANK ligand; TNF-α: Tumor necrosis 
factor-α; TNFR: TNF-α receptor.
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associated with long-term use of this class of the
agents, including denosumab, which act to block
the RANKL–RANK interaction. As discussed
above, the RANKL/RANK system not only
plays a pivotal role in osteoclast formation and
function [51], but is also involved in other biolog-
ical processes, such as the immune system [36,39]

and mammary gland development [37]. There-
fore, use of the agents capable of blocking
RANKL–RANK interaction to treat bone ero-
sion will inevitably cause adverse side effects on
the immune system in most RA patients and on
mammary glands in juvenile RA (JRA) patients.
In particular, the adverse effect of the agents on
immune system may cause serious clinical
complications in RA patients. 

RANK signaling pathways as specific 
therapeutic targets for bone erosion in 
rheumatoid arthritis
Given the various deficiencies associated with
the agents currently under development, such
as the low efficacy and potential adverse side
effects, it is wise to seek alternative approaches
for more effective and specific targeting of the
RANKL/RANK system for treating bone loss
in RA. It is widely known that different cell
types employ distinct sets of cellular signaling
pathways to control cell proliferation, differen-
tiation and function. Moreover, the same
receptor may activate discrete signaling path-
ways in different cell types. Thus, it is possible
that the RANKL/RANK system may activate
certain unique signaling pathways to regulate
osteoclast formation, function and/or survival,
thus permitting cell type-specific targeting of
the RANKL/RANK system for more effective
treatment of bone erosion in RA. 

RANK signaling in osteoclasts
RANKL was cloned as a member of the TNF
family [30,31], while RANK was identified as a
member of the TNF receptor (TNFR) family [32].
Since members of this family primarily employ
TNFR-associated factors (TRAF) to transmit
nonapoptotic downstream signaling [52,53], most
previous studies have been undertaken to identify
and characterize the TRAF-dependent signaling
pathways in osteoclasts. Despite the numerous
studies demonstrating that, collectively, five
TRAF proteins (TRAF 1, 2, 3, 5 and 6) interact
with RANK in in vitro binding assays and/or in
transformed cells in context of overexpression
[51,54–58], subsequent functional studies indicated
that RANK contains only three functional

motifs: PFQEP369–373, PVQEET560–565 and
PVQEQG604–609, which are able to independ-
ently mediate osteoclast formation and func-
tion (Figure 2) [59,60]. More interestingly,
PVQEET559–564 and PVQEQG604–609 are
more potent than PFQEP369–373 in mediating
osteoclast formation [60]. 

Typically, the recruitment of a TRAF to its
binding motif in a TNFR family member triggers
the formation of a signaling complex containing
multiple proteins that activate downstream sign-
aling cascades [52,53]. It has consistently been
established that Motif 1 recruits TRAF6 to acti-
vate downstream signaling pathway [61]. Upon
binding to Motif 1, TRAF6 then recruits distinct
downstream signaling molecules, such as c-Src,
TAB2, TAK1 and TAB1, to form a signaling
complex. This complex subsequently activates
several signaling pathways including Akt, nuclear
factior (NF)-κB, c-Jun N-terminal kinase (JNK),
p38 and extracellular signal-regulated kinase
(ERK) pathways (Figure 2) [46,61–68]. In addition,
the same TRAF6-dependent signaling complex is
also implicated in RANKL-induced activation of
NFAT2 expression in osteoclast precursors [67]

(Figure 2). Unlike Motif 1, the identities of TRAF
proteins interacting with Motif 2 or 3 have not
been unambiguously confirmed. Several in vitro
interaction assays suggested that Motif 2 possibly
recruits TRAF3, while Motif 3 is likely to utilize
TRAF2 or TRAF5 to transmit downstream sig-
nals [51,58]. Nonetheless, it was demonstrated that
Motif 2 initiate signaling pathways leading to the
activation of NF-κB and p38 pathways, whereas
Motif 3 mediates only the activation of the
NF-κB pathway in osteoclast precursors [60]. The
precise components of the signaling complex
formed upon the recruitment of TRAF proteins
at Motif 2 and 3 remain unknown. Collectively,
these three functional RANK motifs activates six
major signaling pathways (NF-κB, JNK, ERK,
p38, NFAT2 and Akt), which eventually lead to
the activation of various transcription factors that
regulate the expression of genes important for
osteoclast formation, function and/or survival
(Figure 2) [9,22,69]. 

On the other hand, shortly after the
unraveling of the essential role for the
RANKL/RANK in osteoclastogenesis, it was
proposed that RANK may activate unidentified
and unique signaling pathways that are essential
for osteoclastogenesis [70]. This idea was sub-
sequently supported by the comparison of the
osteoclastic generation potential of RANKL and
IL-1. For example, it is well established that
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TRAF6 acts as a key downstream signaling mole-
cule for both RANK and IL-1R [71]. Moreover,
TRAF6 is involved in osteoclastogenesis [72,73]. In
particular, a single TRAF6-binding motif is able to
promote osteoclastogenesis [60,61]. However,
administration of IL-1 to RANK-/- mice failed to
induce any osteoclastogenesis in vivo, thus indicat-
ing that RANK activates TRAF6-independent sig-
naling pathways essential for osteoclastogenesis [42].
Consistent with this in vivo finding, in vitro studies
also demonstrated that IL-1 failed to stimulate
osteoclastogenesis [47,48]. Furthermore, RANK has
a very long cytoplasmic domain (mouse RANK is
391 amino acids long and human RANK is
383 amino acids long), which shares no homology
with any known members of the TNFR family,
suggesting that it may activate downstream signals
different from those arising from its cousins [32].
Consistently, a recent study identified a specific
4-amino acid RANK motif (IVVY535–538), which
plays an essential role in osteoclastogenesis by com-
mitting macrophages to the osteoclast lineage
(Figure 2) [74]. Moreover, this RANK motif does not
activate the known TRAF-dependent RANK sign-
aling pathways, indicating that this motif employ a
novel mechanism to regulate the osteoclast lineage

commitment. Nonetheless, there is convincing evi-
dence that this novel RANK motif is likely to exert
its effect on osteoclast lineage commitment by
binding an unidentified signaling molecule to
transmit downstream signaling pathways required
for the commitment [74]. 

RANK membrane-proximal signaling events 
as ideal therapeutic targets
The major RANK signaling events are summarized
in Figure 3. Briefly, upon the binding by RANKL,
RANK undergoes trimerization, which results in
the recruitment of various TRAF proteins at the
three functional TRAF-binding motifs in the
RANK cytoplasmic domain. The recruited TRAF
proteins then mediate the formation of distinct sig-
naling complexes, which often contains multiple
signaling molecules. The signaling complexes then
activates six major signaling pathways (NF-κB,
JNK, ERK, p38, NFAT2 and Akt), which eventu-
ally lead to the activation of various transcription
factors that regulate the expression of genes impor-
tant for osteoclast formation, function and/or sur-
vival (Figure 3) [9,22,69]. As such, there are three major
possible approaches for targeting RANK signaling
pathways (Figure 3): 

Figure 2. Current understanding of RANK signaling in osteoclasts. 

 

RANK contains three motifs (Motif 1, 2 and 3), which utilize TRAF proteins to activate six major signaling pathways (NF-κB, JNK, ERK, p38, 
NFAT2 and Akt) implicated in osteoclast differentiation, function and/or survival. In addition, RANK also possesses a newly identified and 
TRAF-independent cytoplasmic motif (Novel Site), which plays a crucial role in the osteoclast lineage commitment.  The sequence and 
location of these motifs are shown. 
ERK: Extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; NFAT: Nuclear factor of activated T-cell; NF-κB: Nuclear factor κB; 
OC: Osteoclast; RANK: Receptor activator of NF-κB; TM: Transmembrane domain; TNF: Tumor-necrosis factor; 
TRAF: TNF receptor-associated factor.  
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• Targeting the plasma membrane-proximal
events; specifically, the interaction between
RANK and TRAF proteins; 

• Targeting downstream signaling cascades;
specifically, disrupting the formation of sig-
naling complexes and subsequent signaling
steps; 

• Targeting nuclear events; specifically, inhibit-
ing activation of transcription factors and/or
binding of transcription factors to promoters
for genes involved in osteoclast formation,
function and/or survival. 

Among the three strategies, the plasma mem-
brane-proximal events may represent the best
choice. First, the RANK cytoplasmic motifs are
most accessible to prospective compounds. For
instance, to target the downstream signaling
cascades or the nuclear events, a compound
must not only cross the plasma membrane, but
also penetrate potential barriers, such as
cytoskeleton networks and/or other cellular
organelles, to reach its target (Figure 3). In con-
trast, a compound only needs to cross the
plasma membrane to interfere with the plasma
membrane-proximal events (Figure 3). Second,

Figure 3. Major strategies for targeting the RANKL/RANK regulatory system.  

 

The therapeutic agents under current development include OPG, RANK-Fc and anti-RANKL Ab, which all 
function as blockers of the RANKL–RANK interaction. There are three major approaches for targeting RANK 
signaling pathways: plasma membrane-proximal events; downstream signaling cascades; and  nuclear 
events. 
Ab: Antibody; ERK: Extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; NF-κB: Nuclear 
factor-κB; NFAT: Nuclear factor of activated T-cell; OPG: Osteoprotegerin; RANK: Receptor activator of NF-κB; 
RANK-Fc: Fusion protein containing extracellular domain of RANK linked to the Fc portion of human IgG; 
RANKL: RANK ligand; TNF: Tumor necrosis factor; TRAF: TNF-receptor-associated factor.
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since the known RANK-activated signaling
pathways (e.g., NF-κB, JNK, ERK, p38,
NFAT2 and Akt) are also activated by a variety
of other cytokines, including other members
of the TNFR family, in a variety of cell types,
targeting downstream signaling cascades may
not give rise to desired cell type specificity.
Similarly, the specificity concern also applies
to the transcription factors since these tran-
scription factors are also involved in the regu-
lation of the expression of genes implicated in
different biological processes in distinct cell
types (Figure 3). 

Motif 2 & 3 can serve as effective & specific 
targets for bone loss in RA
Motif 2 and 3 in the RANK cytoplasmic domain
are very effective in mediating osteoclast forma-
tion and function, and mutation of both motifs,
results in a significant impairment in osteoclast
formation and function, thus indicating that
these two motifs can serve as potent therapeutic
targets (Figure 4A) [60]. Moreover, these two motifs
also represent specific therapeutic targets for
treating bone loss. It has been demonstrated that
Motif 1 exerts a marginal effect on osteoclast
formation and function (Figure 4A) [60]. 

Figure 4. RANK motifs serve as specific therapeutic targets for bone erosion in rheumatoid arthritis. 

 

(A) Motif 2 and 3 primarily play significant roles in osteoclastogenesis (red arrows), while Motif 1 is predominantly implicated in dendritic 
cell function and survival (blue arrows). Blockage of signaling from both Motif 2 and 3 by prospective compounds results in cell 
type-specific inhibition of receptor activator of nuclear factor-kB ligand (RANKL) function in osteoclasts. (B) The newly identified and TNF 
receptor-assocaited factor-independent RANK motif mediates the osteoclast lineage commitment. Investigation of the role of the motif in 
other biological systems and identification of the signaling pathway(s) activated by the motif may address whether this motif and its 
downstream signaling pathway(s) can also serve as specific therapeutic targets for arthritic bone loss.  
?: Signaling molecule(s)/pathway(s) that remain to be identified. 
1: Motif 1; 2: Motif 2; 3: Motif 3; DC: Dendritic cell; N: Newly identified and TNF receptor-associated proteins-independent RANK motif; 
OC: Osteoclast; RANK: Receptor activator of nuclear factor-κB.
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In contrast, Motif 1 plays a predominant role in
dendritic cell maturation and function, since
Motif 1 transmits intracellular signals by recruit-
ing TRAF6, which plays a key role in immune
responses by regulating dendritic cell maturation
and development [75]. Thus, blockage of Motif 2-
and Motif 3-initiated signaling pathways should
have minimal effect on immune response (Figure 4),
which suggests that Motif 2 and 3 can serve as
specific therapeutic targets for bone loss in RA.

Novel motif may also serve as effective & 
specific targets for bone loss in RA 
In addition to RANK cytoplasmic Motif 2 and 3,
the recently identified novel RANK motif may
also represent a promising therapeutic target for
bone loss in RA (Figure 4B). Given that this novel
RANK motif plays an essential role in the osteo-
clast lineage commitment, targeting of the novel
RANK motif may result in great efficacy. How-
ever, it is still not clear whether this novel motif is
involved in other biological processes, such as
immune function. Thus, more studies are needed
to establish specificity of this novel site as a drug
target. Moreover, although the essential role of
the novel motif in osteoclastogenesis has been
established, the precise downstream signaling
pathway activated by the novel motif has not yet
been elucidated. The next critical step is to iden-
tify and characterize the signaling molecule that
interacts with the novel motif to transmit the
downstream signaling pathway(s). The identifica-
tion of the signaling molecule may also facilitate
the development of  the assay system to identify
the compounds that block the interaction.

Conclusion & future perspective 
The discovery of the RANKL/RANK system
and subsequently its pivotal role in osteoclast dif-
ferentiation and function almost a decade ago
has not only significantly advanced our under-
standing of osteoclast biology, but also generated
enormous momentum to develop therapeutic
agents targeting the system for preventing and
treating bone loss in various pathological condi-
tions including RA. Several therapeutics under

current developments, such as OPG, RANK-Fc
and anti-RANKL antibody, all act to block the
RANKL–RANK interaction. To date, none of
these agents have demonstrated significant
improvement in efficacy compared with those on
market. Moreover, given that the RANKL/RANK
system is not only involved in osteoclast biology,
but also regulates the immune response and mam-
mary gland development, any agent that can effi-
ciently block the RANKL–RANK interaction
would inevitably have an impact on all these bio-
logical processes, raising concerns about potential
serious side effects associated with this type of
agent. Thus, to harness the therapeutic potential
of the RANKL/RANK system for RA therapy
more effectively, it is wise to shift our focus
towards exploring the RANK signaling pathways
for potent and specific therapeutic targeting. 

To date, the signaling pathways activated by the
RANKL/RANK system in osteoclasts have been
partially elucidated. In particular, recent in vitro
studies have identified several RANK cytoplasmic
motifs, including two TRAF-binding motifs and
one novel TRAF-independent motif, which may
serve as potent and specific therapeutic targets. In
order to better validate the potential of these
motifs as therapeutic targets, these in vitro find-
ings must be further investigated and confirmed
in vivo. Moreover, future studies should also be
actively pursued to elucidate the molecular mech-
anism by which the novel TRAF-independent
motif regulates the osteoclast lineage commit-
ment. A better understanding of the novel RANK
motif-mediated osteoclast lineage commitment
may elucidate additional, if not better, therapeutic
targets/approaches. 

Finally, it is worthwhile to point out that the
National Institutes of Health has developed
initiatives aimed at facilitating drug discovery
by supporting the development of highly effi-
cient assay systems for drug screening [101].
Thus, future efforts should also be directed at
designing highly innovative and efficient assay
systems for identifying compounds capable of
blocking the signaling from these RANK
cytoplasmic motifs. 

Executive summary 

Bone erosion as a severe complication associated with rheumatoid arthritis 

• Bone erosion is a major complication associated with rheumatoid arthritis (RA) and is a key contributing factor to the functional 
disability of RA patients.

• An effective intervention of bone erosion is crucial for RA therapy. 

Osteoclasts are the principal cells causing bone destruction in RA

• The osteoclast has been established as the principal cell type mediating bone destruction in RA. 
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RANKL–RANK plays an essential role in osteoclastogenesis

• Receptor activator of nuclear factor κB ligand (RANKL)/RANK plays an essential role in osteoclastogenesis in normal bone 
remodelling, since mice lacking the gene for either RANK or RANKL develop osteopetrosis due to complete failure to form 
osteoclasts.

• RANKL/RANK is also essential for osteoclastogenesis in various pathological conditions, including RA, since tumor necrosis factor 
(TNF)-α- and interleukin (IL)-1-mediated osteoclast differentiation depends on the action of the RANKL/RANK system. 

Current strategy for targeting the RANKL/RANK system

• The current strategy for targeting the RANKL/RANK system primary involves the development of agents capable of blocking the 
RANKL–RANK interaction, including osteoprotegrin (OPG), RANK-Fc and anti-RANKL antibodies.

• These agents have not demonstrated significant improvement in efficacy compared with the drugs on market. Moreover, these 
agents have potential to cause serous side effects. 

RANK signaling pathway as specific agents

• Given that different cell types employ distinct sets of cellular signaling pathways to control cell proliferation, differentiation and 
function, and that the same receptor may activate discrete signaling pathways in different cell types, it is possible that the 
RANKL/RANK system may activate certain unique signaling pathways to regulate osteoclast formation, function and/or survival, 
thus permitting cell type-specific targeting of the RANKL/RANK system for more effective treatment of bone erosion in RA.

Three major approaches to inhibit RANK signaling pathways

• Target the plasma membrane-proximal events, specifically, the interaction between RANK and TNF receptor-associated (TRAF) 
proteins.

• Target downstream signaling cascades (i.e., disrupting the formation of signaling complexes and subsequent signaling steps).
• Target nuclear events, specifically, inhibiting activation of transcription factors and/or binding of transcription factors to promoters 

for genes involved in osteoclast formation, function and/or survival. 

Several RANK cytoplasmic motifs may serve as potent and specific therapeutic targets 

• Two TRAF-binding motifs exist: Motif 2 and 3. These two motifs primarily play roles in osteoclastogenesis, but exert minimal effect 
on immune response. Thus, blockage of signaling from both Motif 2 and 3 results in cell type-specific inhibition of RANKL 
function in osteoclasts. 

• The newly identified and TRAF-independent RANK motif mediates the osteoclast lineage commitment. Investigation of the role of 
the motif in other biological systems and identification of the signaling pathway(s) activated by the motif will address whether this 
motif and its downstream signaling pathway(s) can also serve as specific therapeutic targets for arthritic bone loss.

Conclusion

• We have not fully harnessed the therapeutic potential of the RANKL/RANK system for RA therapy. 
• Future studies should be shifted towards exploring the RANK signaling pathways for potent and specific therapeutic targeting. 

Executive summary 
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