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Randomization plays a fundamental role in clinical trials. While many 
m­odern­ clinical­ trials­ employ­ restricted,­ stratified­or­ covariate-adaptive­
randomization designs that pursue balance in treatment assignments 
and­ balance­ across­ important­ covariates,­ some­ clinical­ trials­ call­ for­
response-adaptive­ or­ covariate-adjusted­ response-adaptive­ (CARA)­
randomization­ designs­ to­ address­ multiple­ experimental­ objectives­
primarily­related­to­statistical­efficiency­and­ethical­considerations.­In­this­
paper,­we­elicit­key­principles­of­the­well-conducted­randomized­clinical­
trial and explore the role of randomization and other important design 
tools­ in­ achieving­ valid­ and­ credible­ results.­We­ give­ special­ attention­
to­ response-adaptive­ and­ CARA­ randomization­ designs,­ which­ have­
a­firm­ theoretical­ basis,­ but­ are­more­ complex­ and­more­ vulnerable­ to­
operational biases than traditional randomization designs. We conclude 
that­ modern­ advances­ in­ information­ technology,­ rigorous­ planning,­
and­ adherence­ to­ the­ key­principles­ of­ the­well-conducted­ clinical­ trial­
should­enable­successful­implementation­of­response-adaptive­and­CARA­
randomization designs in the near future.

Keywords:­accidental­bias­•­allocation­concealment­•­covariate-adaptive­ 
•­covariate-adjusted­response-adaptive­•­covariate­imbalances­•­masking­ 

•­selection­bias­•­stratification

Randomized clinical trials 
The randomized clinical trial (RCT) is recognized as the most credible research 
design for clinical investigation [1,2]. The goal of the RCT is to achieve valid com­
parison of the effects of an investigational treatment or treatments with the con­
trol treatment (standard of care) in the target patient population. The hope is to 
demonstrate that the investigational product is safe and efficacious in treating the 
disease and can lead to an improved quality of life. In a RCT, eligible patients enroll 
sequentially and must be allocated immediately to one of the treatment groups. In 
order to achieve valid and precise treatment comparison, the treatment groups must 
be ‘comparable’ in terms of important patient characteristics. How should the treat­
ment assignments be made to ensure such comparability? Randomization forms the 
basis of a clinical trial design and is used to ensure that statistical inference in the 
end of the trial is valid [3]. Books have been written on theoretical aspects of random­
ization and its applications in clinical trials [4,5]. However, is randomization by itself 
sufficient to achieve the goal of a RCT? In this paper, we shall explore the role of 
randomization and other key features of the well­conducted RCT in combating 
different experimental biases and contributing to credibility of the trial conclusions.

Bias & its control in randomized clinical trials
Bias in the RCT can arise from multiple sources. The International Conference 
on Harmonization E9 (ICH E9) guidance describes bias in a clinical trial as the 
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“systematic tendency of any factors associated with the 
design, conduct, analysis and evaluation of the results of 
a clinical trial to make the estimate of a treatment effect 
deviate from its true value” [101]. The ‘systematic ten­
dency’ implies that if a trial were to be repeated (even 
hypothetically) the bias would still be present and would 
still invalidate the results. The ICH E9 guidance dis­
tinguishes operational and statistical bias; the former 
refers to bias introduced during the conduct of the 
trial, whereas the latter refers to bias introduced in the 
design, analysis and evaluation of the results. It is also 
important to distinguish bias from the error caused by 
sampling [6] that arises from studying the finite sample 
of patients to estimate the true treatment effect. 

In the literature, several authors provide classifica­
tions of various types of biases in clinical studies [6–10]. 
Here we first briefly describe major common biases that 
can arise in a RCT during the design, conduct, analysis, 
interpretation and reporting of the results, and after that 
we will focus on specific biases that randomization is 
intended to mitigate. 

 ■ Design bias: this can arise at the planning stage of a 
clinical trial. It may be due to a wrong choice of the 
trial design (a design that does not answer the research 
questions), inadequate sample size, incorrect assump­
tions of the treatment effect and/or variability, incor­
rect choice of patient population and inclusion/exclu­
sion criteria, wrong assumptions about enrollment 
and dropout patterns, and so on. Note that the issues 
described herein are not examples of systematic biases 
as described in the ICH E9 guidance [101]. 

 ■ Conduct bias: this can arise during the conduct of a 
clinical trial. The major subtypes of conduct bias 
include: ascertainment bias due to knowledge of 
which treatment each study participant is receiving; 
selection bias due to the investigator’s attempt to guess 
the treatment assignment and selectively enroll study 
participants; and accidental bias due to impact of 
important unknown covariates on the primary out­
come. It is important to note that biases described in 
this category are hard to quantify and adjust for in 
the statistical analysis.

 ■ Analysis bias: this can occur at the data analysis stage 
due to incorrectly chosen statistical methodology, 
model misspecifications, improper handling of miss­
ing data, poor quality of analysis datasets, and so on.

 ■ Interpretation and reporting bias: this can occur 
when the trial results are incorrectly interpreted and 
disseminated to the broader community. Frequently 
encountered are: significance bias (which refers to 
confusion of statistical significance with clinical sig­
nif icance), bias related to competing interests 

(financial sponsorship of the trial), and publication 
bias (selective publication of the trials with positive 
results; see [11]).

The aforementioned list of biases is by no means 
exhaustive. Substantial effort is needed to plan and 
implement the trial so that reliable conclusions can be 
reached. Randomization is necessary, but not sufficient 
in mitigating all possible biases in the study. However, 
the carefully implemented randomization design can 
mitigate or minimize certain biases that otherwise can 
have major detrimental impact on the validity and 
integrity of the trial results.  

Which operational biases can be mitigated by the 
proper use of randomization?
In summary, the merits of randomization are that, in 
conjunction with other important design techniques, 
such as masking and allocation concealment, it can miti­
gate major operational biases that negatively impact the 
study results [2,101]. The following will briefly describe 
randomization, masking, and allocation concealment 
in the context of a RCT.

Randomization refers to generation of a sequence of 
treatment assignments by means of some known random 
mechanism (e.g., by a flip of a coin). Various randomi­
zation procedures with established statistical properties 
are available for use in practice [4,5]. One should distin­
guish advance randomization and adaptive randomiza­
tion procedures. With advance randomization, a treat­
ment allocation sequence can be pre­generated before 
any subject is enrolled into the study by enumerating 
a set of all possible allocation sequences and selecting 
one randomly with known probabilities [12]. Examples 
of advance random ization are the popular permuted 
block design, the maximal procedure [13] and the Had­
amard randomization [14], to name a few. Rosenberger 
and Lachin (in Chapter 3 of [4]) describe restricted ran­
domization procedures, including Efron’s biased­coin 
design [15] and its generalizations, many of which can 
be cast as advance randomization. In contrast, adaptive 
randomization does not use pre­generated treatment 
allocation sequences; instead, treatment randomization 
probabilities are modified through the course of the trial 
based on accumulated information on treatment assign­
ments, patient responses, and/or covariates to achieve 
specific experimental objectives while maintaining the 
validity and integrity of the trial results [16]. Within the 
class of adaptive randomization, one should distinguish 
covariate­adaptive, response­adaptive and covariate­
adjusted response­adaptive (CARA) randomization. 
Adaptive randomization provides greater flexibility and 
frequently it can achieve trial objectives more efficiently 
than advance randomization, but it is also associated 
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with additional logistical complexities and sometimes it 
can be more vulnerable to experimental bias. 

Masking in a clinical trial refers to a process that 
attempts to keep the treatment assignments unknown 
or easily ascertained by those who are ‘masked’ [17,18]. 
Allocation concealment is the prevention of knowl­
edge of a given treatment allocation until after it is 
executed, to avoid selective enrollment of patients into 
the trial [19].

Let us discuss in detail how randomization, masking 
and allocation concealment can help mitigate experi­
mental biases during the conduct of the trial. We focus 
on four features that may potentially contribute to bias 
during the trial conduct: impact of the knowledge of 
which treatment each participant is receiving (ascer­
tainment bias); impact of an investigator on the pro­
cess of treatment assignments (selection bias); impact 
of important known covariates of a patient on response 
to the treatment; and impact of important unknown 
covariates on the primary outcome (accidental bias). 

 ■ Ascertainment­bias
After an eligible patient is randomized into the trial, 
ideally, the patient, the investigator, the healthcare pro­
vider and the outcome assessors should not be affected 
by the knowledge of the treatment assigned. Ascertain­
ment bias refers to systematic distortions due to the 
knowledge of which intervention the patient is receiv­
ing. For instance, a patient may be more likely to drop 
from the study or not adhere to the treatment regimen 
if he knows that he is assigned to placebo; an investi­
gator may provide different concomitant medication 
care to patients on active drug and placebo; outcome 
assessors may be biased in the assessment of patient 
outcomes based on their preconceived expectations 
of treatment effects. The most efficient technique to 
mitigate ascertainment bias in a RCT is masking. One 
should distinguish open­label trials in which “the iden-
tity of treatment is known to all”; single­masked trials in 
which, “the investigator and/or his staff are aware of the 
treatment but the subject is not, or vice versa”; and double­
masked trials in which, “neither the study subjects nor any 
of the investigator or sponsor staff who are involved in the 
treatment or clinical evaluation of the subjects are aware 
of the treatments received” [101]. The double­masked 
trial is regarded as the optimal approach. As noted by 
Friedman et al., “A clinical trial should, ideally, have a 
double-blind design to avoid potential problem of bias 
during data collection and assessment. In studies where 
such a design is impossible, a single-blind approach and 
other measures to reduce potential bias are favored” [3]. 
Some useful approaches to maintain double­masking 
throughout the trial include the use of placebo con­
trols, the use of ‘double­dummy’ technique when the 

two treatments cannot be made identical and providing 
training/education to all personnel involved in the clin­
ical trial on the concept of masking and its importance 
for the integrity of the trial results [3,6,20]. 

 ■ Selection bias
Some authors hold the view that selection bias is the 
major type of bias in clinical trials [12,21,22]. Selection 
bias may not be an issue in a randomized double­masked 
trial where treatment allocations are carefully concealed 
throughout the trial. Allocation concealment supple­
ments randomization and masking in that it keeps 
study investigators unaware of any upcoming treatment 
allocation. Some strategies for allocation concealment 
include use of sealed envelopes [19], use of central interac­
tive voice response systems and centralized computer­ or 
web­based allocation systems [23]. 

In practice, however, successful masking and suc­
cessful allocation concealment are not always possible. 
In an unmasked study an investigator may be able 
to guess the treatment assignments of future patients 
based on knowing the treatments assigned to the past 
patients and selectively enroll a patient who, in their 
opinion, will benefit most from the given treatment. 
Selective patient enrollment can negatively impact the 
study in a number of ways. One consequence of selec­
tion bias is explained by Longford: if treatment effects 
are heterogeneous in the population, selection bias can 
lead to biased estimation of the mean treatment effect, 
under­represented population treatment heterogeneity, 
or both [24]. Another negative consequence is systematic 
covariate imbalances. For instance, one of the treatment 
groups may have a greater number of ‘sicker’ patients and 
therefore the observed treatment effect will be biased. 
Systematic covariate imbalances can inflate type I error 
[25,26], and they can undermine the integrity of the trial 
[21]. The mechanism of selection bias that results from 
prediction of an upcoming treatment assignment is 
referred to by Berger as ‘third­order selection bias’ [21]. 
To minimize predictability of treatment assignments it 
is important to avoid using very restrictive randomiz­
ation procedures, such as the permuted­block designs 
with small block sizes. The maximal procedure can be 
used to generate the least restrictive randomization pro­
cedure subject to a constraint on the maximum tolerated 
imbalance [13]. Efron’s biased­coin design [15] is another 
valuable fully randomized procedure with established 
exact statistical properties [27]. Statistical techniques are 
available to test for selection bias in a RCT [26,28] and 
adjust for observable selection bias [29]. Rosenberger and 
Lachin (in Chapter 6 of [4]) quantify susceptibility of 
different randomization procedures to selection bias 
using Blackwell and Hodges’s model for selection bias 
[30] and make recommendations for practice. 
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We have described selection bias as the selective 
enrollment of patients into the study. However, selec­
tion bias can be also introduced at the data analysis stage 
– by postrandomization exclusions, either through the 
loss or withdrawal of randomized patients or through 
the use of the non­intention­to­treat analysis popula­
tions. Such exclusions represent, perhaps, the largest 
potential for bias, even in properly randomized trials 
with adequate allocation concealment and masking; 
for example, differential loss can occur even in other­
wise well­conducted trials if, say, the active drug is not 
well­tolerated by certain patients whereas patients rand­
omized to placebo might drop out for lack of perceived 
benefit. It should be emphasized that randomization 
does nothing to prevent such a bias and only sufficient 
attention and resources committed to active retention 
will do.  

 ■ Impact­of­known­covariates
It is recognized that randomization can promote bal­
ance of important known and unknown patient base­
line characteristics (covariates) across treatment groups, 
which is a major prerequisite for valid treatment com­
parison [101]. Recent literature reports show that non­
randomized trials and observational studies tend to pro­
duce biased estimates of intervention effects compared 
with randomized trials, likely due to confounding of the 
effects of treatments and prognostic factors [31,32]. By 
contrast, in a well­conducted RCT, there is high confi­
dence that any observed treatment difference should be 
attributed to the treatment effects, not to the effects of 
the study patients [33]. Note, however, that any observed 
difference might also be attributable to chance, which 
can never be completely ruled out [34].  Such chance 
differences are really the results of random imbalance in 
some (known or unknown) patient characteristics. How 
can one be assured that randomization has satisfactorily 
achieved its purpose and produced comparable treat­
ment groups? Since there are different ways to meas­
ure similarity of treatment groups in terms of covari­
ate profiles, what does ‘comparability’ exactly mean? 
Senn makes an important point that random covariate 
imbalances do not compromise the validity of inference 
[35]. An unbiased treatment comparison is achieved by 
proper accounting of covariate information through 
covariate­adjusted analysis using regression modeling.

A controversy about the role of covariates in the 
design of clinical trials is elicited by Rosenberger and 
Sverdlov [36]. They raise the question of why attempts 
should be made to prospectively balance the distribu­
tions of important covariates across treatment groups? 
For trials in which primary outcomes follow a homo­
scedastic linear regression model, a design that achieves 
balanced treatment assignments, both overall in the trial 

and across covariate profiles will maximize power and 
efficiency of treatment comparison. Therefore, rand­
omization procedures that force balance across covari­
ates are justified from the standpoint of statistical effi­
ciency in such trials. While complete randomization 
and restricted randomization procedures balance covari­
ate distributions for large samples, in trials with small 
or moderate sample sizes covariate imbalances may be 
substantial. Stratified randomization can ensure treat­
ment balance by using permuted block randomization 
within mutually exclusive strata formed by the levels 
of selected covariates, which can improve efficiency 
of small trials and can facilitate subgroup and interim 
analyses for large trials [37]. Another advantage of strati­
fied randomization is that some strata can be dropped 
from the analysis without affecting the integrity of 
randomization in other strata [4]. 

For a small number of strata, stratified randomiza­
tion works well. However, for a larger number of strata, 
some strata may be empty or may contain very few 
patients. If some strata are empty, then there is noth­
ing to balance for; however, if a stratum contains a few 
patients, then within a given block in the stratum only 
initial treatment allocations will be utilized and the 
overall treatment imbalance may be substantial [38].  
To address this issue, covariate­adaptive randomiza­
tion procedures (sometimes called minimization proce­
dures), have been proposed. With a covariate­adaptive 
randomization procedure, an eligible patient is ran­
domized to a treatment with probability conditional 
on the full history of previous patients’ treatment 
assignments and covariates, and the covariates of the 
current patient [4]. The goal is to sequentially balance 
the distributions of covariate profiles across treatment 
groups while maintaining randomization. Rosenberger 
and Sverdlov [36] give an overview of covariate­adaptive 
randomization methods and distinguish stratified ran­
domization, marginal covariate­adaptive randomiza­
tion [39,40], and optimal design­based covariate­adaptive 
randomization [41]. They note that covariate­adaptive 
randomization leads to nearly optimal allocation when 
responses follow a linear regression model with con­
stant variance and no treatment–covariate interactions. 
They further point out that marginal covariate­adaptive 
randomization procedures may be advantageous over 
stratified randomization when the goal is to achieve 
balance within a very large number of covariate mar­
gins. Recent literature reviews show increased popu­
larity and application of covariate­adaptive randomi­
zation methods in clinical trials [42,43]. It is generally 
acknowledged that any stratification or minimization 
variables used in the design should be also adjusted for 
in the analysis for the inference to be valid [35,44]. In 
fact, proper accounting for covariates in the analysis 
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“may make a more valuable and instructive contribution 
to inferences about treatment effects than only balancing 
them” [45]. Operation ally, covariate­adaptive randomi­
zation should be performed by a centralized allocation 
unit using interactive voice response systems [23,46,47] 
that must be validated to avoid errors in the alloca­
tion, and every effort should be made to retain the 
double­masked status of the trial. A random element 
must be present in a covariate­adaptive randomization 
procedure to mitigate possibility of selection bias [48–50].

Recent research work has been substantial both on 
exploration of theoretical properties of existing covar­
iate­adaptive randomization designs [51,52] and the 
development of new methods [53–56]. Undoubtedly, the 
current body of knowledge of covariate­adaptive rand­
omization is far from being mature and there is quite a 
lot more to investigate. 

Overall, one should acknowledge that covariate­
adaptive randomization can improve efficiency and 
interpretability of the results in small and moderate 
sample clinical trials employing homoscedastic linear 
regression models where balance over a very large num­
ber of important baseline covariates is warranted. How­
ever, in clinical trials with heteroscedastic and nonlinear 
models for the primary outcomes, balanced allocation 
is not necessarily optimal and alternative randomiza­
tion procedures (such as CARA randomization) may 
be preferred [36]. 

 ■ Accidental­bias
The term ‘accidental bias’ was introduced by Efron, and 
it refers to bias due to factors unforeseen at the design 
stage [15]. Suppose there is a covariate that an investiga­
tor is unaware of, that has a strong impact on patients’ 
outcomes. If this covariate is omitted from the statistical 
model in the analysis, the estimated treatment effects 
will be confounded with the covariate effect and the 
treatment comparison will be biased. Randomization 
tends to mitigate bias from unknown covariates. Efron’s 
model for accidental bias quantifies the magnitude of 
severe covariate imbalances for various randomization 
procedures. Different randomization procedures can be 
ranked in terms of their susceptibility to accidental bias 
[4]. In essence, the more random a procedure is, the less 
susceptible it is to accidental bias. Complete randomiza­
tion for which every treatment allocation in a two­arm 
trial is made with probability 0.5 is most random and 
it is least susceptible to accidental bias. In contrast, a 
randomization procedure that generates a sequence of 
treatment assignments with some particular periodicity 
increases the likelihood of periodicity in the sequence 
of covariate values and may potentially lead to covariate 
imbalances. For example, consider a truncated binomial 
design [30] that for a sample size n makes allocations 

with probability 1/2 until one of the groups achieves 
the target of n/2 patients, and then assigns the remain­
ing patients to the other treatment with probability 1. 
Such a design is highly susceptible to accidental bias 
when n is large due to a high likelihood of a sequence 
of deterministic assignments in the tail of the rand­
omization sequence [57]. To avoid this feature, one can 
apply restricted randomization procedures in blocks to 
ensure that balance in treatment numbers is achieved 
throughout the course of the trial. Many restricted ran­
domization procedures described in [4] handle accidental 
bias fairly well, both in theory and as shown through 
simulations. Rosenberger and Lachin (in Chapter 5 of 
[4]) note that Efron’s model of accidental bias quanti­
fies the magnitude of severe covariate imbalances, not 
its risk, and they conclude that, in practice, accidental 
bias should be less of a concern then selection bias [4].

Which biases should be controlled at the data 
analysis step?
Data analysis is the crucial component of the clinical 
trial. It is essential that data analysis accurately reflects 
the research design to avoid bias in the results. 

 ■ Some important considerations for the analysis 
of clinical trial data 
Section V of the International Conference on Harmo­
nization of Technical Requirements for Registration of 
Pharmaceuticals for Human Use states some important 
principles for clinical trial data management and data 
analysis [101]. The analysis datasets must be prospectively 
defined in the protocol to avoid selective inclusion of 
subjects in the analysis. The ‘all randomized patients’ 
should constitute the primary analysis dataset to ensure 
consistency with ‘intention­to­treat’ principle, which 
asserts that all randomized subjects are followed so 
long as alive, able, and consenting. The ‘per­protocol’ 
analysis set is a subset of all randomized patients who 
are compliant with their assigned treatment policy, 
have no major protocol violations, and have post­
randomization measurements of the primary outcome. 
The per ­protocol analysis plays a secondary role; how­
ever, ideally, it should yield consistent conclusions with 
the analysis based on all randomized subjects.

The intended data analysis strategies, including but 
not limited to the analyses of primary and key second­
ary variables, must be prespecified in the protocol. The 
choice of statistical methodology must be justified; 
strategies for checking model assumptions and alter­
native ways to analyze data if these assumptions are 
violated must be clearly spelled out in the protocol.

While, ideally, all patient data must be collected in a 
RCT, in reality some data will be missing due to patient 
dropouts, losses to follow up, and so on. Missing data 
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represents a potential source of bias in a RCT, because 
unobserved measurements may contain important 
information about treatment effects. Ways of handling 
missing data must be prospectively defined in the study 
protocol. General guidance on handling missing data 
in a RCT is available [102], but unfortunately there is 
no universal methodology for proper handling of miss­
ing data. It is generally acknowledged that the tradi­
tional popular Last Observation Carry Forward analysis 
should be avoided as the inference obtained using this 
methodology may be inefficient, biased, or both [58–60]. 
Some useful approaches for dealing with missing data 
include mixed­effects models for repeated measures for 
continuous outcomes, and generalized estimating equa­
tions and generalized linear mixed models for categori­
cal responses and count data. For more details, see two 
recent special issues of the Journal of Biopharmaceutical 
Statistics devoted to missing data [61,62].

Finally, design considerations such as multiple com­
parisons and subgroup analyses must also be planned in 
advance to ensure credibility of the subsequent analysis.

 ■ The­role­of­randomization­in­the­analysis­of­
clinical trial data
Perhaps the major strength of randomization in the 
context of a RCT is its ability to form the basis for 
statistical inference. Rosenberger and Lachin describe 
different models for statistical inference for the RCT 
[4]. The first one is the population model, which is built 
on the assumption that patients in the two treatment 
groups constitute random samples from infinitely large 
populations. This assumption is infeasible if one of the 
treatments is experimental – in that case there is simply 
no population to sample from. The invoked population 
model assumes there is an unspecified target patient 
population from which n eligible patients are sampled 
and then these patients are randomized to one of the 
treatment groups in the trial. The invoked population 
model assumes that patients have similar prognostic 
profiles, and errors in a statistical model are independ­
ent and identically distributed. In practice, this assump­
tion is difficult to verify. However, randomization adds 
to the validity of this model as it introduces the real 
random element into allocation of treatments to study 
patients thereby making the assumption of independ­
ence of experimental errors more feasible compared with 
a nonrandomized study. 

Unlike the invoked population model, the rand­
omization model assumes that the statistical basis for 
inference is generated by randomization itself. This 
is built on RA Fisher’s concept of randomization [62], 
which includes random allocation to treatments and 
generation of the probability space (reference set), by 
enumerating all possible randomization sequences of 

the selected randomization procedure. The advantages 
of the randomization model are that it is completely 
non parametric and it does not require that the study 
patients are homogeneous in terms of important prog­
nostic factors that affect study outcomes. Statistical 
inference from randomization model guarantees a valid 
p­value even with very small sample sizes. The null 
hypothesis in the randomization model posits that the 
average treatment effect over all possible randomization 
realizations is zero. In contrast, a null hypothesis under 
a population model (Neyman–Pearson’s) is based on the 
equality of parameters from known distributions. For 
testing randomization null hypothesis, one uses a ran­
domization test. A statistic that measures the treatment 
group difference is chosen, and this statistic is computed 
for all possible realizations of the given randomization 
procedure; the sum of probabilities of those sequences 
whose test statistic values are at least as extreme as what 
was observed in the trial is the p­value of the test. A very 
small p­value indicates that there is strong evidence to 
conclude the difference between the treatment effects. 

The randomization model for statistical inference has 
generated much controversy over the years; see [63,64] for 
interesting discussions on this matter. However, many 
authors hold the view that randomization­based infer­
ence is a useful alternative approach to population model­
based methods [4,65] and it can be complementary to 
model­based inference. It is important to note that under 
randomization model, conclusions apply only to those 
patients who participated in the study and inferences on 
the broader population of similar patients will be non­
statistical. The approaches to obtain generalizations in 
this case are description and analogy [66].  

Finally, we note that although randomization­based 
inference is free of many population model­based 
assumptions and provides a useful tool to statistical 
inference, it is not immune to many operational biases 
we have described; therefore, it should not be viewed 
as a rescue tool for a poorly designed or conducted 
clinical trial. 

Biases that randomization cannot handle
While randomization is helpful in mitigating experi­
mental biases and contributes to the validity of statisti­
cal inference, it cannot eliminate biases that may arise 
due to the poor planning of a clinical trial. Incorrect 
assumptions on variability of the primary outcome 
measure may lead to a choice of sample size that is either 
too small or too large. Too small a sample size may result 
in a study that fails to detect a clinically meaningful 
treatment difference; too large a sample size can lead 
to a study that detects differences that are statistically 
significant but have no clinical relevance. The choice 
of the primary study objective, the research hypothesis, 
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the primary outcome measure and the sample size are 
all of great importance for the trial success. Even a very 
carefully implemented randomization design cannot 
alleviate issues that were overlooked at the planning 
stage. Likewise, randomization cannot handle biases 
related to interpretation and reporting of the results. 
This note reinforces the importance of all of the scien­
tific, operational, and ethical aspects at all stages of a 
clinical trial.

Response­adaptive­randomization:­useful­or­
burdensome?
So far we have discussed randomization procedures 
that aim at achieving balance in treatment numbers 
(restricted randomization) or across covariates (stratified 
and covariate­adaptive randomization) and their abil­
ity to mitigate experimental biases. However, in clini­
cal trials where primary outcomes follow nonlinear or 
heteroscedastic models, balanced allocation may not be 
optimal. Also, in clinical trials for fatal diseases there 
is a strong need to minimize exposure of patients to 
inefficient or toxic treatment arms and/or skew allo­
cation towards the treatment group showing superior 
efficacy to maximize beneficial experience of the trial 
participants. These considerations call for randomiz­
ation procedures for which treatment randomization 
probabilities for a given patient are modified based on 
the history of treatment assignments and responses 
(response­adaptive randomization) or based on the 
history of treatment assignments, responses, covariates 
and the covariate vector of the new patient (CARA ran­
domization) to achieve prespecified, multiple experi­
mental objectives (frequently expressed as a combina­
tion of statistical efficiency and ethical considerations) 
while maintaining the validity and integrity of the trial 
results. For instance, in a multiarm binary response trial 
the objective may be to minimize the expected number 
of treatment failures subject to minimal constraints on 
the treatment allocation proportions and the power of a 
homogeneity test [67]; in a survival trial where the vari­
ability and direction of the treatment effect differ for 
the patient groups within a treatment, the goal may be 
to skew allocation towards the treatment that is clini­
cally best for a patient, while maintaining the power of 
a statistical test. 

Theoretical aspects of response­adaptive and CARA 
randomization procedures are covered in the book by 
Hu and Rosenberger [5]. Both response­adaptive rand­
omization and CARA randomization should be appli­
cable in Phase II and III clinical trials. However, these 
methods have found little use in practice. Some recent 
papers call into doubt the usefulness of response­adap­
tive randomization [68,69]. The position of regulatory 
agencies on the use of response­adaptive randomization 

is not encouraging either; see [103,104]. Rosenberger 
et al. point out that response­adaptive randomization 
procedures have established statistical properties and 
therefore these designs merit fresh consideration from 
clinical trialists [16]. Indeed, if the methods have well­
established theory, and can be potentially advantageous 
over balanced randomization designs [67,70–73], why is 
there hesitation applying them in practice?  What are 
the major concerns of the regulators? In this section we 
review experimental biases that may likely arise in clini­
cal trials employing response­adaptive and CARA rand­
omization and give our perspective on how to minimize 
potential for these biases.

 ■ Operational & procedural biases
Clinical trials employing response­adaptive and CARA 
randomization are much more complex than conven­
tional trial designs. Therefore, strict processes for han­
dling interim data must be in place. Both response­
adaptive and CARA randomization designs require 
that data at interim points in the trial are unmasked 
for the purpose of estimation of treatment effects and 
modification of treatment randomization probabilities. 
Un masking may introduce bias into the study. A fun­
damental prerequisite for maintaining integrity of the 
trial results is that management of the study should be 
no different before and after interim information are 
available [74]. Gallo discusses operational and procedural 
issues of adaptive designs, which apply to response­
adaptive and CARA randomization as well [75,76]. He 
raises two important questions: 

 ■ (i) Who can have access to interim data for the purpose 
of interim analysis and implementing adaptation? 

 ■ (ii) What is the impact of knowledge of interim 
analysis results and inferences on trial integrity? 

With regard to the first question, it is advised that 
adaptive trial designs utilize a trial logistic model that 
includes three parties: the sponsor; the external to the 
sponsor data monitoring committee charged with the 
review of interim safety data; and the independent 
statistical analysis center, consisting of subjects with 
necessary statistical expertise, charged with analysis 
of unmasked efficacy data and implementing design 
adaptations [77]. The separation of responsibilities for 
interim safety review (data monitoring committee) 
and interim efficacy review (independent statistical 
analysis center) should minimize potential conflict of 
interests [78].  

With regard to the second question, it is essential 
that information about estimated treatment effects 
at interim analysis be kept as confidential as possible. 
Adaptation mechanisms can be described in general 
terms in the study protocol, but design parameters and 
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threshold values can be described in a separate docu­
ment with more limited circulation. Study personnel 
performing design adaptations must be an authorized 
board of qualified individuals not otherwise participat­
ing in the trial. We feel, however, that since many mod­
ern response­adaptive and CARA randomization design 
methodologies are based on multiple considerations, 
it seems quite unlikely that an observer will be able 
to ‘reverse engineer’ the algorithm and determine the 
estimates that led to the observed change in the design.  

Good practices and practical considerations for suc­
cessful implementation of response­adaptive designs 
that are also applicable to response­adaptive and CARA 
randomization procedures can be found in [79] and [80]. 

 ■ Accrual­bias
Rosenberger describes accrual bias, which may potentially 
arise in trials with response­adaptive randomization [81]. 
Patients may wish to be recruited later in the trial so as 
to benefit from the accumulated history of previous out­
comes. This may cause bias if there is a difference in char­
acteristics of patients recruited early and later in the trial. It 
is recommended that patients be masked to their sequence 
number in the trial [82]. Note, however, that accrual bias 
is irrelevant in trials dealing with emergency therapies. 

 ■ Misclassification­of­responses
Both response­adaptive and CARA randomization rely 
on accumulating data from patients in the trial. Need­
less to say, these data must be of excellent quality to 
avoid bias in adaptations and in the analysis. Primary 
outcomes should be measured accurately and reliably. 
Tamura et al. report the results of a response­adaptive 
randomization, placebo­controlled clinical trial of the 
antidepressant fluoxetine, where a surrogate outcome 
measure was used to perform response­adaptive ran­
domization [83]. In that trial, some subjects’ responses 
were misclassified and therefore some design adaptations 
were applied incorrectly. Li and Wang study impact of 
misclassification of binary responses on optimal alloca­
tion and show that misclassification may have detrimen­
tal effect on the validity of the results [84]. Special care 
must be taken to ensure high quality assessments and 
absence of errors in response­adaptive trials.

 ■ Statistical issues
Overall, response­adaptive and CARA randomization 
procedures have similar statistical properties to conven­
tional randomization designs [16]. A minimum prereq­
uisite for a statistically valid trial is the strong control 
of type I error [103,104]. Many modern response­adaptive 
randomization procedures meet this requirement asymp­
totically as they yield consistent and asymptotically nor­
mal estimators and treatment allocation proportions 

[5]. Therefore, standard asymptotic tests and estimators 
can be applied to data generated from response­adaptive 
trials. However, for finite samples, simulation studies 
must be performed to ensure type I error is controlled 
under standard­to­worst­case experimental setups. The 
issues of delayed responses, population heterogeneity, 
statistical power and sequential monitoring of response­
adaptive trials have been addressed theoretically, and are 
discussed in detail in Rosenberger et al. [16]. 

 ■ Open problems
Randomization­based tests have not been well studied 
for response­adaptive­ and CARA­randomization pro­
cedures. Missing data issues are ubiquitous in clinical 
trials. While there are methods for dealing with missing 
data for conventional study designs [102], no such methods 
exist yet for response­adaptive and CARA randomiza­
tion. Another important issue is related to modeling bias. 
CARA­randomization procedures rely on correctly speci­
fied parametric models for the primary outcome. If these 
assumptions are incorrect, estimated treatment effects 
both at the interim and in the final analysis will be biased 
and type I error may be inflated. There is no theoreti­
cal research into the effects of modeling bias on CARA­
randomization designs, but simulations can be used to 
assess robustness of the designs to model misspecification. 

Conclusion­&­future­perspective
RCT carry the most credibility in the field of evidence­
based medicine. While randomization can mitigate 
various potential experimental biases and contributes 
to statistical validity of the trial results, it must be 
complemented by other techniques such as masking, 
allocation concealment, stratification or adjustment of 
randomization for covariates (when appropriate) and 
careful conduct of the trial. All stages from the pro­
tocol development to the interpretation and dissemi­
nation of the clinical trial results are of great impor­
tance. Even the most scientifically sound randomiza­
tion design will not provide protection from bias if 
the study is poorly planned or improperly conducted. 
Various randomization designs with well­established 
statistical properties are available for use in practice. 
The choice of the study design should be determined 
by the trial objectives, which should include statistical, 
ethical, and budgetary considerations. Some trials can 
be successfully implemented with a simple design using 
advance randomization or restricted randomization. 
Other trials may require more careful consideration of 
interplay among multiple study objectives and call for 
more special randomization designs, such as covariate­
adaptive, response­adaptive or CARA. While the latter 
designs are more complex and require more rigorous 
planning than conventional randomization designs, 
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many of these designs have firm theoretical basis. Well­
designed and well­documented simulation studies are 
necessary to understand operating characteristics of the 
designs under various experimental conditions [85,86]. 
Well­trained and qualified individuals with necessary 
medical and statistical expertise should be involved in 

Executive­summary

Randomization in clinical trials
 ■ The randomized clinical trial is the most credible research design for clinical investigation. Various randomization procedures 
with established statistical properties are available for use in practice. 

Bias & its control in randomized clinical trials
 ■ To achieve high quality results, randomization must be complemented by other techniques, such as masking, allocation 
concealment, stratification or adjustment of randomization for covariates (when appropriate), covariate-adjusted analysis, and 
the careful conduct of the trial.
- Ascertainment bias can arise in a clinical trial due to the knowledge of which treatment each participant is receiving. 

A randomized, double-masked trial design is the most efficient way to mitigate ascertainment bias.
- Selection bias can arise due to an investigator’s attempt to guess the treatment assignment and selectively enroll participants 

into the study. Randomization, masking and careful allocation concealment minimizes the potential for selection bias. In an 
unmasked trial, selection bias can be mitigated by the use of randomization procedures with minimal predictability. Selection 
bias can be also introduced at the data analysis stage by postrandomization exclusions. Such a bias can only be mitigated by 
sufficient attention and resources committed to active retention of study patients.

- Covariate imbalances may arise by chance in clinical trials of any size.  In a randomized trial with appropriate allocation 
concealment, covariate imbalances are random and do not compromise the validity of inference. An unbiased treatment 
comparison is achieved by a covariate-adjusted analysis. 

- Accidental bias refers to bias from unknown covariates that impact the primary outcome. Randomization tends to mitigate 
accidental bias; however, one should avoid using randomization procedures that can potentially generate a sequence of 
treatment assignments with some particular periodicity. 

 ■ Randomization cannot eliminate biases that may arise due to a poor planning of a clinical trial or biases related to interpretation 
and reporting of the trial results.

Special­randomization­designs:­response-adaptive­&­covariate-adjusted­response-adaptive­
 ■ Many modern clinical trials attempt to achieve multiple experimental objectives while maintaining the validity and integrity of 
the trial results. Such trials call for response-adaptive or covariate-adjusted response-adaptive randomization procedures. While 
these procedures have well-established theory, they are operationally more complex than traditional randomization designs and 
they have been rarely used in clinical trials. 

 ■ Modern advances in information technology, rigorous planning, and adherence to the key principles of the well-conducted clinical 
trial should enable successful implementation of response-adaptive and covariate-adjusted response-adaptive randomization 
procedures in the near future.

the implementation of such trials. Overall, we feel that 
modern advances in information technology, rigorous 
planning, and adherence to the key principles of the 
well­conducted clinical trial should enable success­
ful implementation of response­adaptive and CARA 
randomization designs in the near future. 
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