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Breast cancer treatment recommendations will often require an appraisal 
of likely benefits in relation to likely side effects on survival and quality 
of life end points, and possibly also an evaluation of the size of the 
anticipated net clinical benefit against financial costs. Quality-adjusted 
survival (QAS) analysis methods provide a formal approach for deriving 
an estimate of net clinical benefit to facilitate this appraisal process. QAS 
analysis methods have been applied in trials with breast cancer patients of 
adjuvant therapies as well as treatments for advanced/metastatic disease. 
QAS analyses based solely on trial data may fail to capture plausible 
longer-term benefits; thus, methods to explore the possible outcomes 
of treatment beyond the limits of trial data have been developed. These 
modeling approaches can help researchers gain insights and identify 
future research priorities, but do not replace the need for long-term 
evidence from randomized trials.

Keywords: breast cancer • quality-adjusted life years • quality-adjusted survival 
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The relevance of quality of life (QoL) outcomes in breast cancer care is widely rec-
ognized, with both disease symptoms and treatment side-effects having a substantial 
impact on patient well being [1]. Clinical trials of breast cancer therapies, therefore, 
often include QoL as an end point; however, integrating QoL data with information on 
other important end points, such as survival time or even economic costs to determine 
the overall net benefit and cost-effectiveness of a treatment, poses a challenge.

 Ideally, a treatment should enhance QoL, prolong survival time and reduce health-
care costs, but trade-offs between these desired outcomes commonly arise. In some 
cases, a treatment may provide QoL benefits but raise questions about compromising 
longer-term survival. For example, sentinel node biopsy (SNB) provides a method 
for staging early breast cancer that reduces the risk of arm morbidity, compared to 
axillary lymph node dissection; but it may fail to detect cancer spread in a small 
proportion of cases leading to suboptimal treatment, raising the possibility of an 
increase in the likelihood of cancer recurrence, and poorer longer-term outcomes [2]. 

In other cases, a treatment may provide gains in (progression-free) survival at the 
expense of worse QoL in the short-term due to side-effects. For example, adjuvant 
chemotherapy may produce modest survival gains [3] whilst inducing a number 
of unpleasant side-effects that will influence patients perception of the value of 
treatment [4,5]. Furthermore, dose-intensive adjuvant chemotherapy may provide 
an additional modest gain in disease-free survival, compared with standard dose 
chemotherapy, but with a deleterious impact on QoL during the treatment period [6]. 
In metastatic breast cancer, combination therapy may be superior to monotherapy 
in terms of progression-free survival, but worse with regards to side-effects [7,8]. 

In each of these cases, the impact of trade-offs between QoL and survival needs to be 
evaluated in order to assess the net value of each treatment. Such an evaluation should 
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aim to incorporate the subjective importance patients 
place on QoL outcomes relative to survival outcomes. 
Most QoL instruments do not provide an assessment on 
this scale; a utility-based QoL assessment, as described in 
subsequent sections of this article, is required. 

There may be a net clinical benefit for one treatment 
over the other for the individual patient after consider-
ation of the above trade-offs; however, difficult decisions 
may yet still need to be made as to whether the net 
health gains are sufficient to justify a treatment’s finan-
cial cost in order to make best use of limited health-
care resources. If the incremental health gain is small 
but very expensive to achieve, then alternative uses of 
the funds may provide greater health benefits to the 
community. 

The financial cost associated with oncology care has 
increased considerably with the introduction of new 
diagnostic technologies, drugs, and radiotherapy treat-
ments [9]. For example, modern aromatase inhibitors 
appear to have greater efficacy than established adjuvant 
endocrine therapy with tamoxifen for estrogen receptor-
positive breast cancers [10], but are many times more 
costly [11]. Adjuvant therapy with trastuzumab is effec-
tive for HER2-positive cancers, but is expensive with a 
12-month treatment course costing around AU$50,000. 
A new combination agent, trastuzumab emtansine, has 
the potential to be more effective than trastuzumab 
alone [12] but is likely to be even more costly. 

The additional financial cost of the additional health 
gain associated with a new treatment may be expressed 
in terms of a single index known as an incremental cost–
effectiveness ratio (ICER; i.e., the ratio of the difference 
in cost, between the new treatment and the comparator 
treatment, relative to the difference in their effective-
ness) [13]. An ICER will not in itself provide an answer 
as to whether or not a new treatment affords good value; 
however, collectively ICERs may be used to rank health 
initiatives and treatments to assist with funding deci-
sions. Preferentially, allocating funds to better value 
treatments (with lower ICERs) over those providing less 
value (with higher ICERs) provides a method for distrib-
uting finite resources efficiently. However, comparisons 
between ICERs for different treatments are only possible 
when effectiveness is expressed on a common scale that 
ideally captures the overall net impact of treatment. 

A quality-adjusted survival index that summarizes the 
impact of a treatment on both QoL and survival simulta-
neously is, therefore, not only useful for evaluating trade-
offs, but also as a common measure of net effectiveness 
in economic evaluations. This article provides an intro-
duction to methods for deriving such a quality-adjusted 
survival time index, including an overview of approaches 
for obtaining QoL data on the required utility scale, 
as well as analysis techniques for evaluating treatment 

alternatives in terms of quality-adjusted survival. This 
material is presented with a focus on breast cancer care 
but is broadly applicable to many other therapeutic areas. 
Examples of published studies in breast cancer that have 
undertaken quality-adjusted survival are presented, as 
are general recommendations for the applicability and 
future implementation of such analyses. 

Quality-adjusted survival & expected utility 
theory
An evaluation of the net benefit of a treatment will 
require consideration of survival outcomes, QoL out-
comes, and some approach for weighting these compo-
nents to form an overall assessment. Methods for mea-
suring the effect of disease and its treatment on a single 
index capturing both QoL and survival outcomes first 
arose in the early 1970s [14,15]. It was proposed that the 
desirability of a health outcome could be represented by 
adjusting the observed survival period by a weight that 
reflected the relative quality of the health state experi-
enced relative to full health, which is given a weighting 
of 1, and death, which is given a weighting of 0. Accord-
ing to the theory, a 12-month survival period spent in 
an intermediate health state with a quality weighting 
of 0.5 would be valued the same as a 6-month survival 
period spend in full health. Various names have been 
applied to the concept of adjusting survival time by a 
weight reflecting the desirability of the health state expe-
rienced but the expression ‘quality-adjusted life years’ 
(QALYs) has tended to dominate. An important step 
in the evolution of the QALY was the establishment 
of a theoretical link with a formal method of decision 
making based on expected utility theory [16]. 

In the context of expected utility therapy, a utility is 
essentially a measure of preference for a given outcome 
that is assessed on a probability scale. The criterion mea-
surement approach for obtaining utilities is known as 
the standard gamble and involves having an individual 
compare a given outcome against a gamble (or lottery) 
between the best and the worst possible outcomes. For 
example, an individual’s strength-of-preference for a 
given intermediate health state (e.g., moderate symp-
toms of pain, fatigue, nausea, vomiting) can be evalu-
ated against a hypothetical gamble that offers a p prob-
ability of full health and a 1-p probability of immediate 
death. The gamble between full health and death can 
be made to look more or less attractive by varying the 
probability p, and through an iterative process, a value 
for p can be found that makes the gamble appear equally 
preferable to the intermediate health state. At this point 
of indifference, the gamble, with an expected pay-off of 
(p × 1) + (p × 0) = p, is said to be the probability equiva-
lent of the intermediate health state – the utility of the 
intermediate health state is thus estimated as p. A utility 
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function for survival time may likewise be modeled 
using information from standard gamble tasks that esti-
mate the relative utility of a particular survival duration 
against a gamble between worst (e.g., immediate death) 
and best case (e.g., 20 years) scenarios. 

Utility functions for multi-attribute outcomes, such 
as health outcomes expressed on a QALY scale, may also 
be constructed. The QALYs accrued by an individual 
may be estimated by multiplying (a function of) the 
time spent in various discrete health states by the utility 
of those states and summing the products. If we assume 
that QoL varies with time in a continuous rather than 
discrete fashion, then the rate of gain in QALYs with 
respect to time may represented by the equation below, 
which shows QALY model with changes in health state 
and utility function for time:

/ ( ) ( )dQALY d ut t f ti= l

Equation 1 

where u
i
 represents the utility of health state i at time 

t and f(t) is the utility function for time. Figure 1 illus-
trates this for hypothetical breast cancer patient as the 
area under the curve defined by the QoL experienced 
over time. 

In addition to the difficulties in ensuring the validity 
of the assumptions underlying the QALY model [17], 
there are various methodological challenges in using 
quality-adjusted survival as a clinical trial end point. 
One of these is how best to obtain utilities for health 
states applicable to patients participating in a clinical 
trial. Another is how to perform an analysis of quality-
adjusted survival to compare treatments. We explore 
each of these two tasks in the subsequent sections. 

Utility-based QoL assessment
Utility assessment represents a distinct approach to 
the evaluation of QoL that is different to typical QoL 
instruments that express scores across separate aspects of 
QoL on arbitrary scales (e.g., the European Organiza-
tion for Research and Treatment of Cancer QLQ-C30 
instrument [18]). The criterion method of measuring 
utility-based QoL (uQoL) scores is the standard gamble 
approach described above [19]. The time trade-off method 
has been used as a conceptually simpler alternative to the 
standard gamble and involves a hypothetical comparison 
between a fixed survival period spent in a given health 
state versus a shorter period of survival time spent in 
full health [14]. Simpler again are numerical category 
scaling or visual analog scale tasks; however, whilst these 
provide information on the magnitude of QoL impair-
ments, they generally do not yield scores with true utility 
properties. Standard gamble, time trade-off, and cat-
egory scaling methods typically produce systematically 

different estimates and approaches to correct for the 
measurement bias inherent with category scaling and 
time trade-off tasks have been demonstrated [20,21] 

Self-administered questionnaires provide a very prac-
tical method for collecting information across the multi-
ple aspects of QoL in clinical trials; however, as with the 
numerical category scaling or visual analog scale tasks 
mentioned above, they generally provide information 
on QoL impairments on an arbitrary scale that does not 
have utility properties. Only a subset of QoL question-
naires have scoring systems designed to estimate uQoL. 
Underpinning such instruments is some form of clas-
sification system that categorizes an individual’s health 
state according to his/her responses to the questionnaire 
items, and a method for assigning a uQoL score to the 
health state defined by the classification system. A vari-
ety of statistical approaches have been used to estimate 
uQoL scores from questionnaires with applicability to 
breast cancer patients [8,22–24].

An intriguing question is whose perspective and 
preferences should be reflected by uQoL assessments 
of health states. QoL is clearly a subjective concept 
and patients’ self-ratings have indeed been shown to be 
more reliable than those made by clinicians on behalf 
of patients [25]. Nevertheless, there may be instances 
when adopting the perspective of individuals other than 
patients could be appropriate. In the context of a cost–
effectiveness analysis, for example, one might argue that 
the value of alternative treatment options should be 

Figure 1. Quality-adjusted life years. The area under the curve defined by 
the QoL measures experienced over time for a hypothetical patient repre-
sents the quality-adjusted life years accrued following initial diagnosis of 
early breast cancer. QoL measures decline during the adjuvant treatment 
period due to side effects and again following cancer recurrence due to 
disease symptoms.  
QoL: Quality of life.
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appraised from the societal perspective because it is soci-
ety’s resources that are to be allocated across treatment 
alternatives [26,27]. In the context of reaching treatment 
decisions for individual patients, some patients them-
selves may feel that an experienced physician is in a bet-
ter position to appraise the health outcomes associated 
with various treatments than they themselves, or there 
may be pragmatic grounds for employing uQoL esti-
mates from breast cancer experts [28]. Differences have 
been demonstrated between patients, health profession-
als and healthy volunteers in terms of health state utility 
estimates as well as treatment priorities and preferences 
[29–31]. Such differences have, in turn, been shown to 
have the potential to appreciably alter estimates of the 
net-effectiveness and cost–effectiveness of treatments in 
various therapeutic areas [32,33]. 

Combining the uQoL and survival data obtained 
within a clinical trial to undertake an analysis of QALY 
data appears conceptually straightforward but actually 
presents a number of technical challenges. A com-
parison between the treatment arms in a clinical trial 
based on a simple summation of the QALYs accrued 
by individual patients will be inappropriate if patients 
are followed-up for different periods of time and there 
is censoring. Substituting QALYs for survival time and 
applying a log-rank test or Cox regression model to 
QALYs is also inappropriate because the assumption 
of noninformative censoring is likely to be violated [34]. 

Quality-adjusted time without symptoms or 
toxicity 
One way of calculating quality-adjusted survival that 
accommodates censoring and differentials in obser-
vation time appropriately is the quality-adjusted time 
without symptoms and toxicity (Q-TWiST) method 
[34]. The Q-TWiST method partitions the standard 
Kaplan-Meier survival curve for a treatment group into 
time spent in discrete health states, which is the defining 
characteristic of health state-based methods for esti-
mating quality-adjusted survival. Figure 2 presents an 
example of this approach using data from a hypothetical 
study of adjuvant chemotherapy in breast cancer. 

Commonly, three states are distinguished: one for 
time spent experiencing the short-term side-effects of 
treatment (toxicity [TOX]), one for time spent without 
symptoms or TOX (TWiST), and one for time spend 
after relapse (REL) or progressive disease (PD). The 
Kaplan-Meier method is used to estimate time to event 
curves for the states and each state is assigned a uQoL 
score. The sum of the uQoL-weighted area under each 
curve provides an estimate of quality-adjusted survival. 
Depending on the maturity of the data, and the censor-
ing patterns, a restricted estimate of quality-adjusted 
survival may be appropriate where the area under each 

curve is calculated up to a defined truncation point 
(e.g., median follow-up time). 

Resampling methods (e.g., bootstrap) are typically 
used to obtain a measure of variance for these estimates 
allowing confidence intervals and p-values to be calcu-
lated. Commonly, the uQoL weights are assumed to be 
estimated without measurement error and the results of 
Q-TWiST analyses are presented as a two-way threshold 
analysis where the conclusions associated with the full 
range of possible utility values TOX and REL are pre-
sented graphically. This affords the opportunity to judge 
the net clinical benefit of a therapy from the perspective 
of individual patients with different attitudes towards 
time spent in TOX and REL. Semi-parametric and fully 
parametric generalisations of the Q-TWiST model have 
been developed that allow for the addition of covariates 
to explore how quality-adjusted survival time may differ 
relative to various prognostic factors [35,36].

Q-TWiST analyses have been undertaken in breast 
cancer with data from trials of adjuvant therapies as well 
as treatments for advanced/metastatic disease. Examples 
of these are presented in the next sections. 

Q-TWiST evaluations of adjuvant chemotherapy
In early breast cancer, the trade-off between short-term 
treatment toxicity versus improved survival time associ-
ated with adjuvant chemotherapy was evaluated by apply-
ing the Q-TWiST approach to data from 47 trials involv-
ing over 17,000 women [37]. Actual treatment duration 
data was not consistently available across the included 
studies, thus a fixed duration of 6 months of TOX was 
applied to each trial as this was the standard duration 
of adjuvant therapy at the time. The average time spent 
in TWiST and REL was estimated as the area under 
standard Kaplan-Meier curves restricted to each trial’s 
respective median follow-up duration. The estimates 
of (restricted) average time spend in TWiST and REL 
from each individual trial were then pooled in a meta-
regression and used to estimate treatment effects over a 
10-year period. Within trial QoL data were unavailable 
to derive uQoL weights, therefore, Q-TWiST results 
were presented as a two-way threshold analysis in which 
uQoL weights for TOX and REL were varied between 0 
and 1. For women aged under 50, adjuvant chemotherapy 
produced greater quality-adjusted survival over a rela-
tively wide range of uQoL weights. This equated to an 
additional 4.8 months of quality-adjusted survival when 
the uQoL of TOX and REL were assumed to be 0.5. The 
results for older women followed a comparable pattern 
but the benefits were somewhat smaller in magnitude. 

The net benefit of adjuvant chemotherapy in older 
women (with node negative disease) was further inves-
tigated by performing a Q-TWiST analysis on the 
IBCSG-9 trial [38]. The actual duration of adjuvant 
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chemotherapy treatment was used to define the time 
spent in TOX, and uQoL weights were approximated 
by applying a bias correction to QoL visual analog scale 
scores collected longitudinally from trial participants. 
The median QoL scores at 3 months, those between 
treatment completion and 24 months, and those dur-
ing the first 6 months after REL, were used to derive 
uQoL weights for TOX (0.89), TWiST (0.91), and 
REL (0.71). The estimated quality-adjusted survival, 
restricted to the median follow up of 71 months, was 
superior by a very modest degree for adjuvant therapy 
(62.5 vs 61.4; p = 0.03) and was supported by the find-
ings of a two-way threshold analysis varying utility 
weights for TOX and REL. 

Dose-intensive adjuvant chemotherapy regimens have 
been speculated to provide further gains over standard 
regimens in terms of disease-free survival but cause more 
intense short-term toxicities. A Q-TWiST appraisal 
of this trade-off was undertaken using data from the 
IBCSG-15 trial comparing a dose-intensive regimen of 
epirubicin and cyclophosphamide with standard-dose 
anthracycline-based chemotherapy [6]. In that analysis, 
each episode of grade 3–4 toxicity was counted as con-
tributing between 1 to 3 months (depending on type 
and timing of adverse events) towards each patient’s 
time spent in TOX. uQoL weights for TOX and REL 
were estimated using data obtained from patients com-
pleting longitudinal QoL self-evaluations. The median 
QoL value obtained during each state (TOX = 0.77, 
TWiST = 0.91, and REL = 0.77) was used as the base-
case uQoL weights. A nonsignificant trend towards 
improved disease-free survival for dose-intensive che-
motherapy but worse QoL during the treatment period 
was observed in IBCSG-15 trial [6]. In terms of quality-
adjusted survival, this translated into a small, and non-
statistically significant, benefit for dose-intensive therapy. 
This did not reach statistical significance for any values 
tested in the two-way threshold analysis on the utility 
estimates. 

Q-TWiST evaluations in advanced breast cancer
Trials of chemotherapy for advanced and metastatic 
breast cancer have also been analyzed using the 
Q-TWiST approach as well as variants in which quality-
adjusted time is assessed only up to the point of PD 
[39]. Corey-Lislel et al. assessed the trade-off between 
improved progression-free survival but increased 
treatment toxicity observed for combination therapy 
with ixabepilone plus capecitabine compared with 
capecitabine alone in metastatic breast cancer [7]. The 
TOX state was defined as the total time spent with grade 
3–4 toxicities before PD. Compared to patients in the 
monotherapy group, those randomized to combina-
tion therapy experienced a longer duration in TOX, a 

nonstatistically significant longer duration in TWiST, 
and a comparable duration following PD. No estimates 
of the QoL experienced by patients participating in the 
trial were used in the Q-TWiST analysis and results 
were presented as a two-way threshold analysis. Under 
the base assumption that TOX and PD both had a uQoL 
weight of 0.5, the quality-adjusted survival with combi-
nation therapy was statistically significantly higher than 
that for monotherapy (42 vs 38 weeks, p = 0.02). The 
threshold analysis indicated that combination therapy 
was preferred across a range of plausible utility values 
for TOX and PD. 

Various other studies in advanced and metastatic 
disease have used quality-adjusted survival time as 
an end point to simply provide a concise summary 
of the treatment effect, despite there being no clear 
trade-off between QoL and survival to evaluate. For 
example, a Q-TWiST analysis was undertaken using 
data from a trial that concluded combination therapy 
using lapatinib with capecitabine improved disease-free 
survival with no clear increase in toxicity compared 
with capecitabine alone in women with advanced or 
metastatic HER2 breast cancer who had previously 
progressed on established therapy [40]. For that analy-
sis, each patient’s time spent in TOX was estimated by 
summing the total time they spent experiencing a grade 
3–4 toxicity. Although a utility-based QoL instrument 
was used in the trial, estimates of uQoL weights for 
TOX and REL were set to 0.5 in a base-case analysis 
and varied between 0 and 1 in a threshold analysis. A 
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Figure 2. Quality-adjusted time without symptoms or toxicity. 
The survival curve for a treatment group is partitioned into time spent in 
discrete health states that each have their own utility weighting for qual-
ity of life measures. The sum of the utility weighted area under each curve 
provides an estimate of quality-adjusted survival. 
REL: Relapse; TOX: Toxicity; TWiST: Time without symptoms and toxicity.
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statistically significant benefit for combination therapy 
was found under all instances where the uQoL for REL 
was less than that for TOX – a result illustrating that 
threshold analyses may give a clinically useful result 
that does not require detailed uQoL assessment of 
multiple health states.

In advanced metastatic cancer, the question of the 
optimal duration of chemotherapy (with CMF) for pal-
liation has been investigated with a Q-TWiST approach 
using data from an European Organization for Research 
and Treatment of Cancer trial that compared the addi-
tion of continuous chemotherapy (until progression) 
following an initial 3-month treatment period versus no 
further chemotherapy [41]. Averaged QoL values from 
visual analog scale measures performed by patients were 
used to approximate uQoL weights for TOX (0.54), 
TWiST (0.73) and REL (0.29). The Q-TWiST analy-
ses (restricted to the median follow-up time) found a 
nonstatistically significant difference favoring no treat-
ment despite the fact that progression-free survival was 
significantly longer in the continuous chemotherapy 
arm (5.2 vs 3.5 months; p = 0.01). A two-way threshold 
analysis found no combination of the utilities evalu-
ated made continuous chemotherapy statistically sig-
nificantly better that stopping after the initial 3 months 
of treatment; however, the range of utilities included 
in that analysis was constrained to values less than 
0.73 and these results are not consistent with a related 
older study showing improvements in QoL up to the 
time of PD for continuous versus intermittent CMFP 
chemotherapy [42] .

Other health state-based approaches for 
estimating quality adjusted survival time
The Q-TWiST method is well suited to situations where 
patients pass through clinically distinct states with dif-
ferent uQoL weights, but may not otherwise reflect the 
treatment experience well. Cole et al. proposed a varia-
tion on the conventional Q-TWiST model that distin-
guished the time prior to PD on the basis of whether 
the QoL experienced was ‘good’ or ‘poor’ rather than a 
clinical finding (e.g., discovery of tumour on computer-
ized tomography scan) [43]. An arbitrary cut-point that 
delineates ‘good’ QoL from ‘poor’ QoL is applied to 
measurements obtained from patients repeatedly over 
time. Patients may transition between these states on 
multiple occasions, and the Kaplan-Meier method is 
used to estimate the time spent in each state for each 
transition. These estimates are then summed over the 
total number of transitions applicable to yield a total 
duration and the analysis proceeds in much the same 
way as a conventional Q-TWiST analysis with uQoL 
weights being applied to the ‘good’ and ‘poor’ QoL 
states. 

Quality-adjusted survival analysis with repeated 
measures
An alternative to Q-TWiST that affords even greater 
flexibility to accommodate changes in uQoL over time 
is the quality-adjusted survival analysis with repeated 
measures (QASA) method [17]. This requires an esti-
mate for each treatment group of the survival function, 
and the function describing uQoL over time. The prod-
uct of these functions integrated up to time t provides 
an estimate of quality-adjusted survival accrued up to 
time t (Equation 1). The standard Kaplan-Meier method 
may be used to estimate a survival function and a vari-
ety of options are available to estimate a function for 
uQoL. One would be a step function that interpolates 
between mean uQoL estimates obtained at the fixed 
time points. In this case, the QASA method would 
be analogous to partitioning the survival curve for a 
given treatment arm into discrete time periods during 
which a uQoL assessment was performed (Figure 3), 
as opposed to partitioning the survival curve into 
health states as in the Q-TWiST method. An alterna-
tive method would be to interpolate between the fixed 
uQoL assessment time points to generate a function for 
each patient, and then average the individual functions 
to estimate a group uQoL function for each treatment 
arm. Mixed linear models for repeated measures data 
provide another approach for estimating a uQoL func-
tion over time that yields unbiased estimates under 
less restrictive assumptions than those required when 
a simple summary of observed uQoL data is used [44]. 

Extrapolation of outcomes beyond trial data
Ideally, a quality-adjusted survival analysis would cap-
ture the lifetime net effects of a treatment. However, 
analyses based on trial data alone are likely to have 
a limited time horizon due to the finite follow-up 
duration of the study. This is a particularly relevant 
issue for trials in early breast cancer where long-term 
survival rates are relatively high. For instance, the 
Q-TWiST meta-analysis of adjuvant chemotherapy 
in early breast cancer estimated treatment effects to 
10 years, at which point the overall survival probability 
was still over 50%. Thus, subsequent survival benefits 
beyond this point are effectively ignored yet the full 
impact of the short-term side-effects were counted in 
the Q-TWiST analysis. 

Methods for exploring the net benefits of treat-
ment beyond the limits of trial follow-up time have 
been developed and are presented in the next sections. 
These methods have included composite approaches 
that model the tails of Kaplan-Meier curves beyond a 
chosen truncation point (e.g., median follow-up time), 
and approaches that model the entire experience of 
patients using, for example, a Markov-type process. 
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■■ Extrapolation of the Kaplan-Meier curves
Gelber et al. applied a composite approach to evaluate 
the net benefit of long- versus short-duration adjuvant 
chemotherapy beyond the initial published Q-TWiST 
analysis that was restricted to 5 years [45]. Parametric log-
normal models were fitted to project out the TWiST and 
REL curves from 5 to 10 year follow up. The estimates of 
quality-adjusted survival from the standard Q-TWiST 
(to 5 years follow up) and projected curves (5–10 years 
follow up) were combined and resampling methods used 
to undertake statistical inferences. Extrapolating beyond 
a truncated Q-TWiST analysis even further into the 
future will generally require a parametric model that 
accounts for the increasing hazard of death with age such 
as the Gompertz function employed by Trippoli et al. to 
estimate the lifetime benefits of adjuvant chemotherapy 
in node-positive breast cancer [46]. 

■■ Extrapolation using decision analytic modeling
Decision analytic modeling incorporating Markov pro-
cesses has been a popular approach for extrapolating 
beyond the randomized trial evidence to estimate qual-
ity-adjusted survival (and undertaking cost–effectiveness 
analyses). The Markov processes used in this setting 
generally model the experience of patients as a progres-
sion though a series of discrete health states over a time 
horizon divided into periods, or cycles, of equal duration. 
Transition probabilities determine the chance of mov-
ing from one health state to another at the conclusion 
of each cycle. Each state is associated with a uQoL (and 
potentially a financial cost) and the cumulative quality-
adjusted survival (and the financial costs) accrued over 
the entire process is estimate by summing the individual 
uQoL gains (and financial costs) yielded at the conclu-
sion of each cycle. The effect of varying the parameter 
estimates and assumptions used may be explored via sen-
sitivity analyses. A one-way sensitivity analysis involves 
changing just one aspect of the model (e.g., a uQoL value 
for a particular health state), re-running the decision 
model, and examining the extent to which estimates 
change and whether conclusions are appreciably affected. 
Generally, a range of plausible values will be specified for 
each parameter built into a decision model, and values 
over the entire range will be testing in a sensitivity analy-
sis. Multi-way sensitivity analyses involving varying more 
than one parameter simultaneously (e.g., uQoL for TOX 
and uQoL for REL). This can be done by simply speci-
fying the parameter combinations of clinical interest or 
by employing a probabilistic approach where param-
eter estimates are sampled at random from probability 
distributions specified by the decision analyst. 

Verry et  al. used decision analytic modeling to 
explore the impact of the remaining uncertainties for 
SNB over axillary node dissection for staging early 

breast cancers  [2]. Randomized trials have shown 
SNB reduces the risk of arm morbidity and have as 
yet produced no convincing evidence of an increase 
in recurrence in the short term; however, the short-
term QoL benefits of SNB have the potential to be 
offset in the longer-term depending on the incidence 
of false-positive findings and the outcomes experi-
enced by these patients. The Markov process used to 
evaluate this trade-off simulated a cohort of patients 
transitioning through a set of health states represent-
ing: full health (i.e., disease free), disease recurrence 
(local, axillary or distant), death due to breast cancer, 
or death from other causes. Transition probabilities 
used to govern the likelihood of moving from one 
state to anther were informed by a review of avail-
able randomized trial evidence for SNB and published 
population statistics, costs associated with each health 
state were estimated from the perspective of the health-
care system, and uQoL weights for health states were 
informed by published studies (e.g., breast cancer 
patients who answered standard gamble questions) 
and clinical opinion. Over a 20-year time horizon, 
the model found SNB was associated with a small 
excess in axillary recurrence and mortality, but this 
was outweighed by the QoL benefits associated with 
the less invasive nature of SNB. While such excess in 
recurrence of this size has not as yet been demonstrated 

Figure 3. Quality-adjusted survival with repeated quality of life 
measures. Interpolating between utility-based quality of life mea-
sures estimates obtained at the fixed time points using a step function 
and combining this with an estimated survival function is analogous 
to partitioning the standard survival curve into discrete time periods – 
each has its own utility weighing for quality of life measures. The sum 
of the utility-weighted area under each curve provides an estimate of 
quality-adjusted survival. 
QoL: Quality of life.
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by the available trial data, the result supports the need 
for longer-term follow up.

Decision analytic modeling not only provides 
researchers with a framework for extrapolating trial 
evidence beyond the duration of a study, but also helps 
to apply this evidence to different subgroups of patients, 
and identifying priority areas for future research. The 
conclusions of the SNB study, for instance, were sensi-
tive to the likelihood, and uQoL, of lymphoedema – 
obtaining more precise estimates of these parameters 
would, therefore, be warranted. The model was also 
used to explore the value of SNB in women at elevated 
risk of nodal involvement – a group for which limited 
trial evidence exists. Sensitivity analyses represent a fun-
damental aspect of such studies and provide valuable 
insights. The cost–effectiveness of endocrine therapy 
with tamoxifen in women at high risk of cancer, for 
example, was found to be particularly sensitive to the 
assumed duration of the breast cancer risk reduction [47]. 
A modeling study of trastuzumab for early breast cancer 
likewise found that the favorable ICER was sensitive to 
the duration of the treatment benefit [48]. Such findings 
provide a compelling case for investing research efforts 
in the long-term follow up of clinical trial participants 
well beyond the point corresponding to the planned 
primary analysis. 

Future perspective
Quality-adjusted survival time is a useful evaluation 
end point when trade-offs are suspected between treat-
ment side effects and benefits on QoL and/or survival 
outcomes, and between net treatment benefits versus 
additional financial costs. Such trade-offs have had 
relevance to the assessment of treatment strategies for 
breast cancer, but also have applicability to a broader 
range of therapeutic areas. 

The Q-TWiST model has proven to be a practical 
and informative method for analyzing quality-adjusted 
survival; however, few, if any, of the trials cited in 
this article appear to have been designed using sample 
size calculations treating quality-adjusted survival as 
the primary end point. This is likely to be due, in 
part, to the difficulties of specifying the likely effect 
of treatment on each of the components comprising 
quality-adjusted survival and the interdependencies 
between the components [49]. Ultimately, study design 
planning for trial assessing quality-adjusted survival 
is nontrivial and we would recommend that a series 
of calculations and sensitivity analyses that accom-
modate a range of plausible scenarios be performed to 
comprehensively evaluate a planned trial’s statistical 
power. Recommendations that a 10–15% improve-
ment in quality-adjusted survival be regarded as the 
smallest worthwhile difference for the planning of 

clinical trials have been put forward [50]. However, the 
context and setting of the individual trial will play a 
key role in judging what might constitute a worthwhile 
net clinical benefit. For example, in the absence of an 
important financial cost trade-off, even a very small 
difference in net clinical benefit may be worthwhile 
to detect.

Portraying the results of a Q-TWiST analysis on a 
threshold plane can serve as a decision aid to facilitate 
discussion with subsequent patients on the relative 
merits of a treatment and provides the opportunity to 
tailor recommendations based on an individual patient 
preferences. However, an estimate of the average net 
benefit, undertaken from the perspective of patients 
participating in the trial, is of clear value for informing 
health policy and funding decisions. We advocate the 
measurement of QoL outcomes in oncology trials via 
self-administered instruments with utility-based scor-
ing systems calibrated against patient-preferences. The 
assessment schedule should be carefully constructed 
such that the experience of participants is adequately 
sampled over time without placing undue burden on 
patients and trial personnel. Efforts should also be 
taken to minimize rates of missing uQoL data as the 
validity of analyses performed on incomplete data, 
even those that use sophisticated methodologies, rest 
on assumptions that may not be verifiable [51]. 

In many cases, breast cancer therapies that have 
been proven to provide a clear advantage in terms of 
prolonging (disease-/progression-free) survival have 
demonstrated side-effect profiles that are clinically 
manageable. The trade-off between the toxicity and 
potential benefits of more modern biologic agents for 
breast cancer (e.g., trastuzumab) may well prove to be 
more favorable still. The primary value of applying 
quality-adjusted survival analysis methods to future 
trials of newer treatments will probably have less to 
do with evaluating net-treatment benefits in the pres-
ence of a concerning trade-off, but be motivated by a 
need to quantify the incremental net benefit relative 
to increased financial cost. Applying quality adjust-
ments to survival gains for the purposes of cost–
effectiveness analyses can have somewhat surprising 
consequences however; this is particularly true when 
the uQoL weights are based on the perspective of the 
general community rather than patients themselves. 
For example, a randomized trial of cetuximab in 
advanced colorectal cancer demonstrated a modest sur-
vival benefit and a modest improvement in QoL from 
cetuximab compared with best supportive care. How-
ever, the benefit was reduced by around a third when 
expressed in terms of quality-adjusted survival time [52] 
based on the uQoL data that had been collected from 
patients via an instrument with a utility-scoring system 
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Executive summary

Background 
■■ Breast cancer treatment recommendations will often require an appraisal of likely benefits in relation to likely side-effects on 
survival and quality of life (QoL) end points.

Quality-adjusted survival analysis 
■■ Trade-offs between QoL and survival outcomes may be formally evaluated using quality-adjusted survival (QAS) analysis 
methods to determine the net benefit of a treatment. 

■■ QAS also provides a common metric of treatment effectiveness for economic evaluations that help inform healthcare funding 
decisions. 

■■ QAS approaches generally involve combining information from standard Kaplan-Meier survival curves with information on 
utility weights for QoL. 

Utility-based QoL assessment
■■ Patient preferences and the assessment of the relative utility of the components comprising QAS are important in many 
instances. Most QoL instruments do not provide an assessment on the required utility-scale, however, methods are available 
to accomplish this either directly (e.g., using a standard-gamble question) or indirectly (e.g., using a self-administered QoL 
questionnaire with a utility-based scoring system). 

Application of quality-adjusted survival analysis
■■ QAS analysis methods have been applied in trials with breast cancer patients of adjuvant therapies as well as treatments for 
advanced/metastatic disease.

■■ Threshold analyses performed on the components of QAS may simplify the interpretation of results to facilitate treatment 
recommendations.

■■ Long-term benefits and costs may not be captured within a clinical trial. Modeled analyses that extrapolate results beyond 
the trial follow-up can be important complements to standard QAS analysis methods. 

Future perspective
■■ Quality-adjusted survival time is a useful treatment evaluation end point when trade-offs are suspected between treatment 
side-effects and benefits on QoL and/or survival outcomes, and between net treatment benefits versus additional financial costs. 

■■ In these cases we recommend QAS analysis be undertaken within the context of randomized controlled trials using practical 
self-administered instruments with utility-based scoring systems calibrated against patient preferences. 

■■ Nevertheless, within-trial analyses may need to be supplemented by modeled analyses that extrapolate beyond the observed 
data to provide a comprehensive assessment.

that reflected the perspective of the general population. 
The cost–effectiveness of life prolonging therapies in 
patient populations with compromised QoL therefore 
has the potential to appear less attractive (i.e., larger 
cost–effectiveness ratios) when appraised in terms of 
quality-adjusted survival. In the case of cetuximab for 
advanced colorectal cancer, the cost-per-QALY was 
around 50% larger when compared to the cost-per-
life year gained. The cost-per-QALY would likely be 
lower, and therefore more attractive, if uQoL weights 
calibrated against patients’ perspectives were applied 
to estimate incremental QALYs as patients tend to 
appraise their health state more favorably that general 
population samples [29,30]. 

Randomized controlled trials provide the best evi-
dence on which to base an evaluation of a treatment. 
Performing quality-adjusted survival analyses within 
the context of a randomized controlled trial is therefore 
recommended using the ‘state-based’ (e.g., Q-TWiST) 
or repeated measures (e.g., QASA) methods that 
incorporate uQoL estimates obtained via instruments 
that reflect the attitudes of trial participants them-
selves. Nevertheless, these analyses may need to be 
supplemented by modeled analyses that extrapolate 

beyond the observed data to provide a comprehensive 
assessment and incorporate uQoL estimates obtained 
from patients outside of the context of clinical trials. 
Decision analytic methods provide a framework for 
accomplishing this, and together with sensitive analy-
ses, help researchers gain insights and identify future 
research priorities. They also provide an approach for 
synthesizing the best available evidence to inform cur-
rent decision making whilst waiting for longer-term 
following-up evidence to accrue. Modeled analyses of 
quality-adjusted survival outcomes therefore provide 
an important adjunct to evidence from randomized 
controlled trials, but do replace the need for long-term 
randomized evidence. 
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