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Amyotrophic lateral sclerosis (ALS) is a rare, neurodegenerative disease of 
the human motor system, with a median survival of 3 years from symptom 
onset. The age of onset is typically the 5th decade, with the clinical picture 
representing unrelenting progressive muscle weakness and resultant 
disability. Despite countless clinical trials examining novel medications, 
disease-modifying therapies remain limited, with riluzole affording a survival 
benefit of approximately 3 months. To date, the diagnosis and treatment 
of ALS have been hampered by lack of effective biomarkers. A diagnostic 
biomarker for ALS would enable prompt initiation of neuroprotective therapy, 
ideally when neural structures were intact and disease severity remained 
mild. Furthermore, a biomarker capable of monitoring disease progression 
may facilitate conduct of future clinical trials, by reducing sample size and 
trial duration. As such, the present review summarizes pathophysiology, 
diagnosis and treatment of ALS, with a focus on the development of effective 
biomarkers. 
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First described by Charcot [1], amyotrophic lateral sclerosis (ALS) encompasses 
a group of neurodegenerative disorders pathologically characterized by motor 
neuron loss in the motor cortex, brainstem and spinal cord. With median sur-
vival of 3 years from symptom onset [2], ALS manifests as progressive weakness 
of muscles under voluntary control, with relative sparing of extra-ocular and 
pelvic floor muscles [3]. The disease usually begins in the limbs (limb-onset), but 
weakness may be first evident in the oropharyngeal muscles in 20% of patients 
(bulbar-onset) [4]. Rarely, ALS patients may present with dyspnea, signifying 
early respiratory muscle involvement [5]. Irrespective of site of disease onset, 
weakness of respiratory muscles culminates in respiratory failure, the principal 
cause of death.

Glutamate, the major excitatory neurotransmitter in the CNS, is a contributing 
factor to the demise of motor neurons in sporadic ALS (‘excitotoxicity hypothe-
sis’) [6]. Excessive glutamatergic activation of ionotropic receptors may trigger an 
influx of Ca2+ into motor neurons, leading to activation of free radical-generating 
enzymes – Ca2+-dependent proteases – ultimately precipitating neurodegenera-
tion. Defects in axonal transport, mitochondrial dysfunction, neuroinflamma-
tion, ribonucleic acid splicing defects and accumulation of cytoplasmic inclusions 
have also been implicated in ALS pathogenesis [2,7,8].

The mechanisms of neurodegeneration in ALS remain complex and incom-
pletely understood. Approximately 10% of patients report a family history of 
ALS, with mutations in the SOD-1 gene accounting for 20% of familial cases [9]. 
Furthermore, mutations in TARDBP, FUS [10], UBQLN2 [11], VCP [12] and OPTN 
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[13] genes have also been verified in ALS (see [14] for a 
recent review of familial ALS). More recently, hexa-
nucleotide repeat expansions in the C9ORF72 gene 
(chromosome 9p21) were identified as the most com-
mon genetic aberration in familial ALS, accounting 
for at least 23% of cases with an autosomal-dominant 
pattern of inheritance [15,16]. As such, the etiology of 
familial ALS is now understood in approximately 60% 
of cases, but how such mutations initiate motor neu-
ron degeneration remains poorly defined.

Riluzole remains the only neuroprotective, dis-
ease-modifying therapy for ALS patients [17], afford-
ing a survival benefit of approximately 3 months [18]. 
Although the precise mechanisms of action remain 
poorly defined, riluzole appears to exert neuropro-
tection through influencing a host of different path-
ways, including Na+- and Ca2+-channel blockade and 
facilitating GABAergic neuro transmission [7]. Such 
effects are likely to confer neuroprotection through 
converging on the interruption of glutamatergic neu-
rotransmission. Given that riluzole does not restore 
lost function, it is important that clinicians emphasize 
to patients that its therapeutic effects are not clinically 
perceptible, particularly in the setting of ongoing dis-
ease progression. 

Advancing our understanding of ALS patho-
physiology and improving treatment options have 
been hampered by lack of effective biomarkers [19]. 
Conversely, the dearth of biomarkers may also be 
explained by our limited understanding of the eti-
ology and pathogenesis of sporadic ALS. The present 
review will summarize current understanding of ALS 
pathophysiology, with a focus on the current frame-
work for diagnostic and treatment approaches, and 
the potential for incorporation of clinical biomarkers.

Biomarkers
The Biomarker Definitions Working Group defined a 
biomarker as ‘a characteristic that is objectively mea-
sured and evaluated as an indicator of normal biolog-
ical processes, pathologic processes or pharmacologic 
responses to a therapeutic intervention [20].’

In essence, a biomarker represents any biological 
characteristic that may be quantified in physiologi-
cal or diseased states. There remains a critical need 
to devise objective biomarkers in ALS to elucidate 
pathophysio logical mechanisms, facilitate diagnosis 
and establish surrogate end points for use in clinical 
trials [21,22]. Most biomarkers belong to single cate-
gories, but some may have overlapping applications. 
To be clinically useful, a biomarker should have high 
intra- and inter-rater agreement [23]. 

Biomarkers related to ALS pathophysiology

The pathophysiology of sporadic ALS appears multi-
factorial, with likely genetic susceptibility factors and 
environ mental triggers [2,7]. Comparison of biomarker 
levels amongst ALS patients, disease controls and 
healthy controls in case–control studies may enable 
further dissection of putative pathophysiological 
processes. In this respect, an important, but often 
over looked consideration in such case–control stud-
ies relates to disease time course, given that certain 
biomarkers may be elevated and more pathogenic at 
specific stages of the disease.

 ■ Tissue-based biomarkers
Peripheral blood would appear a likely source of bio-
markers. Despite convenience, this approach is under-
scored by the assumption that neurodegenerative 
disorders are associated with disrupted homeostasis 
in non-CNS tissues [22]. Nevertheless, cytoplasmic 
aggregates of TAR DNA-binding protein 43 have been 
identified in circulating lymphocytes, suggesting that 
peripheral blood may act as a suitable surrogate for 
some biomarkers [24]. Cerebrospinal fluid (CSF) may 
also represent an attractive source for biochemical 
markers of ALS, given proximity to the CNS, although 
the invasive nature of obtaining CSF has tended to 
limit appeal, particularly from the patient perspective. 
Many novel CSF biomarkers have emerged recently 
[25], with inflammatory chemo kines receiving most 
attention to date [26] given that potential correlations 
with survival [27]. When designing CSF biomarkers 
studies, it is important to consider that multiple extra-
neous factors, including time of day that samples are 
collected, medication and diet, may influence CSF 
metabolite levels [22].

 ■ Neurophysiological biomarkers reveal cortical 
hyperexcitability in ALS
Biomarkers need not only exist as molecules dissolved 
in tissue or body fluids. Changes in cortical excitabil-
ity, as assessed by transcranial magnetic stimulation 
(TMS) may serve as a biomarker of ALS. Using this 
technique, ALS patients demonstrate reduction in 
short interval intracortical inhibition (SICI), poten-
tially ref lecting diminution in GABAA-mediated 
inhibitory circuits [28], combined with excessive acti-
vation of glutamate-mediated excitatory pathways in 
the motor cortex (Figure 1) [29]. The development of cor-
tical hyperexcitability in ALS may suggest that cortico-
motoneurons have a reduced threshold for activation 
[30], perhaps acting as an upstream pathophysiologi-
cal trigger of excito toxic degeneration of lower motor 
neurons (LMNs) in the brainstem and spinal cord 
(a ‘dying-forward’ hypothesis) [8,31,32]. Nonetheless, 
it is also acknowledged that hypotheses describing a 

‘dying-back’ pattern, or upper motor neuron (UMN) 
and LMN degeneration occurring as independent 
phenomena, have also been proposed [33].

Alternatively, it could be argued that reduction 
in SICI in ALS patients may represent an adaptive 
process, facilitating cortical plasticity and thereby 
functional compensation in response to ongoing dis-
ability, as suggested by combined TMS and functional 
MRI studies [34,35]. Indeed, suppression of inhibitory 
circuits occurs in a range of neurological conditions 
associated with ongoing motor cortical reorgani-
zation [36–41]. On the other hand, incongruent with 
the observation that reduced SICI may reflect cor-
tical plasticity is maintenance of SICI in pure LMN 
disorders, such as spinobulbar muscular atrophy or 
Kennedy’s disease [42].

 ■ Axonal Na+ conductances & ALS
In addition to central changes, abnormalities of 
peripheral nerve excitability have also been exten-
sively documented in ALS. The contribution of 
persistent Na+ conductance to increased excitabil-
ity of nervous tissue has been demonstrated in the 
peripheral motor nerves of ALS patients using axo-
nal excitability techniques. Axonal excitability studies 
enable in vivo estimation of membrane potential and 
the function of constituent ion channels, located at 
the nodes of Ranvier and internodal segments, and 
have been used to investigate a wide range of periph-
eral nerve disorders [43]. Axonal excitability testing 
has specifically identified upregulat ion of persistent 
Na+ conductances in peripheral motor axons of ALS 
patients [44–47]. Increased Na+ entry into motor axons 
may in turn enable membrane potential to reach 
threshold more frequently, resulting in spontan eous 
depolarization [47], and thereby implicating Na+ chan-
nels in the genesis of fasciculations, a universal feature 
of ALS. 

In addition to the generation of fasciculations, 
raised cytoplasmic Na+ concentrations may lead to 
neuro degeneration. Elevations of cytoplasmic Na+ 
concentration may result in reverse operation of the 
Na+/Ca2+ exchanger as a compensatory change, which 
under normal circumstances extrudes Ca2+ from 
the intra cellular space in exchange for Na+. Reverse 
operation may produce deleterious elevations in intra-
axonal Ca2+ concentrations, with resultant initiation 
of degradative cascades [48]. In further support of the 
potential injurious role of Na+ in axonal degenera-
tion, pharmacological enhancement of Na+ entry into 
mammalian white matter exacerbated tissue destruc-
tion, while an environment devoid of Na+ was protec-
tive against anoxic damage [49].

Raised cytoplasmic Na+ concentrations may also 

lead to neurodegeneration through alternative path-
ways. Specifically, increased Na+ concentration may 
increase energy demands through increased activity 
of the Na+/K+ ATPase [50]. Moreover, progressive loss 
of motor units in ALS may result in compensatory 
overuse of surviving motor units, thereby further 
increasing demand for ATP. Na+/K+ ATPase activity 
may appear extinguished in a-motor neurons from 
transgenic SOD-1 mice [51], although it would appear 
overactive in patients with sporadic disease [50].

While the implications of increased persistent Na+ 
conductances in ALS would appear almost certain, 
the origins, and clinical and pathophysiological con-
sequences of K+ channel dysfunction in ALS remain 
elusive. Axonal excitability studies have repeatedly 
shown that ALS patients demonstrate impairments 
in K+ conductances, principally reflected by reduction 
in S2 accommodation in depolarizing threshold elec-
trotonus (Figure 2A) and increased superexcitability in 
recovery cycle (Figure 2B) [45,46].

 ■ Neuroimaging may facilitate improved 
understanding of cortical dysfunction
Neuroimaging studies, such as diffusion-ten-
sor imaging, have traditionally examined specific 
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Figure 1. Abnormalities in cortical excitability in amyotrophic lateral 
sclerosis patients compared with healthy controls. SICI, reflecting GABAA 
receptor-driven processes mediated by inhibitory interneurons, is reduced 
in ALS patients. 
ALS: Amyotrophic lateral sclerosis; ICF: Intra-cortical facilitation; 
ISI: Inter-stimulus interval; SICI: Short interval intracortical inhibition.



www.future-science.com future science group110

Potential utility of biomarkers in amyotrophic lateral sclerosis Review: Clinical Trial Outcomes

future science group Clin. Invest. (2012) 2(1) 111

Review: Clinical Trial Outcomes  Cheah, Vucic & Kiernan

regions of interest along the corticospinal tract in 
ALS patients, demonstrating disintegration of this 
major tract in ALS patients with and without clinical 
signs of UMN impairment (i.e., brisk reflexes and 
spasticity) [52]. However, more recent neuroimaging 
studies have enabled a global understanding of cor-
tical dysfunction in ALS. Transcallosal dysfunction 
has been detected in structural and functional neu-
roimaging studies [53–55]. The emergence of graph the-
ory as an alternative means of interpreting structural 
connectivity data has enabled further elucidation of 
how neurodegeneration may spread from one motor 
cortical region to another, in addition to reduced 
connectivity between the motor cortex and adjacent 
regions [56,57]. Nonetheless, a potential limitation of 
neuroimaging biomarkers may be an apparent dis-
connect with clinical features, such as rate of dis-
ease progression and disease time course, with mixed 
findings across studies [55–59].

 ■ NMR imaging & cortical dysfunction in ALS
Unlike traditional neuroimaging approaches that 
evaluate structure or function, 1H-NMR spectroscopy 
(1HNMRS) exploits how proton-containing metabo-
lites react to magnetic radiation to probe in vivo bio-
chemical pathology in the CNS. 1HNMRS estimates 
the concentrations of different molecules in any given 

region of interest in the CNS. Metabolites of relevance 
to neuro degenerative disorders are n-acetylaspartate, 
a molecule present in the neuronal cytoplasm, and 
choline-containing compounds, which are markers of 
plasma membrane integrity, with the n-acetylaspar-
tate:choline ratio typically reported to reduce within 
subject variability. ALS patients demonstrate reduc-
tion in the n-acetylaspartate:choline ratio in central 
motor regions consistent with neuronal loss  [60–62]. 
1HNMRS has also revealed reduction in this ratio in 
asymptomatic individuals harboring mutations in 
the SOD-1 gene, suggesting that a prodromal phase 
occurs in familial disease [63].

Diagnosing ALS & the role of biomarkers
In routine clinical practice, the diagnosis of ALS 
remains clinical, relying on the presence of clinical 
features, consistent with UMN and LMN impair-
ment [4]. Patients usually present with a history of 
progressive weakness involving multiple regions of 
the body, in the absence of any structural lesion. By 
contrast, the revised El Escorial criteria are used 
to enroll patients for research studies, and require 
a combination of UMN and LMN signs within one 
or more of four body regions: craniobulbar, cervical 
(upper limbs), thoracoabdominal, and lumbosacral 
(lower limbs), conditional on the absence of other 

neurological disturbances [64]. Recent amendments to 
the criteria (the ‘Awaji criteria’), which consider elec-
trophysiological signs of LMN dysfunction equiv-
alent to clinical evidence of LMN involvement [65], 
have resulted in increased diagnostic accuracy [66], 
particularly in patients with bulbar-onset disease [67]. 

Given the lack of diagnostic biomarkers, diagnostic 
delay is common in sporadic ALS, up to 12 months 
after symptom onset [68], with initiation of established 
or experimental disease-modifying therapy inevita-
bly delayed. An early diagnosis of ALS would facili-
tate commencement of neuroprotective therapy, and 
potentially bolster patient recruitment into clinical 
trials [69]. Neuroprotection is most warranted when 
neural structures are intact, and indeed, it has been 
surmised that by the time a patient presents to a neu-
rologist, approximately 50% of motor neurons have 
already succumbed to disease. Early intervention 
may thereby maximize neuroprotective potential. 

In comparison to clinical trials and case–control 
studies, studies of diagnostic accuracy are infre-
quently undertaken, and their methodology not 
widely promulgated, despite the formulation of 
criteria for design and conduct of such studies [70]. 
It is not frequently understood that measures of 
diagnostic accuracy (i.e., sensitivity and specificity) 
reflect the composition of the target clinic popula-
tion, and are not intrinsic to the clinical test under 
scrutiny [70,71]. To mimic the incidence of disease in 
a clinic population in a diagnostic accuracy study, 
recruitment of controls should arise exclusively from 
the same clinical environment as patients with the 
disease of interest. Moreover, healthy controls from 
outside the clinic population should not be enrolled 
into diagnostic accuracy studies as this would inflate 
test specificity. Given such properties of a diagnostic 
accuracy study, the utility of a diagnostic biomarker 
would differ between general neurology and specialist 
neuromuscular clinics, with the latter generally asso-
ciated with a higher incidence of ALS. Moreover, the 
biomarker under scrutiny should also be investigated 
in patients with a disease time course similar to those 
in whom it would be applied in clinical practice, oth-
erwise ‘spectrum bias’, whereby the diagnostic accu-
racy of a biomarker is inflated because it is tested in 
patients with severe disease, may develop. 

Many serum and CSF biomarkers have been inves-
tigated for ALS, but to date none have been success-
fully applied to clinical practice [22]. Although conven-
tional MRI sequences appear to be of little diagnostic 
value in ALS [72], emerging neuroimaging biomark-
ers demonstrate diagnostic potential given that they 
enable noninvasive, in vivo exploration of structural 
and functional changes in the CNS, especially in the 

early stages of disease [73]. Specifically, diffusion-ten-
sor imaging, which quantifies water diffusion along 
white matter tracts, may be of greater diagnostic 
potential than conventional MRI sequences given its 
increased sensitivity to corticospinal tract abnormal-
ities [74].

In contrast to neuroimaging modalities, clinical 
neurophysiology may represent less costly avenues 
for pursuit. The triple stimulation technique of TMS 
may be used for identifying UMN abnormalities in 
patients not fulfilling ‘probable’ or ‘definite’ criteria 
for ALS [75]. Furthermore, investigation of cortical 
hyperexcitability using a novel threshold-tracking 
approach to TMS has shown that, compared with 
patients with ALS-mimic disorders, cortical hyperex-
citability appears unique to ALS [42,76,77]. Capitalizing 
on the early occurrence of cortical hyperexcitability in 
ALS, threshold-tracking TMS may be useful in distin-
guishing ALS from mimic disorders [78]. Nonetheless, 
despite the existing body of literature, there remain 
few studies that have prospectively assessed the diag-
nostic accuracy of putative biomarkers in ALS in a 
multicenter environment.

Surrogate end points
According to the Biomarker Definitions Working 
Group, a surrogate end point is defined as ‘a biomarker 
that is intended to substitute for a clinical end point. 
A surrogate end point is expected to predict clinical 
benefit (or harm or lack of benefit or harm) based on 
epidemiologic, therapeutic, pathophysiologic or other 
scientific evidence [20].’

Increasing public pressure for new, promising drugs 
to receive expedited approval ensures there are many 
proponents for use of biomarkers as surrogate end 
points in clinical trials. Use of biomarkers as surrogate 
end points is perhaps the most difficult application, 
given the assumptions involved (Figure 3). Surrogate 
end points may be of greatest value during early-phase 
trials when the objective is to demonstrate ‘proof-of-
concept’. Surrogate end points enable assessment of 
putative mechanisms of disease, particularly useful in 
the context of multifactorial diseases, such as ALS [71].

 ■ ALS functional rating scale-revised
Functional scales (e.g., maximum voluntary isometric 
contraction and ALS functional rating scale-revised 
[ALSFRS-R]) and respiratory function (e.g., forced 
vital capacity) have largely replaced survival as pri-
mary outcome measures in ALS trials. Although sur-
vival is a clinically relevant, unambiguous outcome in 
ALS trials, death as a primary end point dictates that 
trials be of long duration and that large numbers of 
patients are recruited to ensure that sufficient deaths 
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Figure 2. Abnormalities in peripheral nerve excitability in amyotrophic lateral sclerosis patients compared 
with healthy controls. (A) Depolarizing threshold electrotonus, reflecting the electrotonic changes in axonal 
membrane potential in response to subthreshold conditioning stimulation. S2 accommodation is reduced in the 
ALS patients compared, as indicated by a downward shift in the depolarizing threshold electrotonus trace (delays 
of 40–110 ms), suggesting dysfunction of internodal slow K+ channels. (B) Changes in depolarizing threshold 
electrotonus are mirrored in the recovery cycle, which describes the recovery of axonal membrane excitability 
following depolarization, with changes in ALS manifesting as increased superexcitability (defined by where the 
recovery cycle is below the zero line). 
ALS: Amyotrophic lateral sclerosis; ISI: Inter-stimulus interval.
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are accrued for statistical inference [7]. On the other 
hand, use of functional scales as primary outcome 
measures may reduce sample size and trial duration 
[71]. Furthermore, they have straightforward interpre-
tation and predict survival. Nonetheless, functional 
scales are not without limitations, as some have 
debated that certain medications may detrimentally 
influence functional capacity, without attenuating 
survival. Finally, an alternative to monitoring decline 
is to record time to 6-point reduction in ALSFRS-R, 

although this approach was associated with reduced 
statistical power compared with conventional longi-
tudinal analyses involving ALSFRS-R [79].

 ■ End points related to the pharmacology of an 
experimental therapy
Surrogate end points may also include those that 
are specific to the experimental therapy in question. 
For instance, a Phase III trial of celecoxib failed to 
demonstrate lowering of CSF prostaglandin E2 lev-
els [80]. Moreover, no clinical benefit was observed 
in this trial. On the other hand, positive effects on 
a blood biomarker (increased histone deacetylation) 
were reported in a Phase II trial of sodium phenylbu-
tyrate, although no attenuation in functional decline 
was observed [81]. These studies have highlighted 
that blood biomarkers were obtainable in a clinical 
setting, but the feasibility of performing sequential 
lumbar punctures in large patient cohorts remains 
questionable.

 ■ Motor unit number estimation
A number of electrophysiological biomarkers of dis-
ease progression have been investigated as potential 
surrogate end points. Motor unit number estimation 
(MUNE) is an electrophysiological technique that 
enables estimation of the number of motor units pres-
ent in a peripheral nerve [82]. MUNE has an intuitive 
interpretation, as it is a direct measure of disease time 
course, although a technical limitation is there being 
many different methods for its calculation. MUNE 
was incorporated as a secondary outcome measure 
in trials of creatine mono hydrate [83], celecoxib [80,84] 
and memantine [85], but over recent years has fallen 
out of favor due predominantly to inherent variability 
across and within patients, and its time-consuming 
nature. The re-appearance of MUNE as a biomarker 
in ALS clinical trials may occur with the multipoint 
incremental approach, which is associated with high 
test re-test reliability, increased patient compliance 
and shorter test duration [86]. Moreover, the assump-
tions underlying multipoint incremental MUNE may 
be valid in terms of ALS pathophysiology, given that 
progressive increases in single motor unit potential 
associated with collateral reinnervation may be cap-
tured by this technique.

 ■ Neurophysiological index
As a simple measure of peripheral disease burden, 
the neurophysiological index (NI; calculated using 
the formula: compound muscle action potential 
amplitude [mV] × F-wave frequency [%]/distal motor 
latency) may be a suitable alternative to MUNE [87]. 
NI has been used to track disease progression in a 

Phase  II trial of dex-pramipexole, demonstrating 
a nonsignificant reduction in slope of decline in 
post-treatment measurements compared with lead-in 
assessment [88]. NI was also employed in a trial of 
memantine, declining at a linear rate, similar to 

MUNE [85], with no difference in the rates of decline 
between treatment arms noted. Furthermore, NI 
may be recorded as frequently as every 4 weeks, par-
ticularly relevant when there is increasing demand 
for trials to be of shorter duration [89].
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rapid advances in computing power to 
implement advanced bioinformatic strat-
egies tailored to disentangle signal from 
noise. In doing so, it may be possible to 
overcome the deluge of data arising from 
biomarker studies, as exemplified by the 
increasing popularity of genome-wide 
association [96] and exome-sequencing 
studies [12]. Nonetheless, such endeav-
ors in isolation will not be sufficient to 
advance the current understanding about 
ALS. Only co-coordinated approaches, by 
means of multicenter collaborations, will 
ensure that sufficient patients are recruited 
for case–control studies, diagnostic accu-
racy studies and therapeutic trials, so that 
questions concerning the utility of spe-
cific biomarkers may be unequivocally 
answered in ALS. From a regulatory per-
spective, biomarker discovery based on 
high-quality evidence will ensure more 
efficient translation from benchtop to 
bedside [97].
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 ■ Electrical impedance myography
Electrical impedance myography is a noninvasive, 
painless, quantitative technique that relies upon the 
application and surface measurement of high-fre-
quency, low-intensity electrical current, thereby 
enabling measurement of the electrical resistance of 
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phy assesses the flow of electrical current through 
restricted portions of skeletal muscle. In simple terms, 
healthy, intact skeletal muscle is associated with a cer-
tain level of electrical resistance because of its unique 
architecture, which comprises aligned cylindrical 
myocytes in a low-fat environment. The occurrence 
of denervation, as occurs in ALS, is associated with 
atrophy and concurrent increases in adiposity. Such 
changes may lead to increased tissue resistance that 
may be detected by electrical impedance myography 
[91]. Of particular relevance to early-phase ALS trials 
was the association of electrical impedance myogra-
phy with smaller sample sizes, compared with manual 
muscle testing, ALSFRS-R and maximum voluntary 
isometric contraction [92]. However further testing, 
particularly validation, is required.

Future perspective
The greatest problem associated with the majority of 
ALS biomarker studies relates to small sample size [22]. 
To address this problem, a multicenter, case–control 
study aiming to collect 650 blood samples, 300 CSF 
samples and 600 DNA samples from four groups: ALS 
patients, patients with pure LMN or UMN syndromes, 
patients with other neurological disorders and healthy 
subjects, is currently being undertaken [101]. The sched-
uled date of completion has been listed as June 2012. 
A separate longitudinal observational study is also 

being undertaken to validate the utility of electrical 
impedance myography against established measures 
of disease progression in ALS [102]. This study has a 
recruitment target of 120 patients, with a scheduled 
date of completion of December 2011.

Much interest is developing around a medication 
currently in Phase III development for ALS. The clini-
cal efficacy of dex-pramipexole, the R(+) enantiomer 
of the anti-Parkinsonian drug, pramipexole, is being 
investigated in an international clinical trial for which 
943 ALS patients have been recruited [103]. Although 
the precise pharmacological behavior of dex-prami-
pexole remains poorly charac terized, it likely inhibits 
neuronal apoptosis by interfering with mitochondrial 
permeability transition and free radical production 
(Figure 4) [93]. Mitochondrial permeability transition is a 
state wherein the mitochondrial membrane potential is 
lost [94]. Maintenance of the mitochondrial membrane 
potential is essential for driving ATP production, and 
its loss thereby results in disruption of mitochondrial 
and cellular homeostasis, as well as leading to apop-
tosis. Dex-pramipexole has been repeatedly associated 
with attenuation of functional decline and improved 
respiratory function in ALS patients [88]. Importantly, 
this treatment effect was demonstrated in a placebo-
controlled, Phase II trial in a dose-dependent manner, 
with 300 mg/day the optimal dose [95]. The primary end 
point of the Phase III trial represents a novel approach 
to understanding ALS disease progression in that it 
represents a joint rank of ALSFRS-R adjusted for mor-
tality, with slow vital capacity and muscle strength as 
secondary end points. The scheduled date of comple-
tion for this trial is February 2013.

The development of effective biomarkers is likely to 
facilitate progress in our understanding of ALS, but 
methodological issues remain. Regardless of how a 
biomarker will be used, future techniques must exploit 

Executive summary

 ■ Amyotrophic lateral sclerosis (ALS) is a rare, neurodegenerative disease of the human motor system, with median survival of 
3 years from symptom onset.

 ■ Objective biomarkers are needed for ALS to elucidate pathophysiological mechanisms, facilitate diagnosis and establish 
surrogate end points for use in clinical trials.

 ■ In practice, ALS is a clinical diagnosis, although additional investigations are undertaken to exclude alternative diagnoses. The 
revised El Escorial criteria for ALS remain a research tool for enrolling patients into research studies. Despite their improved 
sensitivity towards early disease over the original El Escorial criteria, the Awaji criteria may be perceived as cumbersome 
in nature.

 ■ Diagnostic accuracy studies of biomarkers in ALS remain few and far between, and their methodology is not well understood by 
the research community.

 ■ Neuroimaging biomarker studies are transitioning towards more global approaches to understanding cortical dysfunction in ALS.
 ■ Threshold-tracking TMS demonstrates diagnostic potential in identifying ALS in a mixed neuromuscular cohort.
 ■ Although the use of surrogate end points in clinical trials may be underpinned by strong assumptions, their use may expedite 
completion of clinical trials in ALS. Surrogate end points in ALS include functional measures, respiratory function and 
electrophysiological biomarkers.
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