
767Clin. Invest. (Lond.) (2015) 5(9), 767–776 ISSN 2041-6792

Review: Clinical Trial Outcomes

part of

10.4155/cli.15.44 © 2015 Future Science Ltd

Clin. Invest. (Lond.)

Review: Clinical Trial Outcomes 
2015/08/28

5

9

2015

Ventricular remodeling, recently characterized as an inhomogeneous entity, has 
quickly become a therapeutic target. It is assumed that prevention of ventricle 
remodeling would stop the progression of heart failure. In this review we discuss 
briefly the issue of ventricular remodeling along with underlying mechanisms leading 
to cardiac hypertrophy and/or dilatation. Furthermore, we discuss the pharmacologic 
approaches to prevent left ventricle remodeling, either in animal studies or human 
trials.

Keywords:  • animal studies• heart failure • human trials • ventricular remodeling

Left ventricular dilatation, described as an 
early [1] and delayed postinfarction phenome-
non [2], was named as remodeling later on [3], 
and eventually defined as cardiac remodeling 
during the International Forum on Cardiac 
Remodeling in Apr 1998  [4]. It is defined as 
genome expression, molecular, cellular and 
interstitial changes that are manifested clini-
cally as changes in size, shape and function of 
the heart after cardiac injury [4]. In addition 
to myocardial infarction (MI) as the cause 
of ventricular remodeling, the following pre-
cipitating factors are recognized: physical 
exercise  [5], pregnancy  [6], volume overload 
(as in aortic valve or mitral valve regurgita-
tion), pressure overload (as in hypertension), 
myocarditis, idiopathic dilated cardiomyopa-
thy, some chemotherapeutic agents [7,8], dia-
betes [9–11] and right ventricle pacing [12–15].

The macroscopic alterations of increased 
left ventricle volume and more spherical con-
figuration are related to variety of histological 
modifications at the level of myocyte (hyper-
trophy, apoptosis) and extracellular matrix 
(fibroblast proliferation, fibrosis). The heart 
and cardiomyocytes enlarge in response to 
injury or increased workload as a mean to 
reduce ventricular wall and septal stresses. 
From this point of view cardiac hypertrophy 
might be considered as adaptive and physi-

ologic process, but when the inciting injury 
exists unabated, the positive remodeling 
might transform into pathologic remodeling 
with eccentric hypertrophy, decreased con-
tractility and eventually an overt heart fail-
ure. Hypertrophy of noninfarcted segments 
of myocardium, in postinfarction period, is 
the mean to maintain stroke volume and car-
diac output [16].

Physiological hypertrophy
Several patterns of cardiac remodeling can 
be distinguished macroscopically (Figure 1). 
Physiological hypertrophy, as seen in ath-
letes or during pregnancy, is characterized 
by left ventricle enlargement, proportional 
thickening and elongation of individual 
cardiomyocytes and absent interstitial fibro-
sis. It does not carry a risk of fetal program 
reactivation, reduction in cardiac function, 
induction of arrhythmia or transition to 
heart failure [17,18]. This type of hypertrophy 
is mediated by signaling through insulin-like 
growth factor-1 and growth hormone that is 
transduced downstream by phosphoinositide 
3-kinase/Akt signaling [19–23].

Pressure overload induced concentric 
hypertrophy appears to be related to acti-
vation of one of the MAPKs branches, the 
pathway of ERK1/2  [24]. The MAPKs are a 
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Figure 1. Macro-, micro- and subcellular changes observed in different types of heart remodeling and their 
interrelationship.
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downstream pathways of multiple steps of phosphor-
ylation-based amplification cascades  [25,26]. Mutant 
mice overexpressing MEK1, under transcriptional 
control of α-myosin promoter, exhibited ERK1/2 acti-
vation, massive cardiac hypertrophy, increased width 
of cardiomyocytes. At the same time, there was no evi-
dence of fibrosis or increased lethality up to 12 months 
of observation [27].

Another phenotype of hypertrophy, the eccentric 
one, occurring in response to volume overload, is 
mediated by preferential expression of MEK5-ERK5 
branch of MAPK pathway  [28,29]. Transgenic mice 
overexpressing activated ERK5, exhibited progressive 
right and left ventricular dilation by 6 weeks of age. 
From the microscopic perspective, the cardiomyocytes 
were elongated with decreased transverse cross-section 
area and sarcomeres were assembled in a serial man-
ner. There was no evidence of extracellular collagen 
deposition and no signs of apoptosis [29].

Transition to heart failure & pathological 
remodeling
From the physiologic point of view, the three above-
mentioned phenotypes of hypertrophy and the respec-
tive pathways responsible for, should be considered as 
adaptive and beneficial. However, heart with adaptive 
hypertrophy as well as normal heart, under specific 
conditions and signaling, may transit to an insufficient 
muscle with overt heart failure. The transition from 

compensated hypertrophy to failing heart includes: re-
expression of fetal genes, altered expression of genes for 
proteins involved in excitation–contraction coupling, 
changes in the energetic and metabolic state of myo-
cyte, mismatch between vascular and cardiomyocyte 
growth, myocyte necrosis and apoptosis and changes 
in extracellular matrix [30]. There are two more clini-
cal possibilities available. The first one is, that under 
specific overload conditions, the heart can progress 
directly to frank dilation with an overt heart failure. 
Calcineurin and its downstream effector, nuclear factor 
of activated T cells (NFAT), when activated by exces-
sive intracellular calcium, lead to increase in heart size 
and excessive deposition of collagen [31–33]. The other 
situation is in pressure overload, when overexpression 
of Ca2+/calmodulin-dependent kinase II leads to 
cardiac dilation, its reduced function and interstitial 
fibrosis [34,35]. Table 1 summarizes cardiac remodeling 
and signaling pathways with more supplementary data.

Animal studies
Apelin is the endogenous ligand for the G-protein-
coupled APJ receptor that is expressed at the surface of 
cells in various organs such as the heart, lung, kidney, 
liver, adipose tissue, gastrointestinal tract, brain, adre-
nal glands, endothelium and human plasma.

Pchejetski et al. [36] in a murine model have proven 
that apelin inhibits transforming growth factor (TGF-
β)-stimulated activation of cardiac fibroblasts through 
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a SphK1-dependent mechanism. They have reported 
that the administration of apelin during the phase 
of reactive fibrosis prevents structural remodeling of 
the myocardium and ventricular dysfunction. Ash-
ley et al. [37] have studied apelin in a murine model and 

have reported that it reduces left ventricular preload 
and afterload, and increases contractile reserve without 
evidence of hypertrophy. These results associate ape-
lin with a positive hemodynamic profile and suggest 
that it may be an attractive target for pharmacotherapy 

Table 1. Summary of physiologic, pathologic and antihypertrophic signalling pathways with short description of their 
effects.

  Macroscopic/clinical Signaling 
pathway

Nuclear compartment 
(literature)

Effect/experimental model 
(literature) [ref.]

Physiologic Physiologic 
hypertrophy

IGF-1/GH > PI3-K/
Akt

Histone acetyltransferase 
p300, CREB-binding protein

Ventricle enlargement, 
proportional cardiomyocyte 
thickening and elongation/
rat, mice [17–23]

  Concentric 
hypertrophy

MAPKKK > MEK-
1/ERK 1/2

Histone deacetylases: class 
I, class II and class III 
(sirtuins) [68–72]

Increased width of 
cardiomyocyte, massive 
cardiac hypertrophy/
mice [24–27]

  Eccentric 
hypertrophy

MAPKKK > 
MEK5/ERK5

  Right and left ventricle 
dilation, elongation of 
cardiomyocytes, decreased 
cross-section area of 
myocytes/mice [28,29]

Pathologic Transition to overt 
heart failure

PKCα > SERCA2   Expression of Prkca induces 
dilated cardiomyopathy/
mice [73–75]

  Transition to overt 
heart failure

S100A1 > RyR2   Downregulation of S100A1 
protein leads to acute heart 
failure/mice [76–78]

  Transition to overt 
heart failure

P53 > Hif-1α   Accumulation of p53 
stimulates transition from 
hypertrophy to heart 
failure/mice [79–81]

  Transition to overt 
heart failure

Stretch receptors 
> ERK2/JNK

  Expression of matrix 
metalloproteinases, collagen 
depletion/mice [14,82–84]

  Transition to overt 
heart failure

ASK-1 and Bcl-2, 
Nix, Bnip3, Puma 
proteins

  Cardiomyocyte apoptosis/
mice [85–87]

  Heart failure Calcineurin > 
NFAT

  Increased heart size, 
excessive deposition of 
collagen/mice [31–33]

  Heart failure CaMKII   Increased heart size, its 
reduced function, interstitial 
fibrosis/mice [34,35,88]

Antihypertrophic   Natriuretic 
peptides

  [89,90]

    Nitric oxide   [91,92]

    NOTCH pathway   Reduced proliferation of 
myofibroblasts, expansion 
of Nkx2.5-positive cardiac 
precursor cells/mice [93]

CaMKII: Ca2+/calmodulin-dependent kinase II; NFAT: Nuclear factor of activated T cells.
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in the management of patients with progressive heart 
failure.

Fasudil hydrochloride, Rho-kinase inhibitor, drug 
registered for human use in Japan has been tested in 
animal models of cardiac remodeling and heart failure. 
Hattori et al. [38] have tested fasudil orally in a murine 
model of MI. At 4 weeks, left ventricle cavity dilatation 
and dysfunction evaluated by echocardiography were 
significantly suppressed in the fasudil group. The ben-
eficial effects of fasudil were accompanied by suppres-
sion of cardiomyocyte hypertrophy, interstitial fibrosis 
and suppression of TGF-beta2, TGF-beta3 and mac-
rophage migration inhibitory factor. Rho-kinase activ-
ity as evaluated by the extent of phosphorylation of the 
ERM family, a substrate of Rho-kinase, was signifi-
cantly increased in the noninfarcted left ventricle (LV) 
in the control group and was significantly suppressed 
in the fasudil group. The authors have concluded that 
the results suggest a therapeutic importance of the 
molecule for the prevention of post-MI heart failure.

Fasudil is also effective in prevention of isopro-
terenol-induced heart failure in rats  [39]. Wang  et  al. 
have reported that fasudil significantly decreased 
JNK activation, ERK translocation to the nucleus 
and subsequent c-fos, c-jun expression and upregu-
lated c-FLIP(L) expression. They have concluded that 
fasudil can effectively prevent isoproterenol-induced 
heart failure. Ho et al. [40] reported on beneficial effect 
of fasudil to suppress exercise-induced hypertrophy and 
functional impairment. Rats, exercising for 12 weeks 
and fed fasudil, have suppressed myocardial hypertro-
phy, myocyte cross-sectional area, hypertrophy-related 
pathways (IL6/STAT3-MEK5-ERK5, calcineurin-
NFATc3, p38 and JNK MAPK), hypertrophic mark-
ers (ANP/BNP), proapoptotic molecules (cytochrome 
C, cleaved caspase-3 and PARP) and fibrosis-related 
pathways (FGF-2-ERK1/2) and fibrosis markers (uPA, 
MMP-9 and -2) in comparison with rats exercising 
without fasudil supplementation.

1-trif luoromethoxyphenyl-3-(1-propionylpiperi-
dine-4-yl)urea, a soluble epoxide hydrolase inhibitor 
was proven effective in suppression of cardiac fibrosis 
in murine model of MI [41]. Sirish et al. have reported 
that treatment with 1-trifluoromethoxyphenyl-3-(1-
propionylpiperidine-4-yl)urea resulted in a decrease 
in cardiac fibrosis, diminished proliferative capacity of 
different populations of cardiac fibroblasts as well as a 
reduction in the migration of fibroblasts into the heart 
from the bone marrow.

Dos Santos et al. [42] have studied the activity of cir-
culating dipeptidyl peptidase IV and found a negative 
correlation with left ventricle ejection fraction in heart 
failure patients. Moreover, rats with heart failure dis-
played higher peptidase activity in the plasma and heart 

tissue compared with sham-operated rats. Positive cor-
relations were observed between the plasma peptidase 
activity and LV end-diastolic pressure and lung conges-
tion. A heart failure subgroup of rats, started treatment 
with the peptidase inhibitor, sitagliptin – oral hypo-
glycemic medicine for 6 weeks, whereas the remaining 
rats were administered water. Hemodynamic measure-
ments demonstrated that radiofrequency LV-ablated 
rats treated with sitagliptin exhibited a significant 
attenuation of heart failure (HF)-related cardiac dys-
function, including LV end-diastolic pressure, systolic 
performance and chamber stiffness. Sitagliptin treat-
ment also attenuated cardiac remodeling and cardio-
myocyte apoptosis and minimized pulmonary conges-
tion. However, sitagliptin use in patients with Type 2 
diabetes and pre-existing heart failure was associated 
with an increased risk of HF-related hospitalizations 
among patients [43].

There are several reports on bioengineering or RNA 
interference methodology described in animal models 
targeting some of the pathways involved in cardiac 
remodeling. Tank et al. [44] have developed RNA inter-
ference (miR) to silence connective tissue growth fac-
tor (CTGF or CCN2) and found it to block multiple 
proinflammatory and profibrotic pathways in activated 
primary cardiac fibroblasts. The RNAi-strategy was 
developed in murine fibroblasts and then investigated 
in human fibroblasts grown from human endomyo-
cardial biopsies. In murine model, CCN2 silencing 
resulted in strongly reduced expression of stretch-
induced chemokines, matrix metalloproteinases, extra-
cellular matrix (Col3a1) and a cell-to-cell contact pro-
tein (Cx43), suggesting multiple signal pathways to be 
linked to CCN2. The authors have demonstrated that 
this RNA interference strategy is technically applicable 
to human fibroblasts, but they might express different 
responses to CCN2 depletion.

Fiedler  et  al.  [45] have blocked endothelial miR-24 
in murine model, leading to lower infarct size via pre-
vention of endothelial apoptosis and enhancement of 
vascularity, which led to preserved cardiac function 
and survival.

Szabo  et  al.  [46] have reported on alternative way 
to inhibit connective tissue growth factor. They have 
used monoclonal antibody to connective tissue growth 
factor in two models of murine heart hypertrophy 
induced by thoracic aorta constriction or angioten-
sin II infusion. They have found different efficacy of 
monoclonal antibody treatment – the antibody pro-
tects from adverse LV remodeling and LV dysfunction 
in hearts subjected to pressure overload by thoracic 
aorta constriction.

Kumarswamy  et  al.  [47] have administered intrave-
nously adeno-associated vector type 9/ sarcoplasmic 
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reticulum Ca2+-ATPase (AAV9/SERCA2a) to rats 
with chronic post-MI heart failure. The treatment has 
led to normalization of miR-1 expression and normal-
ization of expression of enhanced sodium–calcium 
exchanger 1 (NCX-1), along with improved cardiac 
function.

Wang  et  al.  [48] have tested hepatocyte growth 
factor mesenchymal stem cells in the treatment of 
MI in rat. Using echocardiography they have con-
firmed that transplantation with HGF-MSCs signifi-
cantly improved left ventricular function. Implanted 
stem cells were detected 4 weeks after implantation. 
Decreased infarcted scar area and increased angiogene-
sis formation could be found in group with hepatocyte 
growth factor mesenchymal stem cells.

Human trials
Neuregulin NRG1 activates the extracellular signal-
regulated kinase 1/2 (ERK1/2) and PI3K→Akt path-
ways in cardiomyocytes two potently cardioprotec-
tive systems  [49]. Recombinant neuregulin improves 
cardiac function, reduces pathological changes and 
extends survival in rodent models of cardiomyopathy. 
It also improves contractility/relaxation in pacing-
induced HF in dogs. Two studies in humans with 
chronic HF indicate that neuregulin is safe, and may 
improve cardiac dimensions and function. Phase II 
and III trials of subcutaneous administration of neu-
regulin 1 in chronic HF are ongoing (NCT01251406). 
A Phase I trial of the neuregulin isoform in patients 
with LV dysfunction and symptomatic HF is due to 
report (NCT01258387). The safety issue of neu-
regulin in chronic treatment is potential tumorigenic 
effects [50,51].

Omecamtiv mecarbil, formerly CK-1827452, is a 
direct myosin activator resulting in improved number 
of strongly bound actin–myosin bridges  [52]. Higher 
plasma concentrations were also associated with 
reductions in end-systolic and end-diastolic volumes. 
Omecamtiv mecarbil improved cardiac function in 
patients with heart failure caused by left ventricular 
dysfunction and could be the first in class of a new 
therapeutic agent [53]. Currently, a study on the intra-
venous use of omecamtiv mecarbil in acute heart fail-
ure (ATOMIC-AHF, www.ClinicalTrials.gov Identi-
fier: NCT01300013) is finished. Another study on oral 
formulation of omecamtiv mecarbil in chronic heart 
failure is still recruiting patients (COSMIC-HF, www.
ClinicalTrials.gov Identifier: NCT01786512).

Relaxin and serelaxin are targeting the relaxin 
receptor. Serelaxin is a recombinant form of human 
relaxin, a hormone produced during pregnancy. 
Relaxin mediates the haemodynamic changes that 
occur during pregnancy: vasodilation by increasing 

the production of nitric oxide (NO), and an inhibi-
tion of angiotensin II and endothelin. In addition 
to vasodilation, the effects of serelaxin are also seen 
in the kidneys and in heart. Serelaxin can increase 
stroke volume without increasing the energy demand 
on the already strained heart of acute heart failure 
patients  [54]. The RELAX-AHF trial (www.Clini-
calTrials.gov identifier NCT00520806) tested the 
hypothesis that serelaxin-treated patients would 
have greater dyspnoea relief compared with patients 
treated with standard care and placebo  [55]. One-
thousand one hundred and sixty-one patients were 
randomly assigned to serelaxin or placebo. Active 
treatment improved the primary dyspnea endpoint. 
No significant effects were recorded for the second-
ary endpoints of cardiovascular death or readmission 
to hospital for heart failure or renal failure. Serelaxin 
treatment was associated with significant reduced 
mortality at day 180 (placebo, 65 deaths; serelaxin, 
42; HR 0·63, 95% CI: 0·42–0·93; p = 0·019).

Another study (www.ClinicalTrials.gov identi-
fier NCT01543854)  [56] was aimed to evaluate the 
haemodynamic effects of serelaxin in patients with 
acute heart failure. This double-blind, multicenter 
study randomized 71 acute heart failure patients with 
increased pulmonary capillary wedge pressure to sere-
laxin or placebo within 48 h of hospitalization. Major 
endpoints were peak change from baseline in pulmo-
nary capillary wedge pressure (PCWP) and cardiac 
index. Among patients eligible for hemodynamic 
analysis, those treated with serelaxin had a signifi-
cantly higher decrease in peak PCWP. Among sec-
ondary hemodynamic endpoints, a highly significant 
reduction in pulmonary artery pressure was observed 
throughout the serelaxin infusion. Right atrial pres-
sure, systemic/pulmonary vascular resistance and 
systolic/diastolic BP decreased from baseline with 
serelaxin versus placebo and treatment differences 
reached statistical significance at some time points. 
Serelaxin administration improved renal function 
and decreased N-terminal probrain natriuretic pep-
tide levels versus placebo. Treatment with serelaxin 
was well tolerated with no apparent safety issues.

There are several papers on different types of cells 
transplanted into ischemic or postinfarction myo-
cardium  [57–61]. Traverse  et  al.  [61] did not find any 
improved recovery of global and regional LV func-
tion at 1 year, irrespective of cell delivery at 3 or 7 
days post-percutaneous coronary intervention (PCI). 
Conversely, Karantalis et al. [58] have concluded their 
experiment that intramyocardial injection of autolo-
gous mesenchymal stem cells into akinetic yet non-
revascularized segments produces comprehensive 
regional and global left ventricle function improve-
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ment. Although, of note this study has no control 
group. Heldman et al.  [60] have tested mesenchymal 
and bone marrow derived stem cells, administered 
transendocardially. Mesenchymal stem cells admin-
istered transendocardially have led to reduced infarct 
size, but there were not any differences observed in 
left ventricle volume and function in 6 months long 
follow-up.

The Calcium Upregulation by Percutaneous Admin-
istration of Gene Therapy in Cardiac Disease Phase II 
study [62–64] has tested intracoronary administration of 
adeno-associated virus type 1/sarcoplasmic reticulum 
Ca2+-ATPase in patients with advanced heart failure. 
The study, over a 12 months long clinical, laboratory 
and echocardiographic follow-up demonstrated safety 
and suggested benefit of this treatment in advanced 
heart failure.

PARADIGM-HF study (www.ClinicalTrials.gov 
identifier NCT01035255) conducted in a group of 
8442 patients in NYHA class II–IV and reduced left 
ventricle ejection fraction of 40% or less, compared 
a combination of valsartan with neprilysin inhibitor 
as active treatment and enalapril as comparator  [65]. 
Neprilysin is neutral endopeptidase that degrades 
natriuretic peptides, bradykinin and adrenomedullin. 
Study endpoint was a composite of death for cardio-
vascular reasons and heart failure hospitalization. The 
study was terminated early because of significant dif-
ference in primary outcome in favor of a valsartan/
neprilysin inhibitor.

The papers by van Berlo et al. [66] and Tarone et al. [67] 
provide supplementary data to this review.

Conclusion & future perspective
In this review, we have highlighted animal and human 
studies addressing the therapies used to modify signaling 
pathways in order to prevent heart remodeling and halt 
progression of heart failure. Most of the therapies, which 
were promising in animal models, failed in human stud-
ies. Use of adeno-associated vector/SERCA2a is one of 
the treatments that successfully transferred from animal 
to human level. Cell therapy and RNA interfering are 
of great interest and bear huge interventional capabil-
ity. Combination therapies, such as angiotensin recep-
tor/neprilysin inhibitor, are also of great promise. Drug 
combinations addressing two compartments, such as 
cardiomyocyte and extracellular matrix, are warranted 
in this issue. Otherwise, progress in miR/antagomir 
research might offer a very narrow, specific therapeu-
tic target. In our opinion the near future will bring an 
outbreak in gene delivery/miR/antagomir therapeu-
tic options that will be successful in coping with the 
increasing epidemic of heart failure.
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Executive summary

•	 Cardiac remodeling is an inhomogenous entity that might lead to overt heart failure.
•	 Animal studies provide the evidence for underlying mechanisms and signaling pathways leading to 

remodeling.
•	 Animal models of cardiac remodeling are perfect targets to test different therapeutic options.
•	 Only a limited number of therapeutic strategies proved effective in human trials.
•	 Of the latter, gene delivery/miR/antagomir technology is of great promise and a combination therapy of 

angiotensin receptor/neprilysin inhibitor has already been proved effective.
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