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The global spread of antibiotic resistance is driving the need for more thoughtful antibiotic 
prescribing. This paper reviews the principles of appropriate antibiotic therapy for 
community-acquired respiratory tract infections. Appropriate therapy options include: 
prescribing antibiotics only when they are beneficial to the patient; using agents that 
target the likely pathogens, taking into account local resistance patterns and risk factors 
for infection by resistant pathogens while not affecting the bowel flora and other 
nonrespiratory organisms; and using a dosing schedule and treatment duration that 
optimizes efficacy, tolerability and adherence to treatment. 

The spread of antibiotic resistance among bacteria
responsible for common infections has prompted
calls for improved use of antibiotics in the USA
and elsewhere [1,2]. Community-acquired respira-
tory tract infections (RTIs), such as acute bacterial
sinusitis (ABS), acute exacerbations of chronic
bronchitis (AECB), and community-acquired
pneumonia (CAP), account for the majority of
antibiotic prescriptions in outpatients [3].

The widespread and unnecessary use of antibi-
otics for viral RTIs contributes substantially to the
selective pressure driving resistance [4]. Educational
campaigns have had some success in reducing total
antibiotic use in this setting [3]. However, in the
absence of diagnostic tests the differentiation of
viral and bacterial infections based on clinical signs
and symptoms remains a major challenge [5]. A
number of guidelines have sought to encourage
better discrimination of viral from bacterial infec-
tions [6–8]. These generally recommend that acute
RTIs among patients with no comorbidities or
other predisposing factors are unlikely to be bacte-
rial in origin for infections of short duration. Anti-
biotics are of no benefit for RTIs caused by viruses.
They should thus be reserved for infections of
more than 7 days’ duration, which are more likely
to be bacterial in origin, and for patients with
specific risk factors for bacterial infection [5].

The spread of antibiotic resistance among bac-
teria responsible for common infections has
prompted calls for improved use of antibiotics in
the USA and elsewhere [1,2]. Frequently, the
emphasis has been on reducing the amount of
antibiotics prescribed, but there is a potential
drawback to this approach, which is highlighted
by the excess mortality that may occur [9]. This
emphasizes the need to accurately identify
patients with bacterial rather than viral RTIs.

Attention must now shift towards improving
antibiotic prescribing for bacterial RTIs, with
regard to the quality rather than merely the
quantity of antibiotics used [10–12]. According to
the CDC, appropriate antibiotic use aims to
maximize therapeutic impact while minimizing
toxicity and the development of resistance [13].
This involves the selection of the most appropri-
ate antibiotic, dose and treatment duration, in
addition to promoting adherence to therapy
(e.g., by educating patients and using antibiotics
with more convenient and simpler dosing regi-
mens). In outlining these aspects of therapy, this
paper reviews the concepts behind appropriate
prescribing for community-acquired RTIs of bac-
terial origin and how these concepts can over-
come and help to contain antibiotic resistance in
this setting. In practice, different countries rec-
ommend different antibiotics for similar situa-
tions in their guidelines [14–16]. These guidelines
differ in their use of evidence and expert consen-
sus and must also take account of the local
patterns of antibiotic resistance.

Spectrum of activity
A causative organism is rarely isolated before
antibiotic treatment for community-acquired
RTIs is begun. Hence, antibiotics for commu-
nity-acquired RTIs are usually chosen empirically
according to the likely causative pathogens and
their antibiotic susceptibilities. The organisms
most commonly responsible for community-
acquired RTIs of bacterial origin are Streptococcus
pneumoniae (the ‘pneumococcus’), Haemophilus
influenzae and Moraxella catarrhalis (Table 1).
Atypical and intracellular organisms, such as
Chlamydophila (previously Chlamydia) pneumo-
niae, Legionella pneumophila and Mycoplasma
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pneumoniae, are also potential causes of CAP
and, according to recommendations by the Infec-
tious Diseases Society of America, should be cov-
ered by empirical therapy [17]. These atypical
organisms are also implicated in a minority
(<10%) of AECB cases [18]. 

Antibiotics for the empirical treatment of
community-acquired RTIs should have a tar-
geted spectrum of activity covering implicated
pathogens, without unnecessary broad-spectrum
effects on bowel flora and other organisms. If a
causative organism is identified, then it is possi-
ble to choose antibiotics with even greater specif-
icity. Agents available for use in the treatment of
RTIs and currently recommended in treatment
guidelines [14–16] include β-lactams (e.g., amoxi-
cillin, cefuroxime), β-lactam/β-lacatamase
inhibitor combinations (e.g., amoxicillin–clavu-
lanate), macrolides/azalides (e.g., erythromycin,
azithromycin), doxycycline, trimethoprim–sul-
famethoxazole, respiratory fluoroquinolones
(e.g., levofloxacin, moxifloxacin) and ketolides
(e.g., telithromycin). Typically, β-lactams, mac-
rolides/azalides and doxycycline are recom-
mended as first-line agents with newer drugs,
such as ketolides and fluoroquinolones, reserved
for patients with more severe disease and those
who have experienced treatment failure with
first-line agents. The new agent, linezolid, has a
spectrum of activity limited to Gram-positive
organisms and is not recommended for empirical
treatment of ambulatory patients [19].

Resistance
Resistance patterns
S. pneumoniae – a primary bacterial cause of
ABS [20], AECB [18] and CAP [17] – is commonly
resistant in vitro to β-lactams, macrolides, tri-
methoprim–sulfamethoxazole and tetracyclines.

A number of studies (including the Alexander
project [21], the SENTRY [22] and TRUST [23]

antimicrobial surveillance programs) demon-
strate that antibiotic resistance rates have tended
to increase over time. The most recent data from
the ongoing Prospective Resistant Organism
Tracking and Epidemiology for the Ketolide Tel-
ithromycin (PROTEKT) US study show that,
among 31,001 S. pneumoniae isolates collected
between 2000 and 2003, 29.4% were resistant to
erythromycin and 22.5% to penicillin [24]. The
prevalence of macrolide resistance was also found
to differ between US states, with the highest rate
(48.2%) reported in Louisiana (LA, USA) and
the lowest rate (15.2%) reported in Vermont
(VT, Canada) in the period 2001–2002 [25]. This
suggests that a switch away from macrolides as
first-line agents may be justified in states with
high rates of macrolide resistance and physicians
should be aware of local antibiotic resistance
surveillance data.

A particular concern is the rise in prevalence
of multiple antibacterial drug-resistant
S. pneumoniae strains. Approximately 31% of
S. pneumoniae isolates collected in the
PROTEKT US study between 2000 and 2003
were resistant to two or more antibiotic
classes [24]. Macrolide resistance in the USA is
most commonly associated with the mef(A) gen-
otype, but isolates with the dual erm(B) + mef(A)
genotype, which confers high-level macrolide
resistance and multidrug resistance, are becom-
ing more common [25]. 

The ‘respiratory’ fluoroquinolones and tel-
ithromycin remain reliably active against
S. pneumoniae. Fluoroquinolone resistance in
S. pneumoniae remains rare, with a prevalence of
approximately 1% [24,26]. However, the trend in
fluoroquinolone resistance in the USA has been
towards increasing resistance over time [26] and
this trend is expected to continue [27]. Infection
with a fluoroquinolone-resistant isolate is more
likely in nosocomial infections and infections
acquired in residential care homes compared
with isolates active in the general community [28].
S. pneumoniae isolates with low-level resistance
to telithromycin have been reported [29] but US
resistance surveillance data suggest that in vitro
telithromycin resistance among S. pneumoniae
remains very low (<0.8%) [30].

The other major pathogens implicated in com-
munity-acquired RTIs, H. influenzae and
M. catarrhalis, commonly produce β-lactamase
enzymes that inactivate many β-lactam agents,
including penicillin, amoxicillin and some early

Table 1. Bacterial pathogens responsible for the most common 
community-acquired respiratory tract infections in the USA.

Pathogen CAP
(%)

AECB
(%)

ABS
(%)

Typical pathogens

Streptococcus pneumoniae
Haemophilus influenzae
Moraxella catarrhalis

20–60
3–10
2

15–25
30–59
3–22

34
35
0–8

Atypical/intracellular pathogens

Legionella spp.
Chlamydophila pneumoniae
Mycoplasma pneumoniae

2–8 
4–6
1–6 

NA
NA
NA

NA
NA
NA

ABS: Acute bacterial sinusitis; AECB: Acute exacerbations of chronic bronchitis; 
CAP: Community-acquired pneumonia; NA: Not available.
Adapted from [44].
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cephalosporins. In the USA, 28% of H. influenzae
isolates and over 90% of M. catarrhalis isolates
produce β-lactamases [30,31]. Agents with undimin-
ished activity against β-lactamase-positive strains
include amoxicillin–clavulanate, azithromycin,
fluoroquinolones and telithromycin [30,31].

Impact of resistance
In the USA, macrolides/azalides are favored as
the first-line agents in treating RTIs. Macrolides
are effective against typical RTI pathogens and,
in contrast to β-lactams, are also effective against
atypical/intracellular pathogens [32] and β-lacta-
mase-producing Gram-negative organisms [33].
The primary macrolide resistance mechanism
observed in the USA (mef[A]) confers intermedi-
ate in vitro resistance compared with Europe
where the erm(B) mechanism confers higher-

level resistance [25] and where the use of
β-lactams as first-line agents is more common.
However, the spread of higher macrolide resist-
ance clones in the USA may require a re-evalua-
tion [14] or limitation [34] of the use of
macrolides.

Bacteriologic eradication is the main determi-
nant of clinical outcome in the treatment of
community-acquired RTIs [35]. Surprisingly, the
effect on clinical outcomes of infection by
in vitro antibiotic-resistant strains is poorly char-
acterized. Small studies and case reports support
a link between macrolide resistance and treat-
ment failure in CAP and bacteremia [34–37] and
have led some experts to suggest that the impact
of macrolide-resistant S. pneumoniae may be
underestimated [38]. The concern about increas-
ing prevalence of macrolide resistance in
S. pneumoniae may explain the shift in prescrib-
ing in the USA towards fluoroquinolones in the
treatment of CAP [39]. This trend is worrying,
since the guidelines reserving fluoroquinolone
use for higher-risk patients do not appear to be
being followed [39] and there are documented
case reports of fluoroquinolone treatment fail-
ures among patients with CAP caused by
fluoroquinolone-resistant S. pneumoniae [40–42].

Antibiotic resistance has the potential to
increase the healthcare and socioeconomic costs
associated with infections [43]. In hospitalized
patients, antibiotic-resistant infections have been
associated with increased healthcare utilization
in terms of duration of hospitalization, antibiotic
drug costs and nursing charges [44,45]. Further
research is needed in order to better define and
quantify the burden of resistance in the
outpatient setting [46].

Selection & induction of resistance
Antibiotic consumption in the community is
linked with bacterial-resistance patterns through
complex relationships [47], thus the propensity
for different antibiotic regimens to select for or
induce resistance is a factor to be considered
when choosing therapy.

Resistance at the population level
Ecological studies have demonstrated a correla-
tion between β-lactam and macrolide consump-
tion at the population level with high levels of
pneumococcal resistance to these agents [48–52].
For example, Albrich and collegues correlated
macrolide use with resistance levels in
16 European countries (Figure 1) [50]. Data suggest
that it is macrolides and not β-lactams that are

Figure 1. Relationship between macrolide use in the 
outpatient setting and prevalence of macrolide-resistant 
Streptococcus pneumoniae in 16 industrialized countries. 
 

A regression line was fitted with 95% confidence intervals (r = 0.88; p < 0.001). 
DDD: defined daily dose. Adapted from [50]. 

Macrolide use (DDD/1000 population/day)

M
ac

ro
lid

e-
re

si
st

an
t

S
.p

n
eu

m
o

n
ia

e
(%

)

1 2 3 4 5 6 70
0

10

20

30

40

50

60

France

Spain

Greece

Italy

Austria
Australia
Portugal

Denmark

Slovenia

The
Netherlands

Sweden
Finland

Germany

Ireland

UK

Belgium



REVIEW – Brunton 

530 Therapy (2006)  3(4)

the main agents promoting both penicillin and
macrolide resistance [49]. Recent studies have
implicated the increased use of once-daily mac-
rolides (e.g., azithromycin) as the principal
driver of macrolide resistance [49,51,52]. The pro-
longed half-life of azithromycin is suggested to
result in subinhibitory tissue concentrations that
favor the selection of resistant strains [52].

Increased use of levofloxacin in the USA has
also been correlated with so far modest increases in
fluoroquinolone resistance in S. pneumoniae [53].
However, the rise of fluoroquinolone use in the
community has been associated with increased lev-
els of resistance in Gram-negative organisms, such
as Pseudomonas aeruginosa and Enterobacteriaceae,
which can cause serious infections in hospitalized
patients [54,55]. In contrast, telithromycin appears
to have a lower ecological impact on
gastrointestinal flora than other agents [56].

According to the CDC, the widespread use of
azithromycin, clarithromycin and fluoroqui-
nolones in the USA warrants concern in light of
resistance trends that threaten the utility of these
agents in hospitalized patients [11].

Predicting resistance in individuals
At the level of the individual patient, previous
antibiotic use is predictive of infection by a resist-
ant organism, as demonstrated by a prospective

Canadian study involving 3339 patients with
invasive pneumococcal infections [28]. Upon mul-
tivariate analysis, use of clarithromycin or azithro-
mycin in the previous 3 months was significantly
associated with infection by a macrolide-resistant
strain, with odds ratios (ORs) of 3.93 (95% confi-
dence interval [CI]: 2.16–7.16; p < 0.001) and
9.93 (95% CI: 4.85–20.3; p < 0.001) for these
two agents, respectively (Figure 2). Previous azi-
thromycin use was also significantly associated
with resistance to penicillin and trimetho-
prim–sulfamethoxazole, while fluoroquinolone
use predicted fluoroquinolone resistance with an
OR = 12 (p < 0.001). Fluoroquinolone use
within the previous month is also predictive for
the emergence of resistant Gram-negative bacilli
in the gastrointestinal flora [57]. 

Factors affecting the increase of resistance
Bactericidal agents (e.g., penicillins, fluoroqui-
nolones and ketolides) may be less likely to select
resistant strains than bacteriostatic agents (e.g.,
macrolides) owing to more rapid eradication of
organisms by the former [58]. Resistance selection
may be more likely when bacteria are exposed to
prolonged, subtherapeutic antibiotic concentra-
tions. This not only explains the aforementioned
resistance selection by azithromycin, but also why
β-lactams administered at low daily doses for long
treatment durations (>5 days) are associated with
an increased risk of nasopharyngeal carriage of
penicillin-resistant S. pneumoniae as compared
with high-dose, short-course regimens [59,60]. This
highlights the need to prescribe antibiotics at
appropriate doses based on pharmacoki-
netic/pharmacodynamic principles [14]. High-
dose amoxicillin courses have thus been developed
to combat the increase in penicillin resistance
among S. pneumoniae strains [61].

Certain antibiotics may have inherent charac-
teristics that reduce their propensity to induce or
select for resistance. For example, ketolides, unlike
macrolides, do not induce the macrolide–lincosa-
mide–streptograminB resistance phenotype coded
for by the erm(B) genotype [57,62] and the activity
of telithromycin has not changed between 1999
and 2003, including in those countries where this
antibiotic is in clinical use [63]. Similarly, respira-
tory fluoroquinolone resistance in S. pneumoniae
has remained at approximately 1% in the
USA [24,26]. This is because resistance selection
mainly occurs via a stepwise mechanism, with
mutations required in both the topoisomerase IV
and gyrase genes. Relatively often strains have
mutations in one gene but not both [64].

Figure 2. Association between the use of antibiotics during 
the 3-month period before invasive pneumococcal infection 
and the susceptibility of the infecting isolate to penicillin or 
erythromycin.
 

Adapted from [28].
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Adherence & tolerability
According to a recent meta-analysis, mean adher-
ence to antibiotic dosing regimens may be as low
as 62% [65]. Poor adherence to antibiotic regimens
can expose bacteria to subtherapeutic doses, and
hence may lead to treatment failure and resistance
selection. Patients are more likely to comply with
dosing regimens that are short and conveniently
administered, preferably once daily [66]. Short-
course therapy is of direct benefit in reducing the
selective pressure for resistance [60,61] and a grow-
ing body of evidence supports its use in commu-
nity-acquired RTIs [67]. However, once-daily
administration must be coupled with an appropri-
ate pharmacokinetic/pharmacodynamic profile in
order to avoid subtherapeutic concentrations and
the associated risk of resistance selection.

Tolerability also has an important influence
on compliance, as adverse events may prompt
patients to discontinue therapy [66]. Thus,

physicians must consider the relative tolerabil-
ity of different antibiotics in the relevant
patient population when selecting therapy for
community-acquired RTIs. The use of shorter
treatment courses may also contribute to
reducing the risk of adverse events. 

Expert commentary 
The association between antibiotic use and
widespread bacterial resistance in pathogens
responsible for community-acquired RTIs
underscores the importance of selecting appro-
priate antibiotic therapy that maximizes clinical
outcomes and cost-effectiveness, while limiting
the selective pressure for resistance. 

Agents with appropriate antibacterial spectra,
documented efficacy, good tolerability, a low
potential for resistance induction, and a convenient
dosing regimen will best meet this need.

Outlook
Ongoing antibacterial resistance surveillance
studies suggest that, despite an increasing
awareness of the problems of antibiotic resist-
ance, β-lactam and macrolide nonsusceptibil-
ity will remain significant problems for the
treatment of community-acquired RTIs in the
foreseeable future. At a time when there is
increasing pressure on healthcare provision
services to contain costs, the expense of
increased morbidity or mortality resulting
from treatment failure with older, established
antibiotics will have to be balanced against the
costs of newer, more effective antibiotic drugs.
Some of the information required for these
decisions will be the increased provision of
accurate, localized antibacterial surveillance
data. The introduction of new antimicrobials
will have an impact, but newer agents are
likely to be in the same classes as existing
drugs, underlining the need for appropriate
prescribing now.

Highlights

• The spread of antibiotic resistance requires improved use of antibiotics in 
clinical practice.

• Inappropriate use of antibiotics in viral infections helps drive resistance, 
but differentiation of viral and bacterial respiratory tract illness remains a 
major challenge.

• Antibiotic-resistant infections are associated with increased healthcare 
utilization and increased costs.

• Empiric antibiotic treatment of community-acquired respiratory tract 
infections (RTIs) must be effective against all of the likely causes of the 
infection – Streptococcus pneumoniae, Haemophilus influenzae, 
Moraxella catarrhalis, and also ‘atypical’ organisms, such as 
Chlamydophila pneumoniae, Legionella pneumophila and 
Mycoplasma pneumoniae.

• Antibiotic resistance surveillance studies are providing vital local resistance 
data that can inform local antibiotic prescribing.

• Previous antibiotic use by a patient is predictive of infection by a resistant 
organism.

• Drug treatment regimens and course duration are important considerations 
in determining patient adherence to antibacterial treatment. Poor 
adherence to treatment can expose bacteria to subtherapeutic drug levels, 
leading to treatment failure and resistance selection.
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therapy (‘responders’) were randomized at week 6
to either certolizumab pegol or placebo. At Week
26, the rates of clinical response (decrease in base-
line Crohn’s Disease Activity Index [CDAI] score
≥100 points) and remission (CDAI score ≤150
points) irrespective of C-reactive protein levels
were significantly higher following treatment with
certolizumab pegol compared with placebo. Cer-
tolizumab pegol was generally well tolerated, with
mild-to-moderate headache being the most
commonly reported adverse event [56].

Positive results for a second Phase III trial
(PRECiSE 1) have also been presented recently
[57]. The primary outcomes were met and the
adverse-event profile was in line with that
observed in PRECiSE 2.

Collectively, these studies indicate that the
Fab´ fragment certolizumab pegol has the poten-
tial to be clinically effective, safe and well
tolerated for the treatment of CD and RA. 

Comparison of certolizumab pegol with 
other anti-TNF agents
The characteristics of certolizumab pegol,
etanercept, adalimumab and infliximab are
summarized in Table 1.

Expert commentary
Since the inception of targeted antibody technolo-
gies in the mid-1960s, immunotherapy has
undergone a number of developments in order to
improve disease treatment and reduce

immunogenicity. Chimeric and humanized mAbs
have become important therapeutic and diagnos-
tic tools for a variety of diseases, including CD;
however, such antibodies are associated with the
production of HACA and HAMA. Antibody
Fab´ fragments represent an advance in the field
of immunotherapy owing to their small size, flexi-
bility and amenability to rapid production on a
large scale.

Certolizumab pegol is a PEGylated humanized
Fab´ fragment of an anti-TNF-α mAb. PEGyla-
tion ensures a half-life for certolizumab pegol com-
parable to those of other anti-TNF full IgGs and
produces a compound compatible with subcutane-
ous administration, while humanization of the
Fab´ fragment may reduce the potential to cause an
immune reaction. Unlike full-length IgG1 anti-
bodies, Fab´ fragments do not mediate ADCC and
CDC owing to the absence of an Fc – this may
have positive consequences from a safety perspec-
tive. Furthermore, Fab´ fragments can also be pro-
duced via microbial fermentation – assisting a rapid
and reproducible process and a reliable supply.

Certolizumab pegol exhibits high and specific
affinity for TNF-α and high in vitro potency for
TNF-α neutralization. It has also shown efficacy
in an animal model of RA, as well as promising
efficacy and tolerability results in Phase II and III
trials. In comparative in vitro studies, the affinity
and potency of certolizumab pegol were higher
than that observed for the other anti-TNF agents
infliximab and adalimumab.

Highlights

• Many strategies have been used to reduce immunogenicity issues with monoclonal antibodies (mAbs), including chimerization, 
humanization and human mAbs. The development of antibody fragments, such as antigen-binding fragments (Fab´s), is a further 
advance.

• Fab´s are associated with several benefits compared with whole antibodies including amenability to microbial expression and lack 
of potential toxicities mediated by the Fc portion of the antibody.

• Certolizumab pegol is a PEGylated, humanized Fab´ fragment of an anti-tumor necrosis factor (TNF)-α mAb. 
• PEGylation of the Fab´ fragment is compatible with subcutaneous administration of certolizumab pegol, with potential 

advantages in terms of convenience and safety.
• The bioavailability after subcutaneous administration is 80–100% and the half-life is approximately 2 weeks. 
• Certolizumab pegol has a high affinity and potency for human TNF-α. Preclinical and clinical data have shown the efficacy and 

tolerability of certolizumab pegol in Crohn´s disease and rheumatoid arthritis.
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