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Immunotherapy has been recognized as a viable therapeutic approach since 
the regulatory approval of the autologous cell-based vaccine sipuleucel-T in 
2010. Emerging preclinical evidence and early-stage clinical studies point to 
a potential synergy between currently available immunotherapeutic agents 
and standard anticancer therapies such as radiation and chemotherapy. 
Several other immunotherapeutic platforms, such as immune checkpoint 
inhibitors and DNA- and peptide-based vaccines are also in development and 
clinical testing. Based on the logistics of their production, these platforms 
are broadly categorized as patient-specific or off-the-shelf. Together, they 
are beginning to transform the therapeutic landscape in prostate cancer. 
This article reviews the rationale behind immunotherapeutic approaches in 
castration-resistant prostate cancer, plus the latest available clinical data.
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For patients with metastatic castration-resistant prostate cancer (mCRPC), eventual 
resistance to therapy is inevitable, despite the use of androgen-deprivation therapy 
(ADT) and antiandrogen therapy. The median time to development of castra-
tion resistance, as indicated by an increase in PSA after the initiation of ADT, is 
approximately 19 months in nonmetastatic prostate cancer (biochemical failure 
with no radiographic disease) and approximately 13 months in metastatic disease 
[1]. Efforts to find safe, effective and durable therapeutic modalities for these patients 
are ongoing. 

In 2004, two Phase III clinical trials reported a survival advantage with the chemo
therapy agent docetaxel in men with symptomatic mCRPC [2–4]. The evidence of 
palliation and overall survival (OS) benefit with chemotherapy led to the approval 
of docetaxel by the US FDA. 6 years later, following the positive published results 
of a Phase III trial, cabazitaxel, a docetaxel analog, was approved by the FDA as a 
second-line chemotherapeutic agent in men with symptomatic mCRPC [5]. Treat-
ment options for advanced prostate cancer have expanded with better understanding 
of the molecular biology of castration resistance. The last few years have seen the 
emergence of a number of novel second-generation antihormonal therapies, such as 
androgen receptor antagonists (ARAs), and newer inhibitors of androgen synthesis, 
such as CYP17A1 enzyme inhibitor (abiraterone), that improve OS in mCRPC [6,7]. 

Immunotherapy has also shown considerable success as an alternative therapeutic 
strategy in prostate cancer, which may be especially amenable to immunotherapeutic 
approaches for several reasons. Prostate cancer cells express a number of targetable anti-
gens such as PSA and PAP. Furthermore, the slow progression of prostate cancer allows 
time for an immune response to develop [8–10]. The potential of immunotherapy in 
prostate cancer is highlighted by the success of sipuleucel-T (PROVENGE®, APC8015; 
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Dendreon, Seattle, WA, USA), which was approved by 
the FDA in 2010 for asymptomatic or minimally symp-
tomatic mCRPC [11]. Sipuleucel-T is a patient-specific 
therapeutic cancer vaccine, and the first therapeutic 
vaccine to show survival benefit in any malignancy. 

In the last few years, multiple novel vaccine plat-
forms have emerged that target different biological 
pathways (Figure 1; see Table 1 for vaccine platforms 
in Phase  II/III clinical trials in prostate cancer). 
These immunotherapeutic agents are categorized as 
either patient-specific or off-the-shelf. Patient-specific 
immunotherapeutic agents such as sipuleucel-T are pro-
duced from immune cells or tumor cells isolated from 
the patient [12–14]. A major, relevant clinical difference 
between the two types of vaccine lies in the fact that 
while patient-specific vaccines have been proven safe and 
effective, they are resource-intensive. An off-the-shelf 
approach, on the other hand, avoids the resource-intense 
manufacture and release of patient-specific vaccines. 

This article reviews the clinical evidence on 
sipuleucel-T and newer experimental immunotherapeutic 
strategies for CRPC.

Mechanism of immunotherapy
While both the humoral and cellular (T  cells and 
natural killer [NK] cells) immune system take part in 
surveillance against cancer, the latter plays the major 
role. T cells (T helper, CD8+ and regulatory T cells) 
in particular, along with antigen-presenting cells 
(APCs; dendritic cells) form the fundamental basis 
of the adaptive host immune system [15]. Depending 
on the delivery system used (including host mono-
nuclear cells pulsed with antigen, viral vector and 
whole tumor cells), current vaccines are designed to 
elicit an antitumor immune response against one or 
multiple tumor antigens. APCs can activate T cells 
by efficiently processing antigens (PSA, for instance) 
carried by the vaccines and presenting them to T-cell 
receptors, thereby triggering a cytotoxic antitumor 
response and antigenic memory in the long term. 
MHC antigen-processing machinery plays a critical 
role in the processing of antigens for recognition of 
tumor cells by cytotoxic T cells. Diversified prime-
boost regimens such as PSA-TRICOM, or concurrent 
vaccination with two distinct vaccine platforms tar-
geting the same antigen, may elicit higher antitumor 
immunity [16,17].

Whole tumor cell vaccines, such as GVAX, generate 
an immune response to several antigens both known 
and unknown. Vaccines such as PSA-TRICOM have 
been designed with the goal of using PSA as the speci-
fied target, although the downstream epitope land-
scape generated by this vaccine may be broader. As 
discussed below, several standard chemotherapeutic 
agents, as well as radiation therapy, are capable of caus-
ing immunogenic modulation of the tumor bed and 
host immune system that renders tumors susceptible 
to cytotoxic cell killing. This forms the basis of com-
binatorial regimens, for host compromise is primarily 
driven by cancer cells that have escaped standard strat-
egies. Conversely, negative co-stimulatory molecules 
on T cells, such as CTLA-4, PD-1 and PD-L1, on 
the tumor bed can induce immune tolerance. Immune 
checkpoint inhibitors such as ipilimumab help abro-
gate this tolerance and may potentially synergize with 
vaccines to control tumor growth (Figure 1) [18]. 

Standard anticancer agents versus 
immunotherapeutic agents
There are major mechanistic differences between 
standard antitumor approaches, such as chemo
therapy, and immunotherapy using cancer vaccines. 
The former principally target the tumor and its micro-
environment, while the latter targets the immune sys-
tem to initiate a potentially expandable attack on the 
tumor through not only a quantitative expansion of 
tumor-directed T cells, but also by enhancing two 
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Figure 1. Mechanism-based sites of action of current immunotherapeutic 
agents in prostate cancer. 
MDSCs: Myeloid-derived suppressor cells; TCR: T-cell receptor.
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important qualitative aspects of T-cell response: avid-
ity and expandability [19]. Only high-avidity T cells 
can efficiently lyse tumor cells with low concentra-
tions of antigen [20]. Conversely, T-cell expandability, 
also known as epitope spreading or antigen cascade, 
involves cross-presentation of tumor antigens released 
during the lysis of tumor cells [21]. In addition, unlike 
a cytotoxic agent, a vaccine promulgates a T-cell mem-
ory response, leading to different kinetics of clinical 
response. The initial immune response is slow and 
narrow, with no perceptible impact on tumor growth 
rate. However, over time the immune response takes 
off. Furthermore, through antigen cascade the target 
antigen landscape also evolves [22,23]. The immune 
response to the vaccine thus grows broader and 
more potent, lasting beyond the time of treatment 
and potentially exerting a more sustained impact on 
tumor growth rate. These unique biological character-
istics may provide an explanation for the substantial 
improvement of OS seen with the use of immuno-
therapeutic agents, despite no improvement in median 
progression-free survival (PFS). This lack of short-
term clinical benefit was evident in the Phase III trials 

of sipuleucel-T in prostate cancer, and ipilimumab in 
metastatic melanoma and the randomized Phase  II 
trial of PSA-TRICOM vaccine [11,24,25].

Antigen cascade has additional implications for 
immunotherapy. Since therapeutic vaccines are rela-
tively well tolerated and have the potential for long-
term clinical benefit, administration of vaccines at 
earlier stages of disease will probably provide the most 
benefit. However, early visible shrinkage of tumors may 
not be expected from this approach, and there are no 
clinically validated biomarkers of response on follow up. 

Sipuleucel-T
Sipuleucel-T ushered in a new age of therapy for 
prostate cancer [14]. This patient-specific therapeutic 
vaccine is designed to stimulate the immune system 
to target and eliminate prostate cancer cells. The 
approach involves obtaining peripheral blood mono-
nuclear cells by leukapheresis from a prostate can-
cer patient. After centrifugation and washing, the 
remaining cells, including APCs, are incubated with 
PA2024 at 37°C for 36–44 h. PA2024 is a recombi-
nant protein of PAP fused at its C-terminus to the 

Table 1. Immunotherapeutic platforms in Phase II/III prostate cancer trials.

Name Constituents Mode of administration Ref.

Patient-specific immunotherapeutic agents

Sipuleucel-T† Autologous mononuclear cells pulsed 
with PAP–GM-CSF fusion protein

Three cell product (with minimum of 40 million large 
cells expressing the co-stimulatory molecule CD54) 
infusions, 2 weeks apart for a total of three doses

[11]

DeCIDe™ (PSMA) Therapeutic DC vaccine targeting 
PSMA designed to manipulate 
autologous DCs in situ

BPX–101, which targets PSMA, is administered 
intradermally twice weekly for six doses, followed 24 h 
after each dose by intravenous infusion of DC signal 
molecule ‘dimerizer’ AP1903 (0.4 mg/kg)

[100]

Off-the-shelf immunotherapeutic agents

PSA-TRICOM Poxviral vector with three co-
stimulatory molecules and PSA

rV-PSA-TRICOM on day 1 with GM-CSF followed by 
boost rF-PSA-TRICOM starting day 15, every 28 days 
thereafter

[8]

GVAX Prostate cancer cell lines (LNCaP and 
PC-3) engineered to express GM-CSF 
at the vaccine site

500 million cells with the prime dose followed by 300 
million cells with each booster dose every 3 weeks for 
ten cycles, followed by maintenance immunotherapy 
alone (every 4 weeks)

[101]

DNA-based Plasmid DNA vaccine encoding PAP Intradermal, monthly boosters [22]

PPV Peptide set selected on the basis of 
highest levels of peptide-specific IgG

Subcutaneous, 6 weekly [66]

mRNA-based DC transfected with mRNA encoding 
a LAMP hTERT protein

Intradermally, weekly [102]

Ipilimumab‡ Monoclonal antibody against CTLA-4 3–10 mg/kg intravenous infusions, induction/
maintenance regimens, every 3 weeks for four cycles

[18]

†Cost is $31,000 per infusion [209].
‡Cost is $30,000 per injection [210].
DC: Dendritic cell.
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N-terminus of GM-CSF [26]. PAP is the target tumor-
associated antigen (TAA). After postincubation pro-
cessing, the autologous cell product, now enriched 
for CD54+ cells, is transfused back into the patient 
following standard pretreatment. 

An initial Phase I/II trial of sipuleucel-T conducted 
in 31  patients with nonmetastatic CRPC demon-
strated safety [27]. Patients were treated with esca-
lating doses of activated cells at 0, 4 and 8 weeks, 
with an option to receive another dose at 24 weeks. 
Those receiving higher doses were more likely to have 
improved time-to-progression (TTP) and enhanced 
T-cell proliferation and antibody responses. A sec-
ond Phase  II trial in patients with mCRPC again 
demonstrated safety and tolerability [28]. One patient 
experienced a complete response during the study 
period. Median TTP was 118 days and two patients 
showed PSA declines of 25–50%. Immune responses 
were predominantly T-cell proliferation responses to 
PA2024. 

A consistent improvement in OS was demonstrated 
in two subsequent randomized controlled trials (D9901 
and D9902A) in minimally symptomatic mCRPC 
[29,30]. The placebo in each study was the patient’s APCs 
not pulsed with PA2024. The two trials enrolled a total 
of 225 men, and had a primary end point of TTP. 
Sipuleucel-T brought about an insignificant improve-
ment in TTP in the first trial. However, a follow-up 
analysis of the first trial (D9901; n = 127) demon-
strated an OS advantage in favor of sipuleucel-T (25.9 
vs 21.4 months for placebo; p = 0.01). At 36 months 
follow up, OS was 34% for sipuleucel-T versus 11% 
for placebo (p = 0.005). A trend toward improved OS 
was demonstrated in the treatment arm of D9902A, 
without a significant improvement in TTP. Based on 
these compelling data, and the lack of treatment effect 
on TTP, a larger randomized Phase III trial, IMPACT, 
was designed with OS as the primary end point [11].

In the IMPACT trial, 512 asymptomatic or mini-
mally symptomatic mCRPC patients were randomized 
2:1  to receive three infusions of sipuleucel-T versus 
placebo. Placebo was prepared using a third of the 
APCs obtained from leukapheresis. The trial demon-
strated an OS benefit in favor of sipuleucel-T, with a 
median survival of 25.8 versus 21.7 months for patients 
in the placebo arm (p = 0.02). While approximately 
55% of men in both groups received docetaxel after 
the study, a sensitivity analysis discovered that subse-
quent chemotherapy did not alter the difference in out-
comes. Notably, the survival benefit was seen despite a 
crossover of 49.1% of placebo subjects to receive cryo-
preserved sipuleucel-T. However, as in earlier studies, 
TTP was not significantly different between the two 
treatment groups. A subsequent meta-analysis of the 

three randomized, placebo-controlled trials (n = 737) 
found OS to be significantly longer with sipuleucel-T 
compared with placebo (hazard ratio [HR]: 0.73; 95% 
CI: 0.61–0.88; p = 0.001) [31].

Sipuleucel-T was very well tolerated, especially when 
compared with established chemotherapies for pros-
tate cancer. Infusion-related chills, fever, headache, 
f lu-like symptoms, myalgia, hypertension, hyper
hydrosis and groin pain were more frequent in the 
sipuleucel-T group than in the placebo group. Most of 
these toxicities resolved in 1–2 days. Grade 3 adverse 
events (AEs) within 1 day of infusion were seen in 
6.8% of sipuleucel-T-treated patients, with AE-related 
drug interruptions seen in <1% of patients. The FDA’s 
approval of sipuleucel-T in mCRPC was based on these 
results, and the National Cancer Center Network 
Prostate Panel has added sipuleucel-T as a category 1 
treatment recommendation for mCRPC. Despite cost 
concerns, the Centers of Medicare and Medicaid Ser-
vices have stipulated sipuleucel-T as a necessary and 
reasonable treatment modality. 

A prespecified immune analysis of 151 patients from 
both treatment arms of the IMPACT trial revealed 
interesting correlative data: 66.2% in the sipuleucel-T 
arm and 2.9% in the placebo arm had antibody titers to 
PA2024 > 1:400 [11], and these patients had improved 
survival compared with patients with titers <1:400 
(p < 0.001). Antibodies to PAP were found in 28.5% 
of evaluable patients in the sipuleucel-T arm, compared 
with 1.4% of evaluable patients in the placebo arm. 
T-cell proliferation responses to both PA2024 and PAP 
were higher in the sipuleucel-T group compared with 
the placebo group. A follow-up immunological analy-
sis of data from three Phase III trials of sipuleucel-T 
found evidence of antigen-specific immune responses 
in 78.8% of monitored subjects, and these responses 
correlated with OS (p = 0.003) [32].

An exploratory analysis of IMPACT divided the 
enrolled subjects (n  =  512) into baseline quartiles 
(≤22.1, >22.1–50.1, >50.1–134.1 and >134.1 ng/ml) 
[33]. Although not prespecified and not powered for sig-
nificance, consistent survival benefit with sipuleucel-T 
over placebo was seen across the quartiles. A trend 
towards higher survival benefit (41.3 months OS with 
sipuleucel-T vs 28.3 months with placebo; HR: 0.51; 
95 % CI: 0.31–0.85) was seen in the lowest quartile, 
suggesting that the vaccine may have the greatest effi-
cacy in lower-burden disease (in the highest quartile, 
the OS difference between sipuleucel-T and placebo 
was 2.8 months in favor of the former; HR: 0.84; 95% 
CI: 0.55–1.29).

In a separate retrospective analysis, 26 patients (16 in 
the long OS group and ten in the short OS group) 
who had bone scans on IMPACT and who received 
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sipuleucel-T were stratified as those with low bone 
metastatic burden (<7 baseline lesions, an increase of 
≤2 lesions at week 10, and an increase of ≤5 lesions at 
week 18) and high metastatic burden [34]. Investigators 
could correctly predict long OS in 76% of patients and 
short OS in 67% of patients (81% sensitivity, 60% 
specificity, 73% crude agreement [p = 0.029 vs unin-
formed 50% rate of correct prediction]). Although 
the study lacked a placebo comparator, investigators 
concluded that lower tumor burden and slow disease 
progression may increase the likelihood of prolonged 
OS, which is consistent with emerging data showing 
that therapeutic vaccines may have the most benefit in 
lower-burden disease [35]. 

Randomized trials of sipuleucel-T have raised a num-
ber of concerns, including the effect on outcome of 
advanced age and immune-depletion brought about by 
leukapheresis [36]. However, a subgroup analysis of the 
IMPACT trial did not confirm an association between 
advanced age and vaccine efficacy. In addition, leuka-
pheresis removes only 0.1–1.4% of the total body pool 
of lymphocytes [37], with a decline in peripheral circu-
lating lymphocyte count of approximately 10% after 
two to nine procedures without a significant impact 
on patients’ immune status [38]. Furthermore, no dif-
ference in infection rates between the arms was noted 
in the Phase III trial, suggesting a preserved immune 
status for patients in the placebo arm [39]. Lymphocytic 
proliferation that probably follows any leukapheresis-
associated transient leukopenia would be expected to 
drive an antitumor response [40].

PSA-TRICOM
A collaborative effort between Bavarian-Nordic 
Immunotherapeutics (CA, USA) and the National 
Cancer Institute led to the development of an off-
the-shelf poxviral-based cancer vaccine consisting of 
a recombinant vaccinia prime and multiple boosts of 
recombinant fowlpox. As with cellular-based vaccines 
such as sipuleucel-T, the goal of vector-based strategies 
is to induce a dynamic tumor response propagated by 
the adaptive immune system [41,42]. In clinical trials 
for prostate cancer, the poxviral vector is encoded with 
transgenes for PSA, which is overexpressed in the vast 
majority of prostate cancer patients, as well as the co-
stimulatory molecules B7.1 (CD80), ICAM-1 (CD54) 
and LFA-3 (CD58), to enhance immune responses [43]. 
This vaccine is designated PSA-TRICOM (PROST-
VAC®). Preclinical studies demonstrated that the three 
co-stimulatory molecule transgenes act synergistically to 
greatly enhance the number and avidity of T cells [44–47].

A heterologous prime and boost strategy with pox-
viral vaccines was tested in an earlier Phase II trial [48]. 
Vaccinia and fowlpox complement each other, as the 

former initiates an immune response while the latter 
boosts it without stimulating neutralizing antibodies. 
A vaccinia priming dose followed by fowlpox boosts 
was found to be the optimal dosing schedule. In the 
Phase II trial, 78.1% of patients demonstrated clinical 
PFS. A Phase I trial of PSA-TRICOM combined with 
GM-CSF administered monthly on the same ‘prime-
and-boost’ schedule was proven to be safe [49], with no 
toxicity > grade 2. The most common grade 2 toxicity 
was injection-site reaction (∼50%); less common were 
grade 2 systemic bone pain, pyogenic granuloma and 
hyperhydrosis (6.7%). 

Two Phase II studies of PROSTVAC-VF/TRICOM 
on a monthly dosing schedule have been completed 
in mCRPC. A multicenter Phase II trial randomized 
patients (n = 125) 2:1 in favor of vaccine versus empty 
vector (wild-type poxvirus). Patients enrolled had a Glea-
son score of ≤7 and no evidence of visceral metastasis [24]. 
As with sipuleucel-T, TTP (the primary end point) was 
not found to be significantly different between the vac-
cine and placebo arms, but median OS was 25.1 months 
in the vaccine arm compared with 16.6 months in the 
control arm (HR = 0.56; p = 0.0061). In a single-arm 
Phase II study of PSA-TRICOM at the National Cancer 
Institute, 32 patients with mCRPC were enrolled regard-
less of Gleason score. The median OS was 26.6 months, 
and immunologic analysis revealed that 13 of 29 evalu-
able patients had a greater than twofold increase in PSA-
specific T cells [50]. An ongoing randomized, double-
blind, Phase III trial will evaluate the efficacy of PSA-
TRICOM with or without GM-CSF as local immune 
adjuvant in patients with asymptomatic or minimally 
symptomatic mCRPC [201]. With an estimated enroll-
ment of 1200 patients and OS as the primary end point, 
this three-arm study will compare PSA-TRICOM with 
and without GM-CSF versus placebo. 

Immune checkpoint inhibitors
Ipilimumab (Yervoy®; Bristol-Myers Squibb, NY, 
USA) is a fully human IgG1κ monoclonal antibody 
(mAb) that targets CTLA-4. CTLA-4 is a CD28 
homolog membrane protein on T cells that regulates 
the early activation of naive and memory T cells fol-
lowing engagement of T-cell receptors with APCs [201]. 
Ipilimumab was the first in a class of therapies tar-
geting T-cell activation and regulation to be licensed 
in the broad category of agents known as immune 
checkpoint inhibitors. Ipilimumab has been shown 
to extend survival in metastatic melanoma, and has 
been tested in multiple studies as monotherapy and 
in combination with other agents in the treatment of 
prostate cancer [25].

A pilot study (n = 14) of intravenous ipilimumab as 
monotherapy in mCRPC showed evidence of safety [51]. 
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Two of 14 patients had a decline in PSA of >50% that 
lasted 135 and 60 days, respectively; eight of 14 patients 
had a <50% decline in PSA. A unique mechanism-
based set of toxicities known as immune-related AEs 
has been noted with the use of anti-CTLA-4 inhibitors. 
The most common immune-related AEs, involving the 
skin, mucous membrane, liver and pituitary, are thought 
to result from an unchecked autoimmune expansion of 
self-reactive T cells, which often dictates interruption 
of therapy and administration of immunosuppressive 
agents [18]. In this study, one patient developed grade 2 
pruritus and grade 3 rash attributable to ipilimumab, 
both of which responded to steroids. 

Anti-CTLA-4 mAbs have been combined with sev-
eral different anticancer modalities in clinical trials in 
mCRPC. In a Phase I/II study of ipilimumab and radia-
tion in mCRPC (with or without prior chemotherapy), 
eight of 50 PSA-evaluable patients had a PSA decline of 
≥50% [52]. The ability of radiation to induce phenotypic 
modulation of tumor cells [53,54], leading to antigen cas-
cade and antitumor immune response, was the rationale 
for the combination of ipilimumab and radiation [55]. 
Another Phase II randomized trial of 3 mg/kg ipilim-
umab with or without concurrent docetaxel in mCRPC 
showed a confirmed PSA decline of ≥50% in three of 43 
patients [56]. A Phase I trial that tested the combination 
of GM-CSF with escalating doses (0.5–10 mg/kg) of 
ipilimumab demonstrated acceptable tolerability and 
PSA declines of ≥50% in three of six patients treated 
with 3 mg/kg [57].

By increasing T-cell avidity, CTLA-4 blockade can 
potentially improve the efficacy of antitumor vaccines 
[58]. This combination approach was tested in a Phase I 
study that combined GVAX (a whole tumor cell vac-
cine engineered to express GM-CSF) with escalating 
doses of ipilimumab (0.3–5.0 mg/kg) in patients with 
mCRPC [59]. Seven patients (25%) had a PSA decline 
of ≥50%; two patients in the escalation phase showed a 
clear regression of bone metastases. Stable bone metas-
tases (lasting 3–27 months) were noted in 15 patients. 
In a similar approach, PSA-TRICOM was tested in 
combination with ipilimumab (1.0–10  mg/kg) in 
30 patients with mCRPC [60]. No dose-limiting toxic-
ity was identified, 14 of 24 patients (58%) had con-
firmed PSA declines, and six (25%) had a PSA decline 
of >50% (two were >90%). Three of 12 patients with 
measurable disease had unconfirmed partial responses 
on computed tomography. Notably, median OS was 
29.2 months (95% CI: 9.6–48.8) for patients receiv-
ing ipilimumab in combination with GVAX, and 
34.4 months (95% CI: 29.6–41) for patients receiving 
ipilimumab in combination with PSA-TRICOM [59,60]. 
Randomized, controlled, Phase III studies are needed 
to confirm these findings. 

Two ongoing Phase III studies with OS as the pri-
mary end point will further characterize the role of 
CTLA-4 blockade in prostate cancer. A Phase  III 
randomized, placebo-controlled trial aims to enroll 
800 patients with mCRPC who have been previously 
exposed to docetaxel [202]. Following radiation therapy, 
intravenous ipilimumab (10 mg/kg) will be given every 
3 weeks for up to four doses in the induction phase (up 
to 24 weeks) and every 12 weeks in the maintenance 
phase (48+ weeks), or until treatment-halting criteria 
are met. A second randomized, placebo-controlled 
trial of ipilimumab will evaluate survival in patients 
with asymptomatic or minimally symptomatic chemo-
naive mCRPC [203]. Projected enrollment for the trial 
is 600 patients. 

Other immunotherapeutic agents in clinical 
development
GVAX (Cell Genesys, CA, USA), a whole tumor cell 
vaccine consisting of a GM-CSF-transduced androgen-
sensitive prostate cancer cell line (LNCaP) and a CRPC 
cell line (PC3), has been studied extensively in prostate 
cancer. A randomized Phase III trial (VITAL-1) enrolled 
626 patients with mCRPC and administered GVAX ver-
sus docetaxel every 3 weeks [203]. The trial was prema-
turely terminated when a futility analysis determined 
that GVAX had a <30% chance of meeting the pre-
defined superiority end point of OS. At the most recent 
analysis, patients randomized to vaccine had an almost 
identical OS compared with those randomized to chemo
therapy (HR = 1.01). A second Phase III trial (VITAL-2) 
enrolled 408 docetaxel-naive patients with symptomatic 
mCRPC and randomized them to GVAX plus docetaxel 
or docetaxel and prednisone. The results revealed an 
excess of deaths (67 vs 47) and shorter median OS (12.2 
vs 14.1 months; p = 0.0076) for the GVAX-docetaxel 
combination [61]. The failure to show a clinical benefit has 
been potentially attributed to patient selection, although 
the role of GM-CSF and the lack of prednisone (known 
to have clinical activity in prostate cancer) in the vaccine-
treated patients are alternative explanations [62]. While 
the failure of GVAX in two Phase III trials in prostate 
cancer has received much attention, GVAX-based vac-
cines continue to be tested in other cancers such as breast, 
pancreatic, colorectal and, most recently, leukemias [63]. 
Based on preclinical evidence of efficacy and early clinical 
efficacy data in the combinatorial setting [64,65], there is 
hope that this platform will continue to be explored in 
prostate cancer. 

Peptide-based vaccines are derived from host peptides 
selected on the basis of higher antigen-specific humoral 
response. They are faster and cheaper to produce and 
are less likely to induce self-antigens capable of generat-
ing an autoimmune response compared with cell-based 



Novel immunotherapeutic agents for castration-resistant prostate cancer   Review: Clinical Trial Outcomes 

future science group Clin. Invest. (2013) 3(7) 657

therapies  [65]. Personalized peptide vaccines (PPVs) 
derived from PSA, PAP, PSMA, multidrug-resistant 
proteins and other epithelial tumor antigens have been 
clinically tested in prostate cancer. In a randomized trial, 
PPV plus low-dose estramustine phosphate (EMP) was 
compared with standard-dose EMP in 57 HLA-A2- or 
-A24+ patients with mCRPC [66]. The combination was 
well tolerated. Even with crossover, the HR for OS was 
0.3 (95% CI: 0.1–0.91) in favor of the PPV plus low-dose 
EMP group (log-rank, p = 0.0328). 

Adenoviral vectors encoding PSA have also been tested. 
In a Phase I clinical trial in 32 patients with mCRPC, 
a single subcutaneous dose of an adenovirus/PSA vac-
cine was found to be safe, with 34% of patients showing 
anti-PSA antibodies and 68% showing anti-PSA T-cell 
responses [67]. PSA doubling time (PSADT) increased 
in 48% of patients. A Phase II nonrandomized trial is 
evaluating adenovirus/PSA vaccine in mCRPC [204]. 
An expected 88 patients will receive three subcutaneous 
doses of vaccine, with PSADT as the primary end point. 

DNA-based vaccines, essentially plasmids encod-
ing PAP or PSA, have been shown to be safe, easy to 
manufacture and amenable to incorporation with other 
immunomodulatory agents. DNA vaccines have been 
evaluated in Phase I and II clinical trials in castration-
sensitive prostate cancer. In a Phase I trial in eight patients 
with stage D0 prostate cancer, a PSA-specific cellular 
immune response and humoral response were detected 
in two of three patients in the highest-dose cohort [68]. 

In a Phase I/II trial, 22 patients with mCRPC received 
an intradermal plasmid DNA vaccine expressing PAP, 
with GM-CSF [69]. The vaccine was well tolerated and 
had an excellent toxicity profile. Three patients (14%) 
had ELISPOT responses in the form of PAP-specific 
IFN-γ-secreting CD8+ T  cells. Nine patients (41%) 
developed PAP-specific CD4+ and/or CD8+ T cell-
proliferative responses, but no antibody responses against 
PAP. Further analysis revealed a suggestion of antitumor 
activity. Median PSADT increased from 6.5 months at 
baseline to 8.5 months during treatment (p = 0.033) 
and 9.3 months (p = 0.054) in the year post-treatment; 
HLA-A2+ patients derived the greatest benefit [22]. Based 
on these early results, an ongoing randomized Phase II 
trial at the University of Wisconsin (WI, USA) is accru-
ing a projected 34 patients with nonmetastatic CRPC 
to test a DNA vaccine (pTVG-HP; 100 µg) encoding 
PAP in combination with recombinant human GM-CSF 
(200 µg) [205]. The study drugs will be administered 
intradermally biweekly for six total doses, then at the 
same doses every 3 months until radiographic disease 
progression. Safety and immune responses will be the 
primary end points. 

PSMA is a widely expressed epithelial cell mem-
brane-restricted antigen that is progressively expressed 

in mCRPC [70]. Unlike PSA and PAP, PSMA is not 
secreted, which makes it a good target for mAb therapy 
[70,71]. Among a number of antibodies developed to the 
extracellular domain of PSMA, J591, a deimmunized 
mAb, is the most well studied in the field of immuno-
therapy for prostate cancer [72]. This approach is similar 
to ‘passive immunotherapy’ regimens, such as trastu-
zumab in breast cancer and rituximab in hematological 
malignancies, as opposed to the ‘active immunotherapy’ 
of therapeutic cancer vaccines.

In the first study of J591, 17 heterogeneous patients 
with prostate cancer were given weekly intravenous infu-
sions of the antibody with low-dose IL-2. There was a 
trend for NK cell expansion in patients without progres-
sion [73]. An immunoconjugate of the same internalized 
antibody designed to deliver the maytansinoid anti
microtubule agent DM-1 was tested in a Phase I trial 
of 23 patients with mCRPC and shown to be safe. Two 
(22%) of nine patients treated at 264 or 343 mg/m2 
had a >50% decrease in PSA versus baseline and one 
patient treated at 264 mg/m2 showed measurable tumor 
regression [74]. 

Combination immunotherapy
A number of standard anticancer strategies have 
been shown to affect the host immune system and 
tumor microenvironment in ways that synergize 
with immunotherapeutic approaches. For instance, 
sublethal doses of radiation can induce phenotypic 
changes in tumor cells, generate novel proteins and 
upregulate many cell-surface proteins involved in 
T-cell target recognition, adhesion and lysis [74–80]. 
Proteins affected by radiation include calreticulin, 
adhesion molecules, MHC class 1 and 2 and Fas. TAAs 
affected include CEA, MUC-1, CA125, HER2-neu, 
p53, PSA, PSMA and PAP. There is significant pre-
clinical evidence that these phenotypic changes ren-
der tumor cells more susceptible to vaccine-mediated 
T-cell killing and improve trafficking of TAA-specific 
effector T cells to the tumor [76–80]. Early clinical trials 
of vaccine combined with radiation in localized pros-
tate cancer have provided clinical proof-of-concept 
(Tables 2 & 3). 

A randomized Phase  II trial evaluated the abil-
ity of a poxviral vaccine encoding PSA and the T-cell 
co-stimulatory molecule B7.1 to induce a PSA-specific 
T-cell response when combined with radiation therapy 
in patients with localized prostate cancer [49,50]. In total, 
13 of 17 patients who received the complete vaccine 
schedule showed a ≥ threefold increase in PSA-specific 
T cells (p < 0.0005) versus no detectable increase in the 
radiotherapy-only arm. Antigen cascade was noted in the 
form of de novo generation of T cells to well-described 
prostate-associated nontarget antigens and de  novo 
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humoral responses [81]. The vaccine was well tolerated. 
Another randomized Phase II trial tested samarium-153, 
a radionuclide that targets osteoblastic bone lesions, with 
or without PSA-TRICOM. Of 39 evaluable patients, 
those in the combination arm had PFS of 3.7 com-
pared with 1.7 months in the samarium-153-only arm 
(HR = 0.48; p = 0.034). Toxicity profiles were similar 
in both arms [82].

Preclinical data indicate that certain chemo
therapeutic agents can increase the susceptibility of 
tumor cells to vaccine-mediated T-cell killing through 
a process of immunogenic modulation. In a preclini-
cal model, sublethal exposure of tumor cells to cis-
platin and vinorelbine enhanced the susceptibility of 
human lung carcinoma cells to CTL-mediated lysis. 
Gene expression profiling in preclinical studies had 
shown chemotherapy-induced modulation of tumor 
phenotype, the cytokine/chemokine milieu, and the 
proapoptotic:antiapoptotic gene ratio [83]. In preclinical 
models, where docetaxel has had limited antitumor effi-
cacy, appropriate dose scheduling with vaccine demon-
strated optimal enhancement of vaccine-induced anti-
tumor responses [84]. A number of mechanisms have 

been postulated to explain these immunomodulatory 
effects. Docetaxel modulates populations of CD4+, 
CD8+, CD19+, NK and T-regulatory cells in preclinical 
models [85]. Docetaxel can also upregulate one or more 
surface molecules (Fas, ICAM-1, MUC-1, CEA and 
MHC class I) in both sensitive and resistant human car-
cinoma cell lines, which is associated enhanced killing 
by HLA-A2-restricted CD8+ CTLs [83–87]. 

The combination of docetaxel and cancer vaccine 
was tested in an open-label, randomized, multicenter, 
crossover Phase II trial in metastatic breast cancer [88]. 
Docetaxel was administered alone or in combination 
with PANVAC, a poxviral-based vaccine with transgenes 
for MUC-1 and CEA, plus TRICOM. At a median 
follow up of 5.1 months, PFS was 6.6 months in the 
combination arm versus 3.8 months in the docetaxel-
alone arm (HR = 0.67; 95% CI: 0.34–1.31; p = 0.12). 
Toxicities in both arms were comparable. 

A similar combinatorial approach has been clinically 
tested in prostate cancer. In a randomized Phase II trial 
in mCRPC, 28 patients were given either vaccine plus 
weekly docetaxel (a different dose and schedule than 
in the GVAX studies) or vaccine alone [89]. Median 
TTP for the 11 patients who crossed over to docetaxel 
from vaccine alone was 6.1 months compared with 
3.7 months for historical controls. TTP in the com-
bination arm (3.2 months) was similar to historical 
controls. T-cell responses to PSA and evidence of anti-
gen cascade were seen in both arms, suggesting that 
chemotherapy (with co-administered peri-infusional 
steroid) does not impede vaccine-induced responses in 
a clinical setting. 

ADT, the primary treatment modality in advanced 
prostate cancer, has been shown to have immune-
enhancing effects as well. ADT is associated with 
increased peripheral traffic of effector cells to prostate, 

Table 3. Ongoing and planned randomized clinical trials of 
combination immunotherapy in castration-resistant prostate cancer.

Immunotherapy Conventional therapy and/or 
other immunotherapy

Phase Ref.

Ipilimumab Radiotherapy III [202]

Ipilimumab GM-CSF II [207]

Sipuleucel-T ADT III [208]

Sipuleucel-T Abiraterone acetate II [209]

Sipuleucel-T Anti-PD-1 and cyclophosphamide II [210]

ADT: Androgen-deprivation therapy.

Table 2. Reported randomized clinical trials of combination immunotherapy in metastatic castration-resistant prostate 
cancer.

Immunotherapy Conventional or other immunotherapy Patients (n) Phase Ref.

Dendritic cell: autologous PBMCs activated 
with a PAP–GM-CSF fusion protein

Docetaxel 82 III (post hoc data) [98]

Viral vector: rV-PSA/rVB7.1 prime/rF-PSA 
boost

Docetaxel 28 III [89]

PSA-TRICOM Sm-153-EDTMP 34 II [99]

Viral vector: rV-PSA/rVB7.1 prime/rF-PSA 
boost

Nilutamide 42 II [94]

Ipilimumab Docetaxel 43 II [51,206]

PPV Estramustine 57 II [66]

GVAX® Docetaxel 408 III [61]

PBMC: Peripheral blood mononuclear cell; PPV: Personalized peptide vaccines; rF: Recombinant fowlpox; rV: Recombinant vaccinia; Sm-EDTMP: Samarium-153-ethylene 
diamine tetramethylene phosphonate.



Novel immunotherapeutic agents for castration-resistant prostate cancer   Review: Clinical Trial Outcomes 

future science group Clin. Invest. (2013) 3(7) 659

Executive summary

Characteristics of immunotherapeutic agents
■■ Cancer vaccines have minimal toxicity and are far better tolerated than conventional anticancer approaches.
■■ Immunotherapy may have its greatest potential for clinical benefit in patients with low tumor burden/early-stage disease.
■■ While current vaccine strategies involve ex vivo processing (sipuleucel-T), less resource-intensive in vivo approaches 
(off-the-shelf) are also in late stages of clinical development (e.g., PSA-TRICOM).

■■ Unique tumor response kinetics with immunotherapeutic agents can potentially provide durable clinical benefit.

Combination immunotherapy
■■ The effects of standard antitumor strategies can potentiate vaccine-mediated T-cell killing of tumor cells, and form the rationale 
for combination immunotherapy.

■■ Vaccines have the potential to enhance clinical outcomes when rationally combined with other immune-enhancing or 
immune-inert cytotoxic regimens.

■■ Radiation and certain cytotoxic chemotherapies may cause phenotypic changes in tumor cells and induce immunogenic 
modulation.

■■ Androgen-deprivation therapy in prostate cancer is associated with host antitumor immune enhancement.

decreased immune tolerance of self-antigens that are 
overexpressed in many cancers, alteration of CD4+ and 
CD8+ cell subpopulations, inhibition of T-regulatory 
cells and increased naive T cell emigrants from the 
thymus [90–93]. A clinical trial of combined androgen 
blockade and vaccines in patients with nonmetastatic 
CRPC illustrates the potential advantages of combin-
ing the two strategies [94]. In this trial, which allowed 
crossover, combined androgen blockade was achieved 
with nilutamide, an ARA, and ADT. The median time 
to treatment failure (defined by rising PSA or develop-
ment of a metastatic lesion) with the combined therapy 
was 13.9 months in the vaccine arm when nilutamide 
was added at PSA progression. In contrast, patients 
who started on nilutamide and added vaccine at PSA 
progression had a median time to treatment failure of 
5.2 months. Pending confirmation in a rigorous clini-
cal setting, these findings favor giving vaccine in early-
stage disease followed by nilutamide, compared with 
nilutamide followed by vaccine. A follow-up survival 
analysis revealed a 75% 5-year survival rate for patients 
treated first with vaccine then with added nilutamide, 
compared with a 43% 5-year survival rate for patients 
who received nilutamide first and had vaccine added at 
a later time [95]. In another randomized Phase II trial 
of flutamide with or without PSA-TRICOM, prelimi-
nary evidence suggests improvement in time to treat-
ment failure for the combination arm compared with 
flutamide alone [96]. Future clinical trials with newer 
ARAs such as enzalutamide may establish the validity 
of this combinatorial approach. 

Conclusion & future perspective
A growing amount of evidence points to the feasibility, 
safety and early efficacy of immunotherapeutic agents 
such as vaccines and immune checkpoint inhibitors 
in CRPC. Future efforts will be crucial to identifying 
novel vaccine platforms, patient populations who may 

receive the most benefit, optimal trial designs and 
combination approaches with the best clinical out-
comes. Off-the-shelf vaccines have obvious logistical 
advantages over patient-specific vaccines; however, 
large-scale data analyses may find these approaches to 
be clinically equivalent in terms of efficacy and tol-
erability [201]. Patients with minimal disease burden 
(i.e., nonmetastatic disease on conventional imaging) 
will probably derive maximum benefit from immuno-
therapeutic agents because of their safety, biological 
characteristics and durable effects [97,98]. New pairings 
and sequencing of disparate agents in combinatorial 
strategies require further assessment. Combinations 
of immunotherapy with ADT, chemotherapy, radio-
therapy and small-molecule inhibitors may be favored 
based on preclinical data and clinical proof-of-concept. 
Options for combinatorial approaches will expand with 
the development of new vaccine platforms such as PPV, 
mRNA-, and DNA-based vaccines, as well as newer 
androgen inhibitors such as abiraterone and enzalu-
tamide and newer checkpoint inhibitors such as anti-
PD-1 and anti-PD-L1, all of which are being tested. 
Bone-seeking radionuclides are also being tested in 
combination with vaccines [99]. Widespread adoption 
of immunotherapy for cancer will ultimately depend on 
other factors as well, including the discovery of relevant 
biomarkers, better immune assessment methods and 
greater experience with novel agents. 
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