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Introduction

Coronaviruses (Latin: corona=crown), named 
for the crown-like spikes (S glycoprotein) on 
their surface [1]. It belongs to Coronaviridae 
family, single strand enveloped viruses and 
included in the Nidovirales order [2]. It is sub 
divided into four groups-alpha, beta, gamma, 
and delta on the basis of genomic structure. 
Coronavirus not only infect mammals also has 
broad host range including avian. They may 
cause mainly upper respiratory tract infection 
and also cause gastrointestinal, hepatic disease 
and central nervous system [3]. All corona 
viruses like SARS-CoV and MERS-CoV have 
had animal origin generally either bats or 
rodents and caused diseases to humans [4]. 
So, genome sequencing of new Coronavirus 
showed 96.2% sequence identity with Bat 
CoV RaTG13 [5]. Till December 2019, only 
six different Coronavirus es were known. 
Four of these (HCoV-NL63, HCoV-229E, 
HCoV-OC43 and HKU1) usually caused mild 
common cold-type symptoms in immune-
competent people and the other two (SARS-
CoV and MERS-CoV) have caused pandemics 

in the past two decades. Genome of 2019-nCov 
was sequenced, it shared 79.5% of the genetic 
sequence of the SARS-CoV that caused the 
2002-2003 pandemic [6] and the International 
Committee on Taxonomy of Viruses renamed 
the 2019-nCov as SARS-CoV-2 [7]. Generally 
Coronaviruses are positive-stranded RNA 
viruses with a 27-kb to 31-kb genome [8]. 
Similarly, SARS-CoV and MERS-CoV have 
positive-sense RNA genomes of 27.9 kb and 
30.1 kb, respectively [9]. About two-thirds 
of the Coronavirus genome (~20,000 bases) 
encodes the viral replicase that involve in viral 
RNA synthesis. The replicase gene is comprised 
of two large open reading frames, designated 
ORF1a and ORF1b [10], it also encodes 3’ 
structural proteins includes large glycoprotein 
Spike (S), Envelope (E), a small glycoprotein 
Membrane (M) mainly embedded in the 
membrane and phosphorylated Nucleocapsid 
(N). These structural proteins have genes that 
evoke pathogenicity in host cells and involve in 
viral process and replication [11-14]. 

A plus-strand (+) RNA virus have genetic 
diversity and applies to their RNA synthesis 
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machinery. Only one enzyme is conserved i.e. 
RNA-dependent RNA polymerase (RdRp), 
whereas in other domains replicative and 
accessory protein may vary. In most of the 
targets, both Spike (S) and Nucleocapsid 
(N) protein gains attention due to fusion of 
virus on the host and involve in replication, 
respectively [15]. The S protein comprises into 
two components, S1 (amino-terminal include 
amino acids 270 to 510) contains the Receptor 
Binding Domain (RBD); while S2 (carboxyl- 
terminal) contains the fusion peptide and due 
to conformational changes it allows membrane 
fusion to host cells, allowing entry of virus [16-
21]. Novel Coronavirus cause severe illness as 
Angiotensin-Converting Enzyme 2 (ACE2) is 
found in the lower respiratory tract of humans, 
resulting into fever, destruction of alveolies and 
characterized atypical pneumonia [22]. ACE2, 
is contributing as cell receptor for SARS-CoV-2 
during entry of virus into host cells and regulates 
both the cross-species and human-to-human 
transmission [23]. 

Despite limited information on this new virus, 
previous findings support that SARS uses 
Angiotensin-Converting Enzyme 2 (ACE2) to 
gain entry in to cells [18,24], in similar fashion 
nCoV uses dipeptidyl peptidase 4 (DPP4 or 
CD26) as a functional receptor [25]. This 
finding may be important as the requirement 
for ACE2 and may be responsible for the 
pathogenicity of SARS-CoV. Still pathogenesis 
of nCoV results into pandemic and the reason 
is still unknown. Once SARS-CoV-2 enters into 
host cells due to interactions of SARS-S RBD 
with the cell surface receptor ACE2 [26,27]. 
These interactions are further followed by 
endocytosis at low pH, resulting in the cleavage 
of SARS-S by a host protease called cathepsin 
L, thus exposing the S2 domain for membrane 
fusion, the two subunits arrange and fold into 
a metastable pre-fusion conformation [28-33]. 
SARS-S also regulates cell stress responses and 
apoptosis [34]. 

Thus, it is important to understand the 
mechanisms of entry of Coronavirus and 
further followed by fusion to the membrane 
to eliminate pathogenesis and can prevent 
Coronavirus infection at earliest [35]. It is 
critical to understand S protein fusion because 
viruses exhibit tropism for specific cells in 
vivo [36]. It is important to evaluate the role 
of host proteins in relevant primary cell types 
when experimentally feasible. Evidence suggests 

that tissue expression of the ACE2 receptor 
corresponds to the localization of virus during 
infection in infected individuals [37-40]. 
Also, the efficiency of infection in humans 
also correlates with the ability of the ACE2 to 
support viral replication [37,41-43].

Further studies demonstrated that when the S 
protein binds to the ACE2 receptor, followed 
by type 2 Transmembrane Protease TMPRSS2 
leading to cleavage of ACE2 and activation of 
the spike protein [44,45]. Similarly influenza 
virus use same mechanism to facilitate viral 
entry into the target cell. It has been suggested 
that cells in which ACE2 and TMPRSS2 are 
simultaneously present are most susceptible to 
entry by SARS-CoV [46]. Early indications 
are that SARS-CoV-2 virus also requires ACE2 
and TMPRSS2 to enter cells [6]. Viral entry 
triggers the host’s immune response, and the 
inflammatory cascade is initiated by Antigen-
Presenting Cells (APC). The APC performing 
two functions: (1) presenting the foreign antigen 
to CD4+-T-helper (Th1) cells, and (2) releasing 
interleukin-12 to further stimulate the Th1 cell. 
The Th1 cells stimulate CD8+-T-killer (Tk) 
cells that will target any cells containing the 
foreign antigen. In addition, activated Th1 cells 
stimulate B-cells to produce antigen-specific 
antibodies [47]. Immuno-compromised patient 
fails to combat infection via immune response 
and their lung samples showed alveolar damage 
resulting into fatality [17]. 

Another defense mechanism is Autophagy. It is a 
cellular stress response that functions to recycle 
proteins and organelles [48,49]. It is studied 
in Sindbis virus and herpes simplex virus-1 
and showed an important defense mechanism 
against infection with those viruses [50,51]. It 
might be possible recovered patient may have 
autophagy defense mechanism.

Next, most targetable protein known as 
nucleocapsid N protein; works as an antigen and 
binds with viral RNA genome. It involve in both 
RNA binding and replication by modulating 
transcription process. It also contains two non-
interacting structural domain, one is N-terminal 
domain and serve for RNA binding, where 
second is C-terminal domain exits in dimer 
form in solution and considered as dimerization 
domain [52]. Initially ribonucleoprotein core 
is form by binding of N protein with viral 
RNA genome, on the onset of infection this 
ribonucleoprotein core enters into host cell and 
interacts with host proteins [53-57]. Coronavirus 
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es replicate entirely in the cytoplasm of cells. 
In newly recognized human Coronavirus , 
N protein identified as the causative agent of 
Severe Acute Respiratory Syndrome (SARS) 
[35] and found most abundantly protein 
in infected cells. It contains RNA-binding 
motif and involve in cellular signaling. It is 
phosphoprotein involve in formation of viral 
core, packaging and transcription of viral RNA 
and have high affinity with viral RNA and form 
ribonucleocapsid structure [58]. In infections 
of SARS- CoV, N protein has been involved 
in the induction of Mitogen-Activated Ki-
nases (MAPKs), especially p38MAPK [59,60]. 
Additionally both, AP-1 signal pathway is 
activated in response of stress, inflammation 
or viral infection and weak induction of Akt 
signaling pathways were also found [22,61-
63]. AP-1 involve in cellular transduction 
and regulate cellular process, due to stimuli it 
activates innate or adaptive immunity. Due to 

deregulation of AP-1 pathway it results into 
numerous lymphomas.

In Coronavirus infection, viral mRNA parasitize 
host machinery and affects host transcription and 
translation processes, due to similar structure of 
viral mRNAs to eukaryotic hosts, they capture 
host machinery to translate the viral mRNA 
[22]. In vrius life cycle, Nucleocapsid protein 
not only responsible for mRAN generation, M 
and E protein together intimately participate in 
genome condensation and packaging [64-66]. 

Conclusion

In order to understand virus pathogenesis, there 
are three strategies to employ either to target 
Receptor-Binding Domain (RBD) of S protein, 
second to target ACE2 receptor by antibodies to 
block S protein binding and prevent virus entry, 
and last to stop viral replication via targeting 
AP-1 pathway to stop both transcription and 
translation process of genomic material.
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